

Setting the Standard for Automation™

AMMONIA PROCESS OPTIMIZATION USING MASS SPECTROMETER

Sumeet Sarkar Thermo Fisher Scientific

Standards Certification Education & Training Publishing Conferences & Exhibits

The International Society of Automation Delhi Section

- Ammonia Process
- Why use Process MS for analysing process gases?
- Key Control Parameters
- Process Mass Spectrometer
 - Multistream sampling
 - Ionization
 - Separation
 - Detection
- Advantages of Mass Spectrometer
- Summary

Ammonia Process

- Key Control Parameters
- Process Mass Spectrometer
 - Multistream sampling
 - Ionization
 - Separation
 - Detection
- Advantages of Mass Spectrometer
- Summary

Ammonia

- Ammonia (NH₃) is produced in most countries as starting material for fertilizer production
- Also used to produce plastics, fibers and explosives
- Ammonia production costs tied to natural gas prices
- On-line gas analysis is well established as a means of process control in ammonia production
 - In past, process GC and IR analyzers used extensively
- Recent years, MS has increasingly become instrument of choice
 - Faster analysis speed and flexibility

Ammonia Process

• Ammonia production can be summarized as:

 $3H_2 + N_2 \rightarrow 2NH_3$

- Hydrogen and nitrogen reacted over catalyst in strictly controlled 3:1 ratio
- This is the final step of the process a number of other reactions take place first, to provide nitrogen and hydrogen in correct ratio

Ammonia Flow Diagram with MS Sample Points

- 1. Natural Gas
- 2. Primary Reformer Feed
- 3. Primary Reformer Effluent

- 4. Secondary Reformer Effluent
- 5. High Temp. Shift Outlet
- 6. Low Temp. Shift Outlet
- 7. CO₂ Absorber Outlet
- 8. Raw Synthesis Gas
- 9. Converter Inlet
- 10. Converter Outlet
- 11. High-Pressure Purge
- 12. Hydrogen Recovery
 - Costs are minimized throughout process by using waste heat boilers and heat exchangers

- Ammonia Process
- Why use Process MS for analysing process gases?
- Key Control Parameters
- Process Mass Spectrometer
 - Multistream sampling
 - Ionization
 - Separation
 - Detection
- Advantages of Mass Spectrometer
- Summary

Why use Process MS?

- Fast analysis of process gases
 - Seconds not minutes
- Multi-component analysis
 - Analyze inorganics & organics
- Multi-stream analysis
 - Up to 64 streams
- Flexible analysis
 - Analysis defined in software
 - Analyze different compounds in different streams
- Precision, accuracy
 - Between 0.1% and 1% relative
- Dynamic range
 - ppm to 100%

- Ammonia Process
- Why use Process MS for analysing process gases?

• Key Control Parameters

- Process Mass Spectrometer
 - Multistream sampling
 - Ionization
 - Separation
 - Detection
- Advantages of Mass Spectrometer
- Summary

Key Control parameters

- Steam to Carbon ratio
 - Energy efficiency and efficient catalyst activity
- Air Requirement
 - Optimize the energy consumption
- Methane Slippage
 - Methane builds up in the synthesis loop requiring additional compression energy and reducing ammonia yield
- Shift Reaction
 - Very important to remove CO it shifts back to CH₄, reaction is exothermic & can damage Methanator
 - Prevent Catalyst poisoning due to CO
- H/N Ratio
 - Hydrogen to Nitrogen ratio to be maintained at 3:1

Example of Process MS gas analysis

Component		Typical Composition %mol	Prima PRO precision of measurement (standard deviation) %mol
Methane	CH_4	93	0.02
Nitrogen	N ₂	1	0.005
Ethane	C_2H_6	3	0.005
Carbon Dioxide	CO_2	1	0.002
Propane	C_3H_8	1	0.002
Isobutane	$i-C_4H_{10}$	0.2	0.002
n-Butane	$n-C_4H_{10}$	0.2	0.002
Isopentane	i-C ₅ H ₁₂	0.1	0.002
n-Pentane	$n-C_5H_{12}$	0.1	0.002
n-Hexane	n-C ₆ H ₁₄	0.1	0.002
Hydrogen Sulfide	H_2S	3 ppm	0.5 ppm
Methyl Mercaptan	CH₃SH	10 ppm	0.5 ppm
Ethyl Mercaptan	C_2H_5SH	10 ppm	0.5 ppm
n-Propyl Mercaptan	C ₃ H ₇ SH	10 ppm	0.5 ppm
n-Butyl Mercaptan	C_4H_9SH	10 ppm	0.5 ppm

