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Abstract— This paper studies the controllability backbone
problem in dynamical networks defined over graphs. The main
idea of the controllability backbone is to identify a small
subset of edges in a given network such that any subnetwork
containing those edges/links has at least the same network
controllability as the original network while assuming the same
set of input/leader vertices. We consider the strong structural
controllability (SSC) in our work, which is useful but computa-
tionally challenging. Thus, we utilize two lower bounds on the
network’s SSC based on the zero forcing notion and graph
distances. We provide algorithms to compute controllability
backbones while preserving these lower bounds. We thoroughly
analyze the proposed algorithms and compute the number of
edges in the controllability backbones. Finally, we compare and
numerically evaluate our methods on random graphs.

Index Terms— Strong structural controllability, network con-
trol, zero forcing, graph distances.

I. INTRODUCTION

Network structure profoundly influences the dynamical
behavior of networked multiagent systems. For instance, net-
work controllability, connectivity, robustness to failures, in-
formation dissemination, and influence evolution in networks
rely on the underlying network topology [1]. Therefore, any
changes to the network’s structural organization, such as
adding or removing links between agents, may alter the
system-level properties of the network, which could be either
beneficial or detrimental. Thus, for a survivable network
design and avoid the deterioration in the desired network
behavior, a practical approach is to identify a sparse sub-
network (or backbone) whose maintenance would guarantee
the preservation of the desired network property in the face
of modifications. For example, to maintain connectivity, pre-
serving edges in the minimum spanning tree ensures a path
between every pair of agents. Similarly, in communication
infrastructure networks, connected dominating sets are used
to identify the minimum number of agents necessary to form
the backbone network [2].

This paper studies the controllability backbone problem
in a networked dynamical system defined over a graph
G = (V,E). Network controllability concerns the ability to
manipulate the agents within a network as desired through
external control signals injected via a subset of agents called
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input agents or leaders. The network controllability depends
on the choice of leaders Vℓ ⊆ V and the interconnections
between agents [3]. Moreover, the network controllability
may deteriorate if the connections/edges between agents
change [4], [5]. The main idea of the controllability backbone
is to determine a small subset of edges EB ⊆ E such that
any subnetwork of G containing EB has at least the same
network controllability as G with the same leaders. In other
words, maintaining EB implies that the minimum network
controllability is preserved despite edge modifications.

We consider the strong structural controllability (SSC) for
the backbone problem. SSC is advantageous as it depends
on the edge set E and not on the edge weights (which
represent the coupling strengths between vertices and often
are not precisely known). However, determining the SSC of a
network is a challenging computational problem [5]–[7]. So a
typical approach is to obtain tight lower bounds. Therefore,
we aim to identify a controllability backbone for a given
network G = (V,E) and leader set Vℓ, where the backbone
preserves a tight lower bound on the network’s SSC. As for
the SSC lower bounds, we consider two widely used bounds
based on the zero forcing sets and distances in graphs [8]–
[10]. Our main contributions are as follows:

1) We present a novel approach to identifying a sparse
subgraph in a graph that guarantees the same level of
controllability (SSC) as the original graph. We call this
subgraph the controllability backbone (Section II).

2) We provide a polynomial algorithm to compute a
minimum controllability backbone, which preserves a
lower bound on the network’s SSC based on zero
forcing sets in graphs (Section III).

3) Additionally, we consider a distance-based lower
bound on SSC and compute a controllability backbone
preserving the distance bound. We derive tight bounds
on the number of edges in the distance-based backbone
(Section IV).

4) Finally, we illustrate our results and compare different
controllability backbones (Section V).

There are previous works dealing with the densification
problem, i.e., how can we add edges to a graph while
maintaining its controllability (e.g., [11], [12])? In contrast,
this paper studies an inverse, i.e., the sparsification problem,
to identify a small subset of crucial edges whose existence
within any subgraph guarantees the same controllability as
the original graph. While some studies have considered
identifying edges whose removal from the graph does not
deteriorate the network controllability of the remaining graph
(e.g., [13]–[15]), our problem setup is distinct. We require
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that any subgraph containing the backbone edges be at least
as controllable as the original graph, resulting in a more
general problem formulation. Furthermore, our formulation
considers the concept of strong structural controllability,
which adds to its generality.

