## Math 1496 Calc 1 - Homework \#8

Pg. 276, \#15, 17, 19, 23, 25, 27 and 31
Pg. 291, \#17, 23, 25, 29, 31 and 33
Pg. 304, \#47, 49, 51

Pg. 276, \#15, 17, 19
Compare $\Delta y$ and $d y$ for the following

$$
\begin{array}{llll}
\text { 15. } & y=0.5 x^{2} & x=1 & \Delta x=d x=0.1 \\
\text { 17. } & y=x^{4}+1 & x=-1 & \Delta x=d x=0.01 \\
\text { 19. } & y=x-2 x^{3} & x=3 & \Delta x=d x=0.001
\end{array}
$$

Pg. 276, \#23, 25 and 27
Find the differential for the following
23. $y=x \tan x$
25. $y=\frac{x+1}{2 x-1}$
27. $y=\sqrt{9-x^{2}}$
31. $y=x \sin ^{-1} x$

Pg. 291
Find the indicated antiderivative

$$
\begin{array}{ll}
\text { \#17 } \int\left(x^{3 / 2}+2 x+1\right) d x & \text { \#23 } \int \frac{x+6}{\sqrt{x}} d x \\
\text { \#25 } \int(5 \cos x+4 \sin x) d x & \text { \#29 } \int\left(\tan ^{2} y+1\right) d y \\
\text { \#31 } \int\left(2 \sin x-5 x^{x}\right) d x & \text { \#33 } \int\left(2 x-4^{x}\right) d x
\end{array}
$$

Pg. 304 Approximate the area using $n$ rectangles and use the limit process to find the area of the region bounded by the given function and the $x$ axis on the given interval

$$
\begin{array}{ll}
\# 47 & y=-4 x+5, \quad[0,1] \\
\# 49 & y=x^{2}+2, \quad[0,1] \\
\# 51 & y=25-x^{2}, \quad[1,4]
\end{array}
$$

