

School of Engineering

Discrete Structures CS 2212 (Fall 2020)

1 – Introduction and Logic

© 2020 Vanderbilt University (Waseem Abbas)

• Instructor:

Email:

۲

Dr. Waseem Abbas

waseem.abbas@vanderbilt.edu

Office: **314 FGH** 406 Institute for Software Integrated Systems

• Office Hours: **Thu. (1:00 – 3:00pm)** virtually via **Zoom**, or

by appointment.

Textbook

zyBooks

1. Sign in or create an account at

learn.zybooks.com

2. Enter zyBook code:

Be sure to:

- 1. Use your registered Brightspace name.
- 2. Use your VUNet ID for Student ID
- 3. Join the correct section (Abbas)

Class Platforms

- Course Syllabus
- Course Calendar
- Lecture Slides
- TA Office Hours Link
- Homework Assignments
- Important Announcements
- Grades

https://brightspace.vanderbilt.edu

Class Platforms

plazza

- Discussion board / Q & A.
- Include your Professor's name for section specific question.
- You should have been added already. If not, use the below link:

Teaching Mode

Grading

Description	Weight
Participation: zyBooks Assignments (14)	10%
Exams (3)	36 %
Homeworks (4)	36%
Final Exam	18%

ZyBook Assig.

- Weekly (14)
- Practice + Challenge
- Complete at least 90% the required weekly points during the semester to earn 100% participation points.
- No late assignment accepted.

Exams

- Almost monthly (3)
- About 30-40 minutes
- Covers current material.
- **No makeup** without excused absence from Dean of Students

Homeworks

- Monthly (4)
- No collaboration
- One free late day

- Late policy
 - 20% penalty (24 hrs)
 - 30% (24 48 hrs)
 - No credit after 48 hrs.
 - Advice: start early

Calendar

Please regularly check course website and calendar for due assessments.

September

Mon	Tue	Wed	Thu	Fri	Sat	Sun
	1	2	3	4	5	6 ZY 1A , ZY 1B
7	8 HW 1 given	9	10	11	12	13 ZY 2A
14	15	16	17 Exam 1	18	19	20 ZY 2B, ZY 3
21	22 HW 1 due	23	24	25	26	27 ZY 4
28	29 HW 2 given	30				

October

Mon	Tue	Wed	Thu	Fri	Sat	Sun
			1	2	3	4 ZY 5
5	6	7	8	9	10	11 ZY 6
12	13 HW 2 due	14	15	16	17	18 ZY 7A
19	20 Exam 2, HW 3 given	21	22	23	24	25 ZY 7B
26	27	28	29	30	31	

Grading

Average	Assigned Grade
>=90	A category *
80-89.9	B category *
70-79.9	C category *
60-69.9	D category *
< 60	F

- This is just a "rough" distribution for your reference.
- Actual grades will be determined after the final exam.

What is this Course All About?

Example: Product Marketing at Minimum Cost

- **Market** a new product, say cell phone.
- **Strategy:** Give away free cell phones to few individuals, who will be the brand ambassadors and advertise the product to their friends.
- Our goal: Give away minimum number of cell phones, while ensuring that the whole community knows about the phone

Is this a **Discrete Math** problem? If **yes**, where are

- Graphs?
- Computation?
- Counting?
- Sets?

....

•

• Proofs?

Example: Product Marketing at Minimum Cost

We can model individuals and their friendships as **graphs**.

How many free cell phones are needed? (3,4,5?) (computation)

Who should get the cell phone? How many possibilities are there? (counting)

Is this a best solution? (proof)

Five free phones should be sufficient? Can we do better? Yes, **four** are sufficient.

Our Approach in the Class

Keep a track of the **Big Picture**

What? as well as Why?

Connect

information

Interactive

Some Tips...

The course is *mile wide and foot deep*. There will be a lot of new concepts/topic almost every week. So, **Do not fall behind.**

Participate, do not be shy to ask questions, So, **Be active and interactive.**

Often students say *"I understood everything in class, but am unable to solve problems"*. The secret is

Practice, practice, and more practice.

Some Tips...

Do not wait till the last minute to start HW. So,

Start early ...

Do not study just for grades, focus on *learning*, and importantly *enjoy* learning beautiful things. So,

Enjoy the "pleasure of finding things out"

(as Richard Feynman said)

Logic – Study of Reasoning

(Loosely speaking)

• Given pieces of **information** (statements/facts) that may be **related** to each other, how can we **accurately** and **systematically** draw more **conclusions**.

• From known facts and premises, how can we infer new statement (conclusion), and construct an argument?

Example: A Crime Detection Problem

We know:

- One of them is **thief**
- Exactly one of them is speaking the truth

I am not a thief

A is the thief

I am not a thief

Who is the thief?