The rest of the paper is organized as follows: Section II
introduces preliminaries and sets up the controllability back-
bone problem. Section III reviews the zero forcing ideas and
then studies the zero forcing-based controllability backbone
problem. Section IV describes the distance-based bound on
network SSC and then employs it to compute the distance-
based backbone. Section V compares the two controllability
backbones and numerically evaluate the proposed methods.
Finally, Section VI concludes the paper.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Notations and System

An undirected graph G = (V,E) models a multiagent
network. The vertex set V , and the edge set E ⊂ V × V
represent agents and interactions between them, respectively.
The edge between vertices u and v is denoted by an
unordered pair (u, v). The neighborhood of u in graph G
is the set NG(u) = {v ∈ V : (u, v) ∈ E} and the
degree of u is deg(u) = |NG(u)|. A path P in a graph G is
defined as a sequence of vertices (v1, v2, v3, · · · , vk), where
v1, v2, v3, · · · , vk are distinct vertices in the graph, and for
every i from 1 to k− 1, there exists an edge between vi and
vi + 1. The distance between vertices u and v, denoted by
d(u, v), is the number of edges in the shortest path between
u and v. A graph Ĝ = (V, Ê) is a subgraph of G = (V,E),
denoted by Ĝ ⊆ G, if Ê ⊆ E, and G will be a super graph
of Ĝ.

We consider a network of n agents, denoted by V =
{v1, v2, · · · , vn}, of which m are input/leader vertices, which
are represented by Vℓ = {ℓ1, ℓ2, · · · , ℓm} ⊆ V , and the rest
are followers. We consider the following liner time-invariant
system on G.

ẋ(t) = Mx(t) +Hu(t). (1)

Here, x(t) ∈ Rn is the state vector and u(t) ∈ Rm is the
external input injected into the system through m leaders.
M ∈M(G) is the system matrix, where M(G) is a family
of symmetric matrices associated with G defined as:

M(G) = {M ∈ Rn×n : M = M⊤, and for i ̸= j,

Mij ̸= 0⇔ (i, j) ∈ E(G)}.
(2)

The matrix H ∈ Rn×m in (1) is the input matrix, such that
Hij = 1, if vi = ℓj ; and 0 otherwise. We note that the input
matrix H is defined by the selection of leader agents. Here,
M(G) denotes a broad class of system matrices defined
on graphs, including the adjacency, Laplacian, and signless
Laplacian matrices.

B. Strong Structurally Controllable Networks

The system (1) is controllable if there exists an input u(t)
that can drive the system from an arbitrary initial state x(t0)

to any desired state x(tf ) in a finite amount of time. If the
system is controllable for a given system and input matrices,
we say that (M,H) is a controllable pair. Moreover, (M,H)
is a controllable pair if and only if the controllability matrix
C(M,H) ∈ Rn×nm is full rank, i.e., rank(C(M,H)) = n.
The controllability matrix is defined as:

C(M,H) =
[
H MH M2H · · · Mn−1H

]
. (3)

Definition (Strong Structural Controllability (SSC)) A graph
G = (V,E) with a given set of leaders Vℓ ⊆ V (and the
corresponding H matrix) is strong structurally controllable if
and only if (M,H) is a controllable pair for all M ∈M(G).

If the network G is strong structurally controllable for a given
set of leaders, then the rank of the controllability matrix does
not depend on the edge weights (as long as they satisfy (2)).
For the rest of the paper, we refer to strong structural con-
trollability simply as controllability. The dimension of strong
structurally controllable subspace, denoted by γ(G,Vℓ), is
the smallest possible rank of the controllability matrix under
feasible weights.

Definition (Dimension of SSC) For a fixed leader set Vℓ,
the dimension of strong structurally controllable subspace,
denoted by γ(G,Vℓ), is the smallest possible rank of the
controllability matrix over all M ∈M(G), i.e.,

γ(G,Vℓ) = min
M∈M(G)

(rank(C(M,H))). (4)

γ(G,Vℓ) quantifies ‘how much’ of the network G can
always be controlled through the leaders Vℓ.

