
IJRECE VOL. 7 ISSUE 1 (JANUARY- MARCH 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 330 | P a g e

An Analytical Learning on Tensor flow Open Source

Software
Saiyam1, Dr. Raman Chadha2, Abhishek Kaushik3

13B. Tech (CSE) 2nd Year, CGC Technical Campus, Jhanjeri, Mohali, India
2Professor, head (CSE), CGC Technical Campus, Jhanjeri, Mohali, India

Abstract- Tensor Flow is an open-source software library

developed by Google Brain team for carrying out high

performance numerical computations using data flow graphs.

It provides a great support for implementing machine learning

and deep learning models. It was released under the Apache

2.0 open-source license on November 9, 2015.

Keywords- TensorFlow, Machine Learning, Toolkit,

Workflow, Applications.

I. INTRODUCTION

TensorFlow is an open-source software library for dataflow

programming across a range of tasks. It is a symbolic math

library, and is also used for machine learning applications

such as neural networks. Tensor Flow is flow of data(or

tensor) in a computational graph. We can say tensors are

multi-dimensional arrays that allows you to represent data

having higher dimensions (features of dataset) and the flow

means series of operations, that a neural network performs on

that data(or tensor).Example: Matrix multiplication can be

considered as a numerical computation in which matrix of any

dimension refer to as a tensor or data and flow is the operation

(multiplication) performed on that tensor.

1. TENSOR(MATRIX)

2 4 3

0 9 5

1 6 7

Now in computational graph, this tensor act as an edge and

operation(multiplication) act as a node and thus in this data

flow various algorithms can be applied to compute the

problem.

2. Why we use it?

Now everyone should question “ why should we use tensor

flow”when we have so many better frameworks available

which focus especially on machine learning models only like -

• Caffe

• MXNet

• Theano

• Torch

The reason is TensorFlow’s flexible system architecture that

allows computation with high performance on any GPU or

CPU, be it a desktop, a server or even a mobile device,

irrespective of their computation powers.

- Also it allows you to write your frontend in java, c++ or

python. It then takes your code and computes it using its

distributed engine and then you are able to run it anywhere.

-It offers advantage over advanced support on threads and

asynchronous computations.

- It offers monitoring for training processes of the models and

visualization (Tensor-board).

Now we know why should we use tensor flow but one should

also know what is machine learning and how can we

implement it.

Machine learning is an application of artificial intelligence

(AI) that provides systems the ability to automatically learn

and improve from experience without being explicitly

programmed. Machine learning focuses on the development of

computer programs that can access data and use it learn for

themselves.

II. TYPES OF MACHINE LEARNING

Types of machine learning are:

1. Supervised Learning

2. Unsupervised Learning

3. Reinforcement Learning

1. Supervised learning : algorithm can apply what has

been learned in the past to new data using labeled examples to

predict future events. E.g.: Regression , Classification

,Decision tree,Random forest.

2. Unsupervised learning : The model learns through

observation and finds structures in the data. Once the model is

given a dataset, it automatically finds patterns and

relationships in the dataset by creating clusters in it. E.g.

Clustering, Association analysis.

3. Reinforcement learning: It is the ability of an agent

to interact with the environment and find out what is best

outcome. It follows the concept of hit and trial method. Now

we have some basic perception about machine learning so

let’s implement it using tensor flow.

Fig.1: How Machine learning Works

IJRECE VOL. 7 ISSUE 1 (JANUARY- MARCH 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 331 | P a g e

III. TENSORFLOW TOOLKIT

TensorFlow provides a variety of different toolkits that allow

you to construct models at your preferred level of abstraction.

You can use lower-level APIs to build models by defining a

series of mathematical operations. Alternatively, you can use

higher-level APIs (like estimator) to specify predefined

architectures, such as linear repressors’ or neural networks.

We will be using Estimators for now because using estimator

dramatically lowers the number of lines of code. It is

generally much easier to create models with Estimators than

with the low-level TensorFlow APIs. Estimator is a high-level

TensorFlow API that greatly simplifies machine learning

programming. They simplify sharing implementations

between model developers. For users who just want to use the

common models, TensorFlow provides pre-made estimators

or “Canned Estimators” which refer to implementations of

common machine learning models. Estimators encapsulate the

following actions:

• training

• evaluation

• prediction

• export for serving

We will be discussing on creating estimators later but for now

lets understand machine learning workflow.

IV. MACHINE LEARNING WORKFLOW

To develop and manage a production-ready model, you must

work through the following stages:

• Source and prepare your data.

• Develop your model.

• Train an ML model on your data:

• Train model

• Evaluate model accuracy

• Tune hyper parameters

• Deploy your trained model.

• Send prediction requests to your model:

• Online prediction

• Batch prediction

• Monitor the predictions on an ongoing basis.

• Manage your models and model versions.

Before you start thinking about how to solve a problem with

ML, take some time to think about the problem you are trying

to solve and then proceed with the above steps.

1. Source and prepare your data

You must have access to a large set of training data that

includes the attribute (called a feature in ML) that you want to

be able to infer (predict) based on the other features. For

example, assume you want your model to predict the sale

price of a house. Begin with a large set of data describing the

characteristics of houses in a given area, including the sale

price of each house.

Data analysis

After sourcing the data, you must analyze and understand the

data and prepare it to be the input to the training process.