ISA

Natural Gas: analysis time <30 seconds including stream switching

Primary Reformer Feed

Тур	oical Primary R	eformer Feed		Primary Ref	ormer Feed Specifi	cation
Component	Minimum	Normal	Maximum	Component	Concentration	Precision*
Methane	85.00	95.61	98.00		Vol.%	Absolute %
Ethane	0.50	1.04	4.00			
Propane	0.00	0.09	1.80	Methane	85.00 - 98.00	0.02
Butane	0.00	0.02	0.80	Ethane	0.50 - 5.00	0.005
Pentane	0.00	0.00	0.30	Propane	1.00 - 3.00	0.005
Carbon Dioxide	0.00	0.16	0.55	n-Butane	1.00 - 2.00	0.005
Nitrogen	0.00	1.06	3.00	Carbon Dioxide	1.00 - 3.00	0.003
Hydrogen	1.00	2.00	4.00	Nitrogen	1.00 - 5.00	0.01
Argon	0.00	0.03	0.80	Argon	0.01 - 0.5	0.001
H ₂ S ppm	0.00	0.00	8.00	Hydrogen	1.00 - 5.00	0.005

* 8-Hour analysis precision (single standard deviation) for analysis time 15 seconds

- Steam is then added to Natural Gas at Primary Reformer
- $CH_4 + H_2O \rightarrow CO + 3H_2$ $CO + H_2O \rightarrow CO_2 + H_2$
- Need to determine amount of steam required to react with methane and other hydrocarbons -
- Steam to Carbon ratio

Primary Reformer Effluent

*

• Two reformers are used since only 30-40% of methane is reformed in first reactor

ISA

• Air is added at reformer stage as source of N₂

Pri	imary Reforme	r Effluent		Primary I	Reformer Specifica	ation
Component	Minimum	Normal	Maximum	Component	Concentration Vol.%	Precision* Absolute %
Hydrogen	60.00	65.38	70.00	Hydrogen	60.00 - 70.00	0.03
Methane	12.00	15.91	18.00	Methane	12.00 - 18.00	0.01
Carbon Monoxide	6.00	7.97	10.00	Carbon Monoxide	6.00 - 10.00	0.03
Carbon Dioxide	9.00	10.36	12.00	Carbon Dioxide	9.00 - 12.00	0.01
Nitrogen	0.00	0.37	1.00	Nitrogen	0.10 - 3.00	0.02
Argon	0.00	0.01	0.10	Argon	0.10 - 0.50	0.001

8-Hour analysis precision (single standard deviation) for analysis time 15 seconds

Secondary Reformer

- Methane reforming reaction is continued in secondary reformer by introducing air into reactor
- Air is the nitrogen source; combustion produces temperatures around 1250°C (2300°F) which result in further methane reforming
- Methane Slippage (unreacted CH₄) is an important parameter to monitor here
- Methane builds up in the synthesis loop requiring additional compression energy and reducing ammonia yield

Secondary Reformer Effluent				Secondary Reformer Specification
Component	Minimum	Normal	Maximum	ComponentConcentration Vol.%Precision* Absolute %
Hydrogen	53.00	54.08	58.00	Hydrogen 50.00 - 65.00 0.03
Methane	0.30	0.41	0.70	Methane 0.30 - 2.00 0.002
Carbon Monoxide	11.00	12.55	15.00	Carbon Monoxide 10.00 - 14.00 0.03
Carbon Dioxide	5.00	7.47	10.00	Carbon Dioxide 5.00 - 10.00 0.01
Nitrogen	20.00	25.18	26.00	Nitrogen 20.00 - 26.00 0.02
Argon	0.20	0.31	0.40	Argon 0.10 - 0.50 0.001

* 8-Hour analysis precision (single standard deviation) for analysis time 15 seconds

Shift Reaction

$$\rm CO + H_2O \rightarrow \rm CO_2 + H_2$$

- For maximum conversion, shift reaction is done in two stages, one at high temperature, one at lower temperature
- Very important to remove CO it shifts back to CH₄, reaction is exothermic & can damage Methanator
- Aim to convert 99+% of CO to CO₂