C. Controllability Backbone Problem

We are interested in identifying a small subset of edges
among vertices within a network that would maintain its
strong structural controllability in its subnetworks. This
entails identifying the sparsest subgraph, referred to as the
controllability backbone, that guarantees at least the same
level of controllability as the original network in any sub-
network that encompasses the controllability backbone. In
essence, the controllability backbone represents the minimum
structure that must be preserved within the network to ensure
its minimum controllability despite structural perturbations.

Definition (Controllability Backbone B) For a given G =
(V,E) and leaders Vℓ ⊆ V , the controllability backbone (or
simply backbone) B = (V,EB), is a subgraph of G with
EB ⊆ E, such that any subgraph Ĝ = (V, Ê) containing
EB , i.e., EB ⊆ Ê ⊆ E satisfies

γ(Ĝ, Vℓ) ≥ γ(G,Vℓ). (5)

In other words, any subgraph Ĝ = (V, Ê) of G containing
backbone edges EB , has at least the same controllability as
G. Thus, preserving backbone edges guarantees that control-
lability does not deteriorate in a subgraph Ĝ. A backbone
with the minimum edge set is referred to as the minimum
backbone graph B∗ = (V,E∗). We aim to compute B∗.
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Problem 1: Given a graph G = (V,E) and a leader set Vℓ,
find the minimum controllability backbone graph.

Figure 1 illustrates the idea of a controllability backbone.
For a given G and Vℓ = {v4, v6, v7}, the dimension of SSC
is γ(G,Vℓ) = 8. A minimum backbone B∗ is shown in
Figure 1(b). Any subgraph Ĝ (of G) containing B∗ also has
γ(Ĝ, Vℓ) = 8.
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v1 v6
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(a) G
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(b) B∗
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v1 v6

v7
v4

(c) Ĝ

Fig. 1: (a) A graph G. (b) A minimum controllability
backbone B∗ of G. (c) A subgraph Ĝ of G containing the
backbone (red edges).

The minimum backbone problem relies on the computa-
tion γ(G,Vℓ) (as in (4)), which is a computationally arduous
task. To address this challenge, it is common to compute
tight lower bounds on γ(G,Vℓ) instead of γ(G,Vℓ) when
dealing with SSC-related problems. As a result, we also
modify the controllability backbone problem and focus on
obtaining a sparse subgraph of a given G whose existence
within any subgraph Ĝ ⊆ G guarantees that Ĝ has the same
or greater value of lower bounds on the dimension of SSC as
G. To accomplish this, we consider two widely used lower
bounds, including (1) a zero forcing set-based bound and
(2) a bound based on the distances between vertices. In the
forthcoming sections, we will elaborate on these bounds and
their application to the controllability backbone problem.

III. ZERO FORCING FOR CONTROLLABILITY BACKBONE

Zero forcing is a rule-based coloring of vertices in a graph.
The main idea is to initiate the coloring process with a small
subset of initially colored vertices which eventually color
other vertices based on some rules. Zero forcing has several
network applications and provides a tight lower bound on
the network’s SSC, as we explain below [8].

A. Zero Forcing-based Lower Bound on SSC

First, we define the zero forcing process and related terms
and then explain the SSC bound based on the zero forcing
phenomenon.

Definition (Zero forcing (ZF) Process) Consider a graph
G = (V,E), such that each v ∈ V is colored either BLACK
or WHITE initially. The ZF process is to iteratively change
the color of WHITE vertices to BLACK using the following
rule until no further color changes are possible.

Color change rule: If v ∈ V is colored BLACK and has
exactly one WHITE neighbor u, change the color of u to
BLACK.

We say that v infected u if the color of WHITE vertex u
is changed to BLACK by some BLACK vertex v.

Definition (Derived Set) Consider a graph G = (V,E)
with Vℓ ⊆ V as the set of initial BLACK vertices. Then,
the set of BLACK vertices obtained at the end of the ZF
process is the derived set [16], denoted by dset(G,Vℓ), and
|dset(G,Vℓ)| = ζ(G,Vℓ). When the context is clear, we will
drop the parameter Vℓ.

