VANDERBILT UNIVERSITY $\sqrt[5]{3}$ School of Engineering

Discrete Structures
 CS 2212
 (Fall 2020)

1 - Introduction and Logic

Welcome

- Instructor:
- Email:
- Office:

Dr. Waseem Abbas

waseem.abbas@vanderbilt.edu
314 FGH
406 Institute for Software Integrated Systems

- Office Hours:

Thu. (1:00-3:00pm) virtually via Zoom, or by appointment.

Textbook

zyBooks

เӨГГ SO』る
Watabe Iuerncore

1. Sign in or create an account at learn. zybooks.com
2. Enter zyBook code:

Be sure to:

1. Use your registered Brightspace name.
2. Use your VUNet ID for Student ID
3. Join the correct section (Abbas)

Class Platforms

[^0]
Class Platforms

- Where you submit HWs (stay tuned)
- HW / Exam grading
- You should be automatically added to our class in Gradescope
- Cost = Free
- Discussion board / Q \& A.
- Include your Professor's name for section specific question.
- You should have been added already. If not, use the below link:

Teaching Mode

Grading

Description	Weight
Participation: zyBooks Assignments (14)	$\mathbf{1 0 \%}$
Exams (3)	$\mathbf{3 6 \%}$
Homeworks (4)	$\mathbf{3 6 \%}$
Final Exam	$\mathbf{1 8 \%}$

ZyBook Assig.

- Weekly (14)
- Practice + Challenge
- Complete at least 90% the required weekly points during the semester to earn 100\% participation points.
- No late assignment accepted.

Exams

- Almost monthly (3)
- About 30-40 minutes
- Covers current material.
- No makeup without excused absence from Dean of Students

Homeworks

- Monthly (4)
- No collaboration
- One free late day

- Late policy
- 20% penalty (24 hrs)
- 30\% (24-48 hrs)
- No credit after 48 hrs .
- Advice: start early

Calendar

Please regularly check course website and calendar for due assessments.
September

Mon	Tue	Wed	Thu	Fri	Sat	Sun
	1	2	3	4	5	$\begin{aligned} & 6 \\ & Z Y 1 A, Z Y 1 B \end{aligned}$
7	8 HW 1 given	9	10	11	12	${ }^{13} \text { ZY } 2 \mathrm{~A}$
14	15	16	17 Exam 1	18	19	$\begin{aligned} & 20 \\ & Z Y 2 B, Z Y 3 \end{aligned}$
21	22 HW 1 due	23	24	25	26	$\begin{array}{cc} 27 & \\ & Z Y 4 \\ \hline \end{array}$
28	29 HW 2 given	30				

October

Mon	Tue	Wed	Thu	Fri	Sat	Sun
			1	2	3	$4 \quad \text { ZY } 5$
5	6	7	8	9	10	11 $\text { ZY } 6$
12	13 HW 2 due	14	15	16	17	${ }^{18} \text { ZY 7A }$
19	20 Exam 2, HW 3 given	21	22	23	24	$25_{Z Y} 7 B$
26	27	28	29	30	31	

Grading

Average	Assigned Grade
$>=90$	A category *
$80-89.9$	B category *
$70-79.9$	C category *
$60-69.9$	D category *
<60	F

- This is just a "rough" distribution for your reference.
- Actual grades will be determined after the final exam.

What is this Course All About?

Discrete + Structures

Example: Product Marketing at Minimum Cost

- Market a new product, say cell phone.
- Strategy: Give away free cell phones to few individuals, who will be the brand ambassadors and advertise the product to their friends.
- Our goal: Give away minimum number of cell phones, while ensuring that the whole community knows about the phone

Is this a Discrete Math problem?
If yes, where are

- Graphs?
- Computation?
- Counting?
- Sets?
- Proofs?

Example: Product Marketing at Minimum Cost

We can model individuals and their friendships as graphs.

