## Math 4315/5315-PDEs Home Work 5

Due: Wed. Oct. 27, 2021

1. Transform the following PDEs to standard form. In the case of hyperbolic, transform to only modified standard form.

$$
\begin{align*}
& u_{x x}+2 u_{x y}+u_{y y}=0  \tag{i}\\
& y^{2} u_{x x}+2 x y u_{x y}+x^{2} u_{y y}-2 x u_{x}=0 \tag{ii}
\end{align*}
$$

(iv) $\quad x^{2} u_{x x}-3 x y u_{x y}+2 y^{2} u_{y y}=0$,
(v) $4 u_{x x}+4 u_{x y}+5 u_{y y}=1$,
(iv) $\quad u_{x x}+\left(1+y^{2}\right)^{2} u_{y y}=0$.

## Grad Students and Bonus for Undergrads

The PDE

$$
x^{2} u_{x x}-4 x y u_{x y}+4 y^{2} u_{y y}+x u_{x}=0
$$

is parabolic. Introducing new coordinates

$$
r=x^{2} y, \quad s=y
$$

reduces the PDE to

$$
u_{s s}-\frac{r}{s^{2}} u_{r}=0 .
$$

In fact, any choice of

$$
r=f\left(x^{2} y\right), \quad s=g(x, y)
$$

will transform the original PDE to one that is in parabolic standard form. Can the choice of $f$ and $g$ be made such that we can transform to

$$
u_{s s}=u_{r}
$$

or

$$
u_{s s}=0 ?
$$