The set of initial BLACK vertices Vℓ is also referred to as
the input or leader set. For a given Vℓ, dset(G,Vℓ) is unique
[16]. Now, we define the zero forcing set.

Definition (Zero Forcing Set (ZFS)) For a graph G =
(V,E), Vℓ ⊆ V is a ZFS if and only if dset(G,Vℓ) = V .
We denote a ZFS of G by Z(G).

Figure 2 illustrates zero forcing through a set of input vertices
and the corresponding derived set.

ZF
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Fig. 2: Vℓ = {v4, v6, v7} is the input set. After the ZF
process, dset(G,Vℓ) = V , as indicated by the black vertices.
Hence, Vℓ is a ZFS.

The zero forcing phenomenon is significant in character-
izing the network’s SSC [8], [17], [18]. In particular, the size
of the derived set for a given set of input vertices provides
a lower bound on the dimension of SSC.

Theorem 3.1: [19] For any network G = (V,E) with
the leaders Vℓ ⊆ V ,

ζ(G,Vℓ) ≤ γ(G,Vℓ),

where ζ(G,Vℓ) is the size of the derived set with Vℓ as input
vertices, and γ(G,Vℓ) is the dimension of SSC (as in (4)).

Proof: Proof follows from Lemma 4.2 in [19], which
shows that for a set of state matrices, the controllable sub-
space always contains a |dset(G,Vℓ)|-dimensional subspace.

B. ZFS-based Backbone

We are interested in finding a controllability backbone that
will maintain the zero forcing bound ζ(G,Vℓ) for a given
leader set Vℓ. The idea is to identify a subset of edges EBZ

in a given G = (V,E) with a leader set Vℓ such that the ZFS-
based controllability bound in any subgraph of Ĝ = (V, Ê)
containing those edges, (i.e., EBZ

⊆ Ê) is preserved. We
formally define the ZFS-based backbone as follows:

Definition (ZFS-based Backbone) Given a graph G =
(V,E) and a leader set Vℓ, the ZFS-based backbone is a
subgraph Bz = (V,EBz

), such that any subgraph Ĝ =
(V, Ê), where EBZ

⊆ Ê ⊆ E satisfies the following:

ζ(Ĝ, Vℓ) ≥ ζ(G,Vℓ).

Thus, the dimension of SSC in any subgraph of G con-
taining the ZFS-based backbone is at least ζ(G,Vℓ), or in
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other words, γ(Ĝ, Vℓ) ≥ ζ(G,Vℓ). Our goal is to find the
ZFS-based backbone with the minimum number of edges.

Problem 2: Given a graph G = (V,E) and a leader set Vℓ,
find a minimum ZFS-based backbone.

In [8], authors show that a leader set Vℓ renders the
network strong structurally controllable if and only if Vℓ

is a zero forcing set (ZFS) of the network graph G. Thus,
the ZFS-based backbone is essentially the controllability
backbone (as defined in Section II-C) if Vℓ is a ZFS of
G. Algorithm 1 solves Problem 2 and computes a minimum
ZFS-based backbone. The main idea is to run the ZF process
and iteratively select an edge through which some BLACK
vertex colors its WHITE neighbor (thus, increasing the size
of the derived set).

Algorithm 1 Computing ZF-based controllability backbone

Input: G, Vℓ

Output: ZFS-based backbone Bz = (V,EBz )
1: Initialize: EBz ← ∅, dset(G,Vℓ) ← Vℓ (The set
of initial BLACK vertices)

2: while there exits a BLACK vertex v with exactly one
WHITE neighbor u do

3: dset(G,Vℓ)← dset(G,Vℓ) ∪ {u}
4: EBz ← EBz ∪ {(u, v)}
5: end while

Theorem 3.2: Consider a graph G = (V,E) and a leader
set Vℓ ⊆ V , where |V | = n and |Vℓ| = m. Algorithm 1
returns a minimum ZFS-based backbone Bz = (V,EBz

) in
O(n2) time. Moreover, |EBz

| = ζ(G,Vℓ)−m.
Proof: Available in [20].

An example illustrating implementation of Algorithm 1 is
presented in [20].