Example: A Crime Detection Problem

Suppose **A** is the thief,

then both **B** and **C** are speaking the truth.

But, we know exactly one of them is speaking the truth. So, a contradiction. Hence,

<u>Conclusion:</u> **A** can't be the thief.

Example: A Crime Detection Problem

Suppose **B** is the thief,

then both **A** and **C** are speaking the truth.

But, we know exactly one of them is speaking the truth. So, a contradiction. Hence,

<u>Conclusion:</u> **B** can't be the thief.

Example: A Crime Detection Problem

Suppose **C** is the thief,

then **A** is speaking the truth, whereas, **B** and **C** are lying.

<u>Conclusion:</u> **C** is the thief.

What if we have n persons, and exactly k of them are speaking the truth? Who is the thief?

Takeaways:

- We can infer new statements (conclusions) by carefully considering the given statements and premise.
- Things can get complex quickly, so we need to **formalize** and **systemize** our method of reasoning.

Lets look at another example. Our focus now is on the **process of reasoning**.

Consider two cities A and B.

- It is snowing in city A.
- If it snows in a city, then its schools are closed.
- If it snows in city A, then it snows in city B.

Can I conclude the following?

"Schools in city B are closed."

1. Statements

2. Relation between statements (structure)

Lets look at another example. Our focus now is on the **process of reasoning**.

Consider two cities A and B.

- It is snowing in city A.
- If it snows in a city, then its schools are closed.
- If it snows in city A, then it snows in city B.

Can I conclude the following?

"Schools in city B are closed."

- 1. Statements
- 2. Relation between statements (structure)
- 3. Drawing conclusion

Lets look at another example. Our focus now is on the **process of reasoning**.

Consider two cities A and B.

- It is snowing in city A.
- If it snows in a city, then its schools are closed.
- If it snows in city A, then it snows in city B.

Can I conclude the following?

"Schools in city B are closed."

- 1. Statements
- 2. Relation between statements (structure)
- 3. Drawing conclusion

Lets look at another example. Our focus now is on the **process of reasoning**.

Consider two cities A and B.

- It is snowing in city A.
- If it snows in a city, then its schools are closed.
- If it snows in city A, then it snows in city B.

Can I conclude the following?

"Schools in city B are closed."

- 1. Statements
- 2. Relation between statements (structure)
- 3. Drawing conclusion

Formalizing Reasoning

- Do you notice anything about the *"form"* of statements and conclusion.
- They are all **Yes/No** statements.
- How does this help?

Our goal will be to formalize the process of reasoning.

- What do we mean by **statements (mathematically)**?
- What can be a good way to capture **relations** between statements?
- How can we write new statements from known ones, such as by performing some **"operations"** on them?

Why Formal Reasoning?

This formalization is key to

- Constructing precise mathematical arguments,
- Proving (disproving) complex statements,
- Verifying correctness of computer programs,
- **Designing** computer circuits

. . .

• (And to passing the CS 2212 course.)

Proposition: A statement that is either **true** or **false**, but not both.

Statement	Proposition	Truth Value
29 is a prime number		
Open the door		
x + y > 5,		
Earth is the only planet where life exists		
For every positive integer n , there is a prime number larger than n		

Proposition: A statement that is either **true** or **false**, but not both.

Statement	Proposition	Truth Value
29 is a prime number	\checkmark	Yes
Open the door		
x+y>5,		
Earth is the only planet where life exists		
For every positive integer n , there is a prime number larger than n		

Proposition: A statement that is either **true** or **false**, but not both.

Statement	Proposition	Truth Value
29 is a prime number	\checkmark	Yes
Open the door	×	
x + y > 5,		
Earth is the only planet where life exists		
For every positive integer n , there is a prime number larger than n		

Proposition: A statement that is either **true** or **false**, but not both.

Statement	Proposition	Truth Value
29 is a prime number	\checkmark	Yes
Open the door	×	
x + y > 5,	×	
Earth is the only planet where life exists		
For every positive integer n , there is a prime number larger than n		

Proposition: A statement that is either **true** or **false**, but not both.

Statement	Proposition	Truth Value
29 is a prime number	\checkmark	Yes
Open the door	×	
x + y > 5,	×	
Earth is the only planet where life exists	\checkmark	<u>;</u> ;
For every positive integer n , there is a prime number larger than n		

Proposition: A statement that is either **true** or **false**, but not both.

Propositions are basic **building blocks** of logical reasoning.

Statement	Proposition	Truth Value
29 is a prime number	\checkmark	Yes
Open the door	×	
x + y > 5,	×	
Earth is the only planet where life exists	\checkmark	<u>;</u> ;
For every positive integer n , there is a prime number larger than n	\checkmark	Yes

Why we defined our **basic building block** this particular way?