• Identify features in your data. Features comprise the subset

of data attributes that you use in your model.

• Clean the data to find any anomalous values caused by errors

in data entry or measurement.

2. Code your model

In this step, you will develop your model and train it on your

data using Estimator API.

To do this, you need to perform these following steps:

• Build your Estimator model.

Define how data is fed into the model for both training and

test datasets (often these definitions are essentially the same).

• Define training and evaluation specifications (TrainSpec and

EvalSpec) to be passed to Estimator API. The EvalSpec can

include information on how to export your trained model for

prediction (serving).

Create an Estimator -

- Estimators, which represent a complete model. The

Estimator API provides methods to train the model, to judge

the model's accuracy, and to generate predictions.

- Datasets for Estimators, which build a data input pipeline.

The Dataset API has methods to load and manipulate data,

and feed it into your model. The Dataset API meshes well

with the Estimators API.

Create input functions :

You must create input functions to supply data for training,

evaluating, and prediction. An input function is a function that

returns a tf. data. Dataset object which outputs the following

two-element tuple:

• Features - A Python dictionary in which each key is the

name of a feature.

• Label - An array containing the values of the label for every

example.

def input_evaluation_set():

features = {'SepalLength': np.array([6.4, 5.0]),

'SepalWidth': np.array([2.8, 2.3]),

'PetalLength': np.array([5.6, 3.3]),

'PetalWidth': np.array([2.2, 1.0])}

IJRECE VOL. 7 ISSUE 1 (JANUARY- MARCH 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 332 | P a g e

labels = np.array([2, 1])

return features, labels

def train_input_fn(features, labels, batch_size):

"""An input function for training"""

Convert the inputs to a Dataset. dataset =

tf.data.Dataset.from_tensor_slices((dict(features), labels)) #

Shuffle, repeat, and batch the examples. Return

dataset.shuffle(1000).repeat().batch(batch_size) Here features

represent the properties of flowers containing data about them

in a numpy array and label is the variable you want to predict.

so firstly, we have shown the implementation of input

function and then it is defined for training.

Define the feature columns: A feature column is an object

describing how the model should use raw input data from the

features dictionary. When you build an Estimator model, you

pass it a list of feature columns that describes each of the

features you want the model to use.

Instantiate an estimator: TensorFlow provides several pre-

made classifier Estimators, including:

tf.estimator.DNNClassifier for deep models that perform

multi-class classification.

• tf.estimator.DNNLinearCombinedClassifier for wide &

deep models.

• tf.estimator.LinearClassifier for classifiers based on linear

models.

You can instantiate using any of the above classifier. Next

step is to train and evaluate the model.

Train the model: Train the model by calling the Estimator’s

train method as follows:

Train the Model.

classifier.train(input_fn=lambda:iris_data.train_input_fn(train

_x, train_y, args.batch_size), steps=args.train_steps) Here we

wrap up our input_fn call in a lambda to capture the

arguments while providing an input function that takes no

arguments, as expected by the Estimator. The steps argument

tells the method to stop training after a number of training

steps. Define training and evaluation specifications We just

need to define the TrainSpec and EvalSpec used by

tf.estimator.train_and_evaluate. These specify not only the

input functions, but how to export our trained model; that is,

how to save it in the standard SavedModelformat, so that we

can later use it for serving.First, we’ll define the TrainSpec,

which takes as an arg train_input: train_spec =

tf.estimator.TrainSpec (train_input, max_steps=1000) For our

EvalSpec, we’ll instantiate it with something additional – a list

of exporters, that specify how to export (save) the trained

model so that it can be used for serving with respect to a

particular data input format. exporter =

tf.estimator.FinalExporter('census', json_serving_input_fn)

eval_spec = tf.estimator.EvalSpec(eval_input, steps=100,

exporters=[exporter], name=‘census-eval') We now have a

trained model that produces good evaluation results. You can

also tune the model by changing the operations or settings that

you use to control the training process, such as the number of

training steps to run. This technique is known as hyper

parameter tuning.

V. MODEL TESTING

During training, you apply the model to known data to adjust

the settings to improve the results. When your results are good

enough for the needs of your application, you should deploy

the model to whatever system your application uses and test it.

To test your model, run data through it in a context as close as

possible to your final application and your production

infrastructure.

Tensor flow in use :

1. RankBrain : Rankbrain is a google’s algorithm learning

artificial intelligence system.google uses rankbrain algorithm

to better its search result.

2. Deep speech : Deep speech is introduced by Mozilla. Deep

speech algorithm is used for automatic speech recognition,

which aims to make speech technologies and trained models

openly available to developers.

3. SmartReply : SmartReply is introduced by google. It is used

to automatically generate email response.

VI. REFERENCES
[1]. https://cloud.google.com/mlengine/docs/tensorflow/mlsolutions

overview

[2]. https://www.tensorflow.org/guide/premade_estimators

[3]. https://developers.google.com/machinelearning/crashcourse/first

-steps-with-tensorflow/toolkit

[4]. https://www.tutorialspoint.com/machine_learning_

with_python/index.htm

[5]. https://www.toptal.com/machine-learning/machine-

learningtheory an-introductory-primer

[6]. https://data-flair.training/blogs/machine-learning-tutorial/