We note that when Vℓ is a ZFS of G (i.e., dset(G,Vℓ) =
V ), then ζ(G,Vℓ) = γ(G,Vℓ) = |V |, implying that a mini-
mum ZFS-based backbone is also a minimum controllability
backbone (as in Problem 1). However, when the leader set Vℓ

is not a ZFS, then the distance-based bound on the dimension
of SSC is typically better than the ZFS-based bound [18].
Next, we discuss the distance-based bound and apply it to
the controllability backbone problem.

IV. GRAPH DISTANCES FOR CONTROLLABILITY
BACKBONE

In this section, we design a controllability backbone using
a bound on the network SSC based on the graph distances
between vertices in the underlying network graph. First,
we introduce the distance-based bound on the dimension
of SSC [9]. We then frame the notion of the distance-
based controllability backbone and provide an algorithm to
compute such a backbone. In Section V, we compare the
ZFS-based and distance-based backbones.

A. Distance-based Lower Bound
Assuming m leaders Vℓ = {ℓ1, ℓ2, · · · , ℓm} in a leader-

follower network G = (V,E), we define the distance-to-

leader (DL) vector for each vi ∈ V as

Di =
[
d(ℓ1, vi) d(ℓ2, vi) · · · d(ℓm, vi)

]T ∈ Zm.

The jth component of Di, denoted by [Di]j , is d(ℓj , vi),
i.e., the distance between leader ℓj and vertex vi. Figure 3
shows DL vectors of vertices in a graph G with leaders
Vℓ = {v4, v6}. Next, we define a sequence of distance-
to-leader vectors, called pseudo-monotonically increasing
sequence [9].

Definition (Pseudo-monotonically Increasing Sequence
(PMI)) A sequence D = [D1 D2 · · · Dk] of distance-to-
leader vectors is a PMI if for any vector Di in the sequence,
there is some coordinate π(i) ∈ {1, 2, · · · ,m} such that

[Di]π(i) < [Dj ]π(i), ∀j > i. (6)

We say [Di]π(i) satisfies the PMI property at coordinate π(i).
The PMI property (6) essentially gurantees that for

each vector Di in the PMI sequence, there is some in-
dex/coordinate π(i) such that the values of all the subse-
quent vectors at the coordinate π(i) are strictly greater than
[Di]π(i). An example of PMI sequence of six vectors is
shown in (7), where the coordinates of circled values are
the ones where the PMI property is satisfied.

Next, we note that each vector in a PMI sequence is a
DL vector of some vertex in the graph. However, multiple
vertices can have the same DL vectors. For example, the DL
vectors of v2 and v8 are the same. Thus, to explicitly specify
the vertex whose DL vector appears in the PMI sequence,
we introduce the distance-to-leader mapping.

Definition (Distance-to-Leader Mapping (DLM)) Let D be
a PMI sequence. For each Di ∈ D, a Distance-to-Leader
Mapping (DLM), denoted by f(Di), is a vertex whose DL
vector is Di, i.e., Di = Df(Di).

To further clarify, note the following notations:
Di: ith vector in the PMI sequence,
Dv: DL vector of vertex v.
Figure 3 illustrates these ideas. For the graph G in Figure 3

and Vℓ = {v4, v6}, a PMI sequence of length six can be
constructed as

D =

[[
0
2

]
,

[
2

0

]
,

[
1

1

]
,

[
1
3

]
,

[
2

2

]
,

[
2
3

]]
. (7)

A PMI sequence of DL vectors is related to the network
SSC. In fact, the length of PMI sequence provides a tight
lower bound on the dimension of SSC γ(G,Vℓ), as stated in
the following result.

Theorem 4.1: [9] If δ(G,Vℓ) or simply δ(G), is the
length of the longest PMI sequence of distance-to-leader
vectors in a network G = (V,E) with Vℓ leaders, then

δ(G,Vℓ) ≤ γ(G,Vℓ), (8)

where γ(G,Vℓ) is the dimension of SSC (as in (4)).