How many free cell phones are needed? ($3,4,5$?) (computation)

Who should get the cell phone?
How many possibilities are there? (counting)

Is this a best solution? (proof)

Five free phones should be sufficient? Can we do better?
Yes, four are sufficient.

Our Approach in the Class

Keep a track of the
Big Picture

What?

as well as Why?

Interactive

Some Tips...

The course is mile wide and foot deep. There will be a lot of new concepts/topic almost every week. So, Do not fall behind.

Participate, do not be shy to ask questions, So, Be active and interactive.

Often students say "I understood everything in class, but am unable to solve problems". The secret is

Practice
Makes
Perfect

Practice, practice, and more practice.

Some Tips...

Do not wait till the last minute to start HW. So,

Start early ...

Do not study just for grades, focus on learning, and importantly enjoy learning beautiful things. So, Enjoy the "pleasure of finding things out"
(as Richard Feynman said)

$$
1 \text { - Logic }
$$

Logic - Study of Reasoning

(Loosely speaking)

- Given pieces of information (statements/facts) that may be related to each other, how can we accurately and systematically draw more conclusions.

- From known facts and premises, how can we infer new statement (conclusion), and construct an argument?

Drawing Conclusions from Given Information

Example: A Crime Detection Problem

We know:

- One of them is thief
- Exactly one of them is speaking the truth

I am not a thief

A is the thief

I am not a thief

Who is the thief?

Drawing Conclusions from Given Information

Example: A Crime Detection Problem

Suppose A is the thief,

then both \mathbf{B} and \mathbf{C} are speaking the truth.
But, we know exactly one of them is speaking the truth. So, a contradiction. Hence, Conclusion: \quad A can't be the thief.

Drawing Conclusions from Given Information

Example: A Crime Detection Problem

Suppose B is the thief,

then both \mathbf{A} and \mathbf{C} are speaking the truth.
But, we know exactly one of them is speaking the truth. So, a contradiction. Hence,
Conclusion:
B can't be the thief.

Drawing Conclusions from Given Information

Example: A Crime Detection Problem
Suppose \mathbf{C} is the thief,

then \mathbf{A} is speaking the truth, whereas, \mathbf{B} and \mathbf{C} are lying.
Conclusion: $\quad \mathbf{C}$ is the thief.

Drawing Conclusions from Given Information

What if we have n persons, and exactly k of them are speaking the truth? Who is the thief?

I am not a thief

A is the thief

I am not a thief

X is the thief

Y is the thief

I am not a thief

Takeaways:

- We can infer new statements (conclusions) by carefully considering the given statements and premise.
- Things can get complex quickly, so we need to formalize and systemize our method of reasoning.

Example - How to Reason?

Lets look at another example. Our focus now is on the process of reasoning.
Consider two cities A and B.

- It is snowing in city A.
- If it snows in a city, then its schools are closed.
- If it snows in city A, then it snows in city B.

Can I conclude the following? "Schools in city B are closed."

1. Statements
2. Relation between statements (structure)

Example - How to Reason?

Lets look at another example. Our focus now is on the process of reasoning.
Consider two cities A and B.

- It is snowing in city A.
- If it snows in a city, then its schools are closed.
- If it snows in city A, then it snows in city B.

Can I conclude the following? "Schools in city B are closed."

1. Statements
2. Relation between statements (structure)
3. Drawing conclusion

Example - How to Reason?

Lets look at another example. Our focus now is on the process of reasoning.
Consider two cities A and B.

- It is snowing in city A.
- If it snows in a city, then its schools are closed.
- If it snows in city A, then it snows in city B.

Can I conclude the following? "Schools in city B are closed."

1. Statements
2. Relation between statements (structure)
3. Drawing conclusion

Example - How to Reason?

Lets look at another example. Our focus now is on the process of reasoning.
Consider two cities A and B.