High Tempe	rature Shift Reactor C	Dutlet	Low Tempe	rature Shift Reactor (Dutlet
Component	Typical Concentration Vol.%	Precision Absolute %	Component	Concentration Vol.%	Precision Absolute %
Hydrogen	55.00 - 70.00	0.03	Hydrogen	70.00 - 75.00	0.02
Methane	0.10 - 0.50	0.001	Methane	0.10 - 0.50	0.001
Carbon Monoxide	1.00 - 3.00	0.03	Carbon Monoxide	0.10 - 0.50	0.002*
Carbon Dioxide	12.00 - 17.00	0.01	Carbon Dioxide	9.00 - 12.00	0.01
Nitrogen	15.00 - 21.00	0.02	Nitrogen	9.00 - 15.00	0.01
Argon	0.10 - 0.50	0.001	Argon	0.10 - 0.50	0.001

* Not measurable with necessary precision by MS so NDIR analyzer is recommended. However Prima PRO can be used to provide backup alarm for CO break-through

Methanator

 $\begin{array}{l} \text{CO} + 3\text{H}_2 \rightarrow \text{CH}_4 + \text{H}_2\text{O} \\ -\Delta H_{25\,^\circ\text{C}} = 49.3 \ \textit{kcal/mol}^* \\ \text{CO}_2 + 4\text{H}_2 \rightarrow \text{CH}_4 + 2\text{H}_2\text{O} \\ -\Delta H_{25\,^\circ\text{C}} = 39.4 \ \textit{kcal/mol} \end{array}$

- Methanation is highly exothermic temperature rise for converting 1% CO is ~ 75°C, for 1% CO₂ is ~ 60°C. Normal methanator operating temperature is 325°C with Ni/Al₂O₃ catalyst. So if CO or CO₂ is too high this can damage Methanator.
- Output from Methanator is Synthesis Gas (Syn-Gas)
- Ideal composition is 75% H₂, 25%N₂

	Raw Synthesi	s Gas		Paw Synth	osis Gas Spocifica	tion
Component	Minimum	Normal	Maximum	Component	Concentration Vol.%	Precision Absolute %
Hydrogen	69.00	71.15	75.00			
Methane	0.50	0.92	1.50	Hydrogen	65.00 - 75.00	0.02
Carbon Monoxide	0.00	0.0005	0.0020	Methane	0.30 - 1.50	0.001
Carbon Dioxide	0.00	0.0005	0.0010	Nitrogen	20.00 - 28.00	0.01
Nitrogen	23.00	27.59	28.00	Argon	0.10 - 0.50	0.002
Argon	0.20	0.34	0.40	Helium	0.10 - 0.50	0.001

* Enthalpy change ΔH = energy used in bond breaking reactions – energy released in bond making products

- Syn-gas from methanator is compressed at high pressure (2,000 to 5,000 psi), mixed with recycled gas and cooled to 0°C. Stream then enters final reactor to produce NH₃ using FeO catalyst
- Condensed ammonia is separated from unconverted synthesis gas
- Only ~30% of syn-gas is converted on each pass so large recycle stream returns effluent to compressor for re-processing
- Small portion of overhead gas is purged to prevent buildup of inert gases (Ar, He) in circulating gas system.

Synthesis Loop Performance Specifications

ISA

Synth	esis Gas Feed	to Converte	r	Convert	er Feed Specification
component	Minimum	Normal	Maximum	Component	Concentration Vol.%
lydrogen	55.00	59.15	70.00	Hydrogen	55.00 - 70.00
Viethane	2.00	3.76	8.00*	Methane	1.00 - 8.00
Ammonia	1.00	2.49	3.00	Ammonia	1.00 - 3.00
Argon	1.00	1.74	4.00*	Helium*	0.50 - 1.00
Nitrogen	20.00	32 86	35.00	Nitrogen	20.00 - 35.00
i ili egon	20.00	02.00	00.00	Argon*	0.50 - 4.00
	Converter Ef	ffluent		Converte	er Effluent Specificat
Component	Minimum	Normal	Maximum	Component	Concentration Vol.%
Hydrogen	40.00	44.99	50.00	Hydrogen	40.00 - 60.00
Methane	2.00	4.34	5.00	Methane	1.00 - 5.00
Ammonia	14.00	18.46	21.00	Ammonia	10.00 - 21.00
Argon	1.00	2.01	5.00	Nitrogen	15.00 - 35.00
Nitrogen	20.00	30.19	35.00	Argon*	1.00 - 5.00