B. Distance-based Backbone
Here, we will use the distance-based bound to formulate

a controllability backbone problem. Then, we will provide
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Fig. 3: A network with two leaders Vℓ = {ℓ1, ℓ2} =
{v4, v6}, along with the DL vectors of vertices. A PMI
sequence of length six is D = [D1 D2 · · · D6] =
[Dv4 Dv6 Dv7 Dv5 Dv8 Dv3 ].

and analyze an algorithm for computing such a backbone.

Definition (Distance-based Backbone) Given a graph G =
(V,E) and a leader set Vℓ, the distance-based backbone is
a subgraph Bd = (V,EBd

) such that any subgraph Ĝ =
(V, Ê), where EBd

⊆ Ê ⊆ E satisfies the following:

δ(Ĝ, Vℓ) ≥ δ(G,Vℓ).

It basically means that any subgraph Ĝ containing backbone
edges EBd

has the longest PMI sequence with Vℓ leaders of
length more or equal to the longest PMI sequence as in G,
and thus, has at least the same controllability bound as in G.
As a result, any Ĝ containing the backbone edges satisfies
δ(G,Vℓ) ≤ γ(Ĝ, Vℓ). So, our goal is to find the minimum
distance-based backbone.

Problem 3: Given a graph G = (V,E) and a leader set Vℓ,
find a minimum distance-based backbone.

Algorithm 2 presents a scheme to compute a minimal
distance-based backbone of a given G = (V,E) and leader
set Vℓ = {ℓ1, ℓ2, · · · , ℓm}. The input to the algorithm is
a PMI sequence D =

[
D1 D2 · · · Dδ

]
of length

δ(G,Vℓ) = δ. Additionally, we also know the corresponding
distance-to-leader mapping f(Di) for each Di ∈ D (i.e.,
vertices whose DL vectors appear in D). We note that PMI
sequence and DLM can be easily computed using methods
in [7]. The main idea of Algorithm 2 is to maintain the edges
such that for each Di ∈ D, the distance between f(Di) and
the leader ℓπ(i) ∈ Vℓ is preserved. Recall that π(i) is the
coordinate of Di at which the PMI property is satisfied. The
details are outlined below and an example is in [20].

Next, we show that the above algorithm always returns a
distance-based backbone.

Theorem 4.2: Consider a graph G = (V,E) and a leader
set Vℓ ⊆ V , where |V | = n and |Vℓ| = m. Algorithm 2
returns a distance-based backbone Bd = (V,EBd

) in O(n3)
time.

Proof: Available in [20].
We note that for a given G and leader set Vℓ, multiple

distinct PMIs of the same length can exist. Moreover, there
can be multiple distance-to-leader mappings for a given PMI
D. At the same time, for a given D, there can be multiple
ways to assign a coordinate π(i) to Di ∈ D while satisfying

Algorithm 2 Computing distance-based backbone

Input: G, Vℓ, PMI sequence D = [D1 D2 · · · Dδ(G,Vℓ)]
Output: Distance-based backbone Bd = (V,EBd

)
1: for i = 1 to δ(G,Vℓ) do
2: compute f(Di), % DLM of Di.
3: compute d(ℓπ(i), f(Di)) % distance between
leader ℓπ(i) and vertex f(Di).

4: Pi ← edges on the shortest path between ℓπ(i) and
f(Di). % If there are multiple, choose
any shortest path.

5: end for
6: EBd

←
⋃

i Pi

the PMI property. Thus, for a given G and Vℓ, multiple PMIs
can have the same length δ(G,Vℓ) but distinct distance-to-
leader mappings or π(i) combinations. The distance-based
backbone returned by Algorihm 2 depends on the above-
mentioned factors, i.e., the input PMI sequence, π(i) combi-
nations in the PMI sequence, and the corresponding distance-
to-leader mappings. Hence, the distance-based backbone
returned by Algorihm 2 may be distinct for different PMI
sequences with the same lentgh δ(G,Vℓ). An instance that
demonstrates how the backbone Bd relies on various factors
is exemplified in [20].

Next, we state the lower and upper bounds on the number
of edges in the distance backbone returned by Algorithm 2.

Proposition 4.3: For a given graph G and a leader set Vℓ,
the lower bound on the number of edges in the distance-based
backbone Bd computed using Algorithm 2 is δ(G,Vℓ)−m,
where m is the number of leaders.