- It is snowing in city A.
- If it snows in a city, then its schools are closed.
- If it snows in city A, then it snows in city B.

Can I conclude the following? "Schools in city B are closed."

1. Statements
2. Relation between statements (structure)
3. Drawing conclusion

Formalizing Reasoning

- Do you notice anything about the "form" of statements and conclusion.
- They are all Yes/No statements.
- How does this help?

Our goal will be to formalize the process of reasoning.

- What do we mean by statements (mathematically)?
- What can be a good way to capture relations between statements?
- How can we write new statements from known ones, such as by performing some "operations" on them?

Why Formal Reasoning?

This formalization is key to

- Constructing precise mathematical arguments,
- Proving (disproving) complex statements,
- Verifying correctness of computer programs,
- Designing computer circuits
- (And to passing the CS 2212 course.)

1.1 Propositions and Logical Operations

Proposition:
A statement that is either true or false, but not both.
Propositions are basic building blocks of logical reasoning.

Statement	Proposition	Truth Value
29 is a prime number		
Open the door		
$x+y>5$,		
Farth is the only planet where life exists		
For every positive integer n, there is a prime number larger than n		

1.1 Propositions and Logical Operations

Proposition:
A statement that is either true or false, but not both.
Propositions are basic building blocks of logical reasoning.

Statement	Proposition	Truth Value		
29 is a prime number	\checkmark	Yes		
Open the door				
$x+y>5$,				
For every positive integer n, there is a prime number larger				
than n			\quad	
:---				
Eare				

1.1 Propositions and Logical Operations

Proposition:
A statement that is either true or false, but not both.
Propositions are basic building blocks of logical reasoning.

Statement	Proposition	Truth Value
29 is a prime number	人	Yes
Open the door	$\times+y>5$,	
Earth is the only planet where life exists		
For every positive integer n, there is a prime number larger than n		

1.1 Propositions and Logical Operations

Proposition:
A statement that is either true or false, but not both.
Propositions are basic building blocks of logical reasoning.

Statement	Proposition	Truth Value
29 is a prime number	\checkmark	Yes
Open the door	X	
$x+y>5$,	X	
Earth is the only planet where life exists		
For every positive integer n, there is a prime number larger than n		

1.1 Propositions and Logical Operations

Proposition:
A statement that is either true or false, but not both.
Propositions are basic building blocks of logical reasoning.

Statement	Proposition	Truth Value
29 is a prime number	\checkmark	Yes
Open the door	\times	
$x+y>5$,	\times	
Farth is the only planet where life exists		??
For every positive integer n, there is a prime number larger than n		

1.1 Propositions and Logical Operations

Proposition: A statement that is either true or false, but not both.

Propositions are basic building blocks of logical reasoning.

Statement	Proposition	Truth Value
29 is a prime number	\checkmark	Yes
Open the door	\times	
$x+y>5$,	$\boxed{ }$	
Earth is the only planet where life exists		??
For every positive integer n, there is a prime number larger than n		Yes

Why we defined our basic building block this particular way?

- Simplest, concise, and the most un-ambiguous way of declaring a fact / information
- Has a definite truth value

1.1 Propositions and Logical Operations

- Sometimes simple statements are not enough (to express complicated ideas).
- Combine propositions to get compound propositions using certain composition rules called logical operations

It is snowing	It is cold
It is snowing and it is cold	

Simple propositions
Compound proposition

5 is a prime number $\quad 5$ is an even number
5 is a prime or even number

Simple propositions
Compound proposition

- What determines the truth value of a compound proposition?
- Let's see some basic logical operations

1.1 Propositions and Logical Operations

Conjunction:

Let \mathbf{p} and \mathbf{q} be simple propositions, then a conjunction of \mathbf{p} and \mathbf{q} is a new proposition, whose truth value is true only when both \mathbf{p} and \mathbf{q} are true, and is false otherwise.