* Inerts increase due to recycling, if they get too high energy used for compression is wasted and NH₃ yield is reduced

- Ammonia Process
- Why use Process MS for analysing process gases?
- Key Control Parameters
- Process Mass Spectrometer
 - Multistream sampling
 - Ionization
 - Separation
 - Detection
- Advantages of Mass Spectrometer
- Summary

Basic components of a mass spectrometer

• A mass spectrometer separates and quantifies atoms and molecules according to their mass

RMS Rapid Multistream Sampler operation

- Engineered to be extremely reliable and virtually maintenance-free
- RMS is not a rotary valve
- All sample gases flow all the time from their inlet port to corresponding port in stator face
- Stepper motor drives rotating arm over the port in the stator face corresponding to the selected sample
- Position of rotating arm is optically encoded for reliable, computer controlled stream selection
- 3 years warranty
- Uses coaxial bypass flow design, creating internal fast loop to minimize response times and avoid cross-contamination

Pressure Reduction at Micro-capillary inlet

Pressure Reduction

- If a charged particle is injected into a magnetic field with constant velocity, then the Lorentz force will act on the particle, causing it to move in a circular orbit of constant radius
- Radius depends on particle's mass, charge & velocity and the magnetic field strength

Magnetic sector

Dual detector assembly

- Standard Faraday detector used in the range 10ppm 100%*
- Optional Secondary Electron Multiplier (SEM) used in the range 10 ppb-100ppm*
- Ion beam is directed to appropriate detector by applying deflecting voltage under software control
- * Application dependent

Mass spectra: molecular fingerprints

Nitrogen

Argon

ISA

Carbon dioxide

GasWorks Process MS software

- For Prima PRO, Prima BT & Sentinel PRO
- Multi-point, multi-component process gas analysis
- Supports stand-alone analyzer operation
- Sets no limits to the number of sample streams or analytical methods
- Includes rigorous mathematical engine to deconvolute complex mixtures
- Multi-language support for all HMI screens
- Multi-layered security with expiring passwords and audit trail (21CFR p11)
- Industry best diagnostics and equipment support package
- Includes System Wizard specifically configured to fully document the analyzer hardware

🖗 Language	X
Select the language for the GasWorks in	nstallation
English	-
English Français	
Português	
Español 中文 한국의	ок

- Ammonia Process
- Why use Process MS for analysing process gases?
- Key Control Parameters
- Process Mass Spectrometer
 - Multistream sampling
 - Ionization
 - Separation
 - Detection
- Advantages of Mass Spectrometer
- Summary

Advantages of Mass Spectrometer over other technologies

- Fast analysis of process gases
 - Seconds not minutes
- Multi-component analysis
 - Analyze inorganics & organics
- Multi-stream analysis
 - Up to 64 streams
- Flexible analysis
 - Analysis defined in software
 - Analyze different compounds in different streams
- Precision, accuracy
 - Between 0.1% and 1% relative
- Dynamic range
 - ppm to 100%
- Utilities
 - Power and Instrument Air
- Three Years Warranty

- Ammonia Process
- Why use Process MS for analysing process gases?
- Key Control Parameters
- Process Mass Spectrometer
 - Multistream sampling
 - Ionization
 - Separation
 - Detection
- Advantages of Mass Spectrometer
- Summary

Special Features of Magnetic Sector technology

Rapid Multi Stream

Flat topped Peak : Fault Tolerant

ISA

3 Years Warrantee

Mass Spectrometer Value Summary

- Prima PRO provides most precise measurements to optimize control of ammonia production process
 - Gas Mixing and Burner Control in Reformer
 - H_2 S in Natural Gas feed
 - Hydrogen/Nitrogen ratio (0.05% RSD)
 - Steam/Carbon ratio
 - Methane slippage (± 20 ppm accuracy)
 - Inert gas build-up in synthesis Loop
 - Monitor catalyst activity to schedule plant outages
- Provides lowest true cost of ownership and best guaranteed performance specifications of any available process analyzer on the market

The world leader in serving science