Proof: Available in [20].
An upper bound on the number of edges in the distance

backbone due to Algorithm 2 is given below.
Proposition 4.4: For a given graph G, a leader set Vℓ,

and a maximum length PMI D, the upper bound on the
number of edges in Bd computed using Algorithm 2 is(
m

2

)
+

(
δ(G,Vℓ)−m+ 1

2

)
.

Proof: Available in [20].
In Section V, we perform a numerical analysis and observe

that the number of edges in the distance-based backbone is
typically very close to the lower bound. Further, by carefully
selecting the PMI sequence of the desired length, the number
of edges in the distance-based backbone due to Algorithm 2
can be minimized. Next, we compare the ZFS- and distance-
based backbones numerically in graphs.

V. COMPARISON AND ILLUSTRATION

The ZFS- and distance-based bounds have their own merits
in computing the controllability backbones, and the number
of edges in the ZFS- and distance-based backbones depends
on the values of the respective bounds (as in Theorem 3.2
for the ZFS backbone, and Propositions 4.3 and 4.4 for the
distance-based backbones). As discussed previously, the ZFS
bound works best when the leader set Vℓ is a ZFS, implying
that the network is strong structurally controllable. In such a
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scenario, the ZFS bound on the dimension of SSC is at least
as good as the distance bound, i.e., ζ(G,Vℓ) ≥ δ(G,Vℓ) [18].
Moreover, the number of edges in the ZFS-based backbone
obtained using Algorithm 1 will be minimum. Thus, the ZFS-
based backbone would be a better choice than the distance-
based backbone. An example is presented in [20].

On the other hand, if the leader set is not a ZFS, the
distance-based bound is typically superior to the ZFS bound
[18]. Hence, in such cases, the distance-based backbone is
better than the ZFS backbone as the subgraphs that include
the distance-based backbone will have higher controllability
(i.e., greater dimension of SSC) than those containing the
ZFS backbone.

Finally, we perform a numerical evaluation of the ZFS
and distance backbones on Erdős-Rényi (ER) graphs with
n = 50 vertices and varying average density p. For each
graph G, we randomly select m = 12 leader vertices and
find a derived set and maximum length PMI sequence for
the selected leader set. We use Algorithms 1 and 2 to find
the respective backbone graphs for 50, 000 different ER
graphs for each value of p. Figure 4(a) plots the average
value of the ZFS and distance bounds on the dimension
of SSC as a function of p. We observe that the distance
bound δ(G) is significantly better than the ZFS bound ζ(G).
Figure 4(b) plots the number of edges EBz

in the ZFS-
based backbone (computed using Algorithm 1) as a function
of p. Similarly, Figure 4(c) plots the the number of edges
EBd

in the distance-based backbone (using Algorithm 1).
The plot also shows the lower and upper bounds on the
number of edges in the distance-based backbone as described
in Propositions 4.3 and 4.4, respectively. We observe that the
number of edges in distance-based backbones is much closer
to the lower bound, δ(G)−m. For instance, for p = 0.1, the
upper bound on EBd

is 276 compared to the lower bound
value of 23. However, the actual value of |EBd

| ≈ 29, is
much closer to the lower bound.

(a) (b) (c)

Fig. 4: (a) Comparison of the ZFS and distance bounds on
SSC. (b) Number of edges in the ZFS-based backbones.
(c) Number of edges in the distance-based backbones.

VI. CONCLUSION

The controllability of a network can be compromised due
to changes in the network’s connections. To address this
issue, we proposed a method to identify a subset of edges,
referred to as the ”backbone edges,” that are crucial for
preserving the minimum network controllability even when
the connections in the network are perturbed. Specifically,
we designed an algorithm to compute an optimal backbone
(containing the minimum number of edges) when the leader
set is a zero forcing set. Moreover, we presented an algorithm

utilizing the distance-based bound on the network SSC to
identify a controllability backbone when the leader set is
not a zero forcing set. Finally, we conducted numerical
evaluations on random graphs to demonstrate the effective-
ness of each algorithm. As a future direction, we plan to
explore the possibility of backbone identification in networks
that preserve other network properties, such as energy-based
controllability parameters.
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