Written as: $\quad \mathbf{p} \wedge \mathbf{q}$
 Read as: $\quad \mathbf{p}$ and \mathbf{q}

p	q	$p \wedge q$
T	T	T
T	F	F
F	T	F
F	F	F

$\mathbf{p}:$	5 is an even number (\mathbf{F})
$\mathbf{q}:$	5 is a prime number (\mathbf{T})
$\mathbf{p} \wedge \mathbf{q}:$	5 is an even and a prime number ()
$\mathbf{p :}$	29 is not an even number ()
$\mathbf{q}:$	29 is a prime number () \quadWhat is $\mathbf{p} \wedge \mathbf{q} ?$

1.1 Propositions and Logical Operations

Disjunction:

Disjunction of propositions \mathbf{p} and \mathbf{q} is a new proposition, whose truth value is false only when both \mathbf{p} and \mathbf{q} are false, and is true otherwise.

```
Written as: p v q
Read as: p or q
```

p	q	$p \vee q$
T	T	T
T	F	T
F	T	T
F	F	F

p: $\quad 5$ is an even number (\mathbf{F})
q: $\quad 5$ is a prime number (T)
$\mathbf{p} \vee \mathbf{q}: 5$ is an even or a prime number ()
p: $\quad 29$ is an even number ()
q: $\quad 29$ is not a prime number ()
What is $\mathbf{p} \vee \mathbf{q}$?

1.1 Propositions and Logical Operations

Exclusive-or:

Exclusive-or of propositions \mathbf{p} and \mathbf{q} is a new proposition whose truth value is true if exactly one of the propositions \mathbf{p} and \mathbf{q} is true but not both, and is false otherwise.

Written as: $\quad \mathbf{p} \oplus \mathbf{q}$
Read as: $\quad \mathbf{p}$ xor \mathbf{q}

p	q	$p \oplus q$
\mathbf{T}	\mathbf{T}	\mathbf{F}
\mathbf{T}	\mathbf{F}	\mathbf{T}
F	\mathbf{T}	\mathbf{T}
F	F	F

p: $\quad 5$ is an even number (\mathbf{F})
q: $\quad 5$ is a prime number (T)
$\mathbf{p} \oplus \mathbf{q}: 5$ is an even number exclusively or a prime number (T)
p: $\quad 29$ is an odd number ()
q: $\quad 29$ is a prime number () What is $\mathbf{p} \oplus \mathbf{q}$?

1.1 Propositions and Logical Operations

Let p and q be propositions, then under what conditions

$$
\text { 1) } \begin{aligned}
\mathrm{p} \oplus \mathrm{q} & \neq \mathrm{p} \vee \mathrm{q} \\
\text { 2) } \mathrm{p} \vee \mathrm{q} & =\mathrm{p} \wedge \mathrm{q} \\
\text { 3) } \mathrm{p} \oplus \mathrm{q} & =\mathrm{p} \wedge \mathrm{q}
\end{aligned}
$$

1.1 Propositions and Logical Operations

Negation:

Negation of a proposition p is a proposition, whose truth value is the opposite of the truth value of p .

Written as: $\neg \mathbf{p}$
Read as: not \mathbf{p}

\mathbf{p}	$\neg \mathbf{p}$
\mathbf{T}	\mathbf{F}
\mathbf{F}	\mathbf{T}

p: 5 is an even number (\mathbf{F})
$\neg \mathbf{p}: 5$ is not an even number (T)

1.2 Evaluating Compound Propositions

Order of operations is important.
Example: $\quad \mathbf{p}=$ True, $\quad \mathbf{q}=$ False,

$$
\mathbf{r}=\neg \mathbf{p} \wedge \mathbf{q} ? ?
$$

- If \neg is first, then $\mathbf{r}=$ False
- If \wedge is first, then $\mathbf{r}=$ True

Order of operations (in the absence of parentheses):