- Simplest, concise, and the most un-ambiguous way of declaring a fact / information
- Has a **definite truth value**

- Sometimes simple statements are not enough (to express complicated ideas).
- Combine propositions to get **compound propositions** using certain composition rules called **logical operations**

- What determines the **truth value** of a **compound proposition**?
- Let's see some basic logical operations

Conjunction:

Let **p** and **q** be simple propositions, then a **conjunction** of **p** and **q** is a new proposition, whose truth value is *true* only when **both p** and **q** are true, and is *false* otherwise.

Written as: $\mathbf{p} \land \mathbf{q}$ Read as: \mathbf{p} and \mathbf{q}

pq $p \land q$ TTTTFFFFFFF

p:	5 is an even number (F)
q :	5 is a prime number (T)
p∧q:	5 is an even and a prime number (

	What is $\mathbf{p} \wedge \mathbf{q}$?
q :	29 is a prime number ()
p:	29 is not an even number (

Disjunction:

Disjunction of propositions **p** and **q** is a new proposition, whose truth value is *false* only when **both p** and **q** are false, and is *true* otherwise.

Written as:p V qRead as:p or q

р	q	p V q
т	Т	т
т	F	т
F	т	т
F	F	F

p:	5 is an even number (F)
q :	5 is a prime number (T)
p ∨ q :	5 is an even or a prime number ()

	What is p V q?
q :	29 is not a prime number ()
p:	29 is an even number ()

Exclusive-or:

Exclusive-or of propositions **p** and **q** is a new proposition whose truth value is *true* if **exactly one** of the propositions **p** and **q** is true but not both, and is *false* otherwise.

Written as: $\mathbf{p} \oplus \mathbf{q}$ Read as: $\mathbf{p} \times \mathbf{or} \mathbf{q}$

р	q	p⊕q
т	Т	F
т	F	т
F	т	т
F	F	F

p:	5 is an even number (F)
q :	5 is a prime number (T)
$\mathbf{p} \oplus \mathbf{q}$:	5 is an even number exclusively or a
	prime number (T)

- **p:** 29 is an odd number ()
- **q:** 29 is a prime number () **What is p \oplus q?**

Let p and q be propositions, then under what conditions

1) $p \oplus q \neq p \lor q$

2) $p \vee q = p \wedge q$

3) $p \oplus q = p \wedge q$

Negation:

Negation of a proposition p is a proposition, whose truth value is the *opposite* of the truth value of p.

Written as: ¬**p**

Read as: **not p**

р	¬p
т	F
F	Т

p: 5 is an even number (F)
¬p: 5 is not an even number (T)

Order of operations is important.

Example: p = True, **q** = False,

 $\mathbf{r} = \neg \mathbf{p} \land \mathbf{q}$??

- If \neg is first, then **r** = False
- If \wedge is first, then **r** = True

Order of operations (in the absence of parentheses):

Operator	Order
-	1
Λ	2
V	3

 $\mathbf{s} = (\mathbf{p} \lor \mathbf{q}) \land \neg (\mathbf{p} \land \mathbf{q})$

р	q		
Т	т		
т	F		
F	т		
F	F		

 $\mathbf{s} = (\mathbf{p} \lor \mathbf{q}) \land \neg (\mathbf{p} \land \mathbf{q})$

p	q	p∨q	
т	т	Т	
т	F	т	
F	т	т	
F	F	F	

1. Evaluate **p** V **q**

 $\mathbf{s} = (\mathbf{p} \lor \mathbf{q}) \land \neg (\mathbf{p} \land \mathbf{q})$

р	q	$\mathbf{p} \lor \mathbf{q}$	「 (p ∧ q)	
Т	Т	Т	F	
т	F	Т	т	
F	т	Т	Т	
F	F	F	т	

Evaluate **p** ∨ **q** Evaluate **p** ∧ **q**

3. Evaluate ¬ (p ∧ q)

 $\mathbf{s} = (\mathbf{p} \lor \mathbf{q}) \land \neg (\mathbf{p} \land \mathbf{q})$

р	q	p∨q	¬ (p ∧ q)	S
Т	Т	Т	F	F
т	F	т	т	т
F	т	т	т	т
F	F	F	т	F

1. Evaluate **p** V **q**

- 2. Evaluate $\mathbf{p} \wedge \mathbf{q}$
- 3. Evaluate ¬ (p ∧ q)
- 4. Evaluate the or of step 1 and step 3.

- Note that $\mathbf{s} = \mathbf{p} \oplus \mathbf{q}$
- $\mathbf{p} \bigoplus \mathbf{q}$ and $(\mathbf{p} \lor \mathbf{q}) \land \neg (\mathbf{p} \land \mathbf{q})$ are **logically equivalent**.