Operator	Order
\neg	$\mathbf{1}$
^	$\mathbf{2}$
V	$\mathbf{3}$

1.2 Evaluating Compound Propositions

$$
\mathbf{s}=(\mathbf{p} \vee \mathbf{q}) \wedge \neg(\mathbf{p} \wedge \mathbf{q})
$$

\mathbf{p}	\mathbf{q}			
T	T			
T	F			
F	T			
F	F			

1.2 Evaluating Compound Propositions

$$
\mathbf{s}=(\mathbf{p} \vee \mathbf{q}) \wedge \neg(\mathbf{p} \wedge \mathbf{q})
$$

p	q	$p \vee q$		
T	T	T		
T	F	T		
F	T	T		
F	F	F		

\author{

1. Evaluate p \mathbf{p} q
}

1.2 Evaluating Compound Propositions

$$
\mathbf{s}=(\mathbf{p} \vee \mathbf{q}) \wedge \neg(\mathbf{p} \wedge \mathbf{q})
$$

p	q	$p \vee q$	$\neg(p \wedge q)$	
T	T	T	F	
T	F	T	T	
F	T	T	T	
F	F	F	T	

\author{

1. Evaluate p V q
 2. Evaluate $\mathbf{p} \wedge \mathbf{q}$
 3. Evaluate $ᄀ(\mathbf{p} \wedge \mathbf{q})$
}

1.2 Evaluating Compound Propositions

$$
\mathbf{s}=(\mathbf{p} \vee \mathbf{q}) \wedge \neg(\mathbf{p} \wedge \mathbf{q})
$$

\mathbf{p}	\mathbf{q}	$\mathrm{p} \vee \mathrm{q}$	$\neg(\mathrm{p} \wedge \mathrm{q})$	\mathbf{s}
T	T	T	F	F
T	F	T	T	T
F	T	T	T	T
F	F	F	T	F

> 1. Evaluate $\mathbf{p} \vee \mathbf{q}$
> 2. Evaluate $\mathbf{p} \wedge \mathbf{q}$
> 3. Evaluate $\neg(\mathbf{p} \wedge \mathbf{q})$
> 4. Evaluate the or of step 1 and step 3 .

- Note that $\mathbf{s}=\mathbf{p} \oplus \mathbf{q}$
- $\mathbf{p} \oplus \mathbf{q}$ and $(\mathbf{p} \vee \mathbf{q}) \wedge \neg(\mathbf{p} \wedge \mathbf{q})$ are logically equivalent.

1.2 Evaluating Compound Propositions

- Truth table supplies all possible truth values of a compound proposition for various truth values of its constituent proposition.
- If there are n variables, how many rows are in the truth table?
2^{n}

Example:
$(\mathbf{p} \wedge \mathbf{q}) \vee \neg \mathbf{r}$
How many rows in the truth table?
n = 3 variables
8 rows.

- Compound statements also represent digital logic circuits.

1.2 Evaluating Compound Propositions

$$
s=(p \wedge q) \vee \neg \mathbf{r}
$$

True $=1$
False $=0$

Example

$$
\begin{aligned}
& \text { True = } 1 \\
& \text { False = } 0
\end{aligned}
$$

- For what values of \mathbf{p}, \mathbf{q}, and \mathbf{r}, the bulb lights up ($\mathbf{s}=1$) ?

$$
\mathbf{s}=(\neg \mathbf{q} \vee \mathbf{p}) \wedge(\mathbf{q} \vee \mathbf{r})
$$

- A solution is:

$$
\mathbf{p}=\mathbf{1}
$$

$$
\mathbf{r}=1
$$

$$
\mathbf{q}=0
$$

Example

What can we do to ensure that bulb always lights up ($\mathbf{s}=\mathbf{1}$ irrespective of $\mathbf{p}, \mathbf{q}, \mathbf{r}$) ?

Example

What can we do to ensure that bulb always lights up ($\mathbf{s}=\mathbf{1}$ irrespective of $\mathbf{p}, \mathbf{q}, \mathbf{r}$) ?

Applications - Digital Circuit Design

Lets look at a practical example.

Circuit for 7-Segment Display

- Our circuit takes 4 input variables (propositions) and displays the digit on right.
- Seven output variables (each corresponding to a compound proposition).
- There is a circuit for each output variable.

Applications - Digital Circuit Design

Lets consider circuit for an LED segment a.

a lights up only when highlighted digits are at the input.

Applications - Digital Circuit Design

Lets consider circuit for an LED segment a.

a lights up only when highlighted digits are at the input.

$$
\mathbf{a}=(\mathbf{p} \vee \mathbf{r}) \vee(\mathbf{q} \wedge \mathbf{s}) \vee(\neg \mathbf{q} \wedge \neg \mathbf{s})
$$

- Lets verify.
- Can you design a circuit for \mathbf{b} ?

1.3 Conditional Statement

Conditional Proposition:

$$
\begin{aligned}
& \hline \text { Hypothesis } \rightarrow \text { Conclusion } \\
& \mathbf{p} \rightarrow \mathbf{q} \\
& \text { If } \mathrm{p}, \text { then } \mathrm{q}
\end{aligned}
$$

Example: If it rains, then I will have an umbrella

p	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

1.3 Conditional Statement

Conditional Proposition:

p	\mathbf{q}	$\mathbf{p} \rightarrow \mathbf{q}$
T	T	T
T	F	F
F	T	T
F	F	T

If the conclusion is always true regardless of the hypothesis part, the conditional statement is trivially true.

p:	"whatever"
q:	$3<4$ True
$\mathrm{p} \rightarrow \mathrm{q}:$ If (whatever), then $(3<4)$ True	

If the hypothesis is false, then the conditional statement is vacuously true regardless of the conclusion part.

$$
\begin{array}{cc}
\mathrm{p}: & 0=1 \text { False } \\
\mathrm{q}: & \text { "whatever" } \\
\mathrm{p} \rightarrow \mathrm{q}: \text { If }(0=1) \text {, then (whatever) True }
\end{array}
$$

1.3 Conditional Statement

Is $\mathbf{p} \rightarrow \mathbf{q}$ same as (equivalent to) $\mathbf{q} \rightarrow \mathbf{p}$?

p	\mathbf{q}	$\mathbf{p} \rightarrow \mathbf{q}$	$\mathbf{q} \rightarrow \mathbf{p}$
T	T	T	
T	F	F	
F	T	T	
F	F	T	

1.3 Conditional Statement

Is $\mathbf{p} \rightarrow \mathbf{q}$ same as (equivalent to) $\mathbf{q} \rightarrow \mathbf{p}$?

\mathbf{p}	\mathbf{q}	$\mathbf{p} \rightarrow \mathbf{q}$	$\mathbf{q} \rightarrow \mathbf{p}$
T	T		T
T	F		T
F	T		F
F	F	T	

1.3 Conditional Statement

Is $\mathbf{p} \rightarrow \mathbf{q}$ same as (equivalent to) $\mathbf{q} \rightarrow \mathbf{p}$?

\mathbf{p}	\mathbf{q}	$\mathbf{p} \rightarrow \mathbf{q}$	$\mathbf{q} \rightarrow \mathbf{p}$
\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}
F	\mathbf{T}	\mathbf{T}	\mathbf{F}
F	\mathbf{F}	\mathbf{T}	\mathbf{T}

1.3 Conditional Statement

Conditional Proposition:

Is the truth value of

$$
(\mathbf{p} \vee \mathbf{q}) \rightarrow \mathbf{r}
$$

always same as the truth value of

$$
(\mathbf{p} \rightarrow \mathbf{r}) \wedge(\mathbf{q} \rightarrow \mathbf{r})
$$

[^0]: https://brightspace.vanderbilt.edu