(same truth tables)

- **Truth table** supplies all possible truth values of a compound proposition for various truth values of its constituent proposition.
- If there are n variables, how many rows are in the truth table? 2^n

Example:	$(\mathbf{p} \land \mathbf{q}) \lor \neg \mathbf{r}$
	How many rows in the truth table?
	n = 3 variables
	8 rows.

• Compound statements also represent digital logic circuits.

 $\mathbf{s} = (\mathbf{p} \land \mathbf{q}) \lor \neg \mathbf{r}$

Example

• For what values of **p**, **q**, and **r**, the bulb lights up (**s** = 1)?

 $\mathbf{s} = (\neg \mathbf{q} \lor \mathbf{p}) \land (\mathbf{q} \lor \mathbf{r})$

• A solution is: $\mathbf{p} = \mathbf{1}$, $\mathbf{r} = \mathbf{1}$, $\mathbf{q} = \mathbf{0}$

Example

What can we do to ensure that bulb **always** lights up (**s = 1** irrespective of **p**, **q**, **r**) ?

Example

What can we do to ensure that bulb **always** lights up (**s = 1** irrespective of **p**, **q**, **r**) ?

Applications – Digital Circuit Design

Lets look at a practical example.

Circuit for 7-Segment Display

- Our circuit takes **4 input variables (propositions)** and displays the digit on right.
- Seven **output variables** (each corresponding to a **compound proposition**).
- There is a circuit for each output variable.

Applications – Digital Circuit Design

Lets consider circuit for an LED segment **a**.

	Binary representation				LED
Digit	р	q	r	S	a
0	0	0	0	0	
1	0	0	0	1	
2	0	0	1	0	
3	0	0	1	1	
4	0	1	0	0	
5	0	1	0	1	
6	0	1	1	0	
7	0	1	1	1	
8	1	0	0	0	
9	1	0	0	1	

 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a

a lights up only when highlighted digits are at the input.

Applications – Digital Circuit Design

Lets consider circuit for an LED segment **a**.

	Binary representation				LED
Digit	p	q	r	S	a
0	0	0	0	0	1
1	0	0	0	1	0
2	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	1
8	1	0	0	0	1
9	1	0	0	1	1

a lights up only when highlighted digits are at the input.

$$\mathbf{a} = (\mathbf{p} \lor \mathbf{r}) \lor (\mathbf{q} \land \mathbf{s}) \lor (\neg \mathbf{q} \land \neg \mathbf{s})$$

- Lets verify.
- Can you design a circuit for **b**?

Conditional Proposition:

Hypothesis \rightarrow Conclusion
$\mathbf{p} ightarrow \mathbf{q}$
If p, then q

Example: If it rains, then I will have an umbrella

р	q	$\mathbf{p} ightarrow \mathbf{q}$
Т	т	т
Т	F	F
F	т	т
F	F	т

Conditional Proposition:

р	q	p → q
Т	Т	Т
Т	F	F
F	т	т
F	F	Т

If the conclusion is always true regardless of the hypothesis part, the conditional statement is **trivially true**.

p: "whatever" q: 3 < 4 **True** $p \rightarrow q$: If (whatever), then (3 < 4) **True**

If the hypothesis is false, then the conditional statement is **vacuously true** regardless of the conclusion part.

p:
$$0 = 1$$
 False
q: "whatever"
 $p \rightarrow q$: If (0 = 1), then (whatever) True

Is $p \rightarrow q$ same as (equivalent to) $q \rightarrow p$?

р	q	$\mathbf{p} ightarrow \mathbf{q}$	$\mathbf{q} ightarrow \mathbf{p}$
т	т	т	
т	F	F	
F	т	т	
F	F	т	

Is $p \rightarrow q$ same as (equivalent to) $q \rightarrow p$?

р	q	$\mathbf{p} ightarrow \mathbf{d}$	$\mathbf{q} ightarrow \mathbf{p}$
т	т		Т
т	F		т
F	т		F
F	F		т

Is $p \rightarrow q$ same as (equivalent to) $q \rightarrow p$?

р	q	$\mathbf{p} ightarrow \mathbf{d}$	$\mathbf{q} ightarrow \mathbf{p}$
т	т	т	Т
т	F	F	т
F	т	т	F
F	F	т	т

Conditional Proposition:

Is the truth value of $(\mathbf{p} \lor \mathbf{q}) \rightarrow \mathbf{r}$ always same as the truth value of $(\mathbf{p} \rightarrow \mathbf{r}) \land (\mathbf{q} \rightarrow \mathbf{r})$