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Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the GI tract, arising from
the interstitial cells of Cajal, primarily in the stomach and small intestine. They manifest a wide range of
morphologies, from spindle cell to epithelioid, but are immunopositive for KIT (CD117) and/or DOG1 in
essentially all cases. Although most tumors are localized at presentation, up to half will recur in the abdomen or
spread to the liver. The growth of most GISTs is driven by oncogenic mutations in either of two receptor
tyrosine kinases: KIT (75% of cases) or PDGFRA (10%). Treatment with tyrosine kinase inhibitors (TKIs) such as
imatinib, sunitinib, and regorafenib is effective in controlling unresectable disease; however, drug resistance
caused by secondary KIT or PDGFRA mutations eventually develops in 90% of cases. Adjuvant therapy with
imatinib is commonly used to reduce the likelihood of disease recurrence after primary surgery, and for this
reason assessing the prognosis of newly resected tumors is one of the most important roles for pathologists.
Approximately 15% of GISTs are negative for mutations in KIT and PDGFRA. Recent studies of these so-called
wild-type GISTs have uncovered a number of other oncogenic drivers, including mutations in neurofibroma-
tosis type I, RAS genes, BRAF, and subunits of the succinate dehydrogenase complex. Routine genotyping is
strongly recommended for optimal management of GISTs, as the type and dose of TKI used for treatment is
dependent on the mutation identified.
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Gastrointestinal stromal tumors (GISTs) occur pri-
marily in older patients of either sex, with annual
incidences between 11 and 19.6 per million popula-
tion worldwide.1–4 This corresponds to between
3300 and 6000 new cases per year in the United
States. Following surgical resection, GISTs often
recur locally, spread diffusely throughout the serosal
surfaces of the abdomen, and/or metastasize to the
liver. Advanced disease is associated with meta-
stases to distant sites, including the lung and bone.
Before the advent of targeted therapies, the
prognosis for advanced GISTs was poor owing to
their inherent resistance to both chemotherapy and
radiation therapy.

During the past decade, GISTs have served as an
important model in the emerging field of molecularly
targeted therapies for solid tumors. The nearly simul-

taneous discovery of oncogenic kinase mutations in
GISTs and the introduction of kinase inhibitors have
led to a rapid evolution in our understanding of these
tumors and the biology that defines them.

Clinical and pathological features

GISTs are most commonly present in the stomach
(60%) and small intestine (25%), but they also arise
in the colon, rectum, esophagus, mesentery, and
omentum (15% together).5,6 Clinical symptoms
associated with GISTs include fatigue, abdominal
pain, dysphagia, satiety, and obstruction. The
workup often reveals anemia related to mucosal
bleeding or intratumoral hemorrhage.

The tumors are generally well circumscribed,
have a fleshy pink or tan cut surface, and may show
areas of hemorrhagic necrosis and cystic degenera-
tion. They range from 1 cm to more than 40 cm,
with an average of B5 cm. Morphologically, GISTs
show a wide spectrum of morphologies, from bland
spindle cell proliferations to highly cellular epithe-
lioid tumors with significant nuclear pleomorphism
(Figure 1). For these reasons, the morphologic
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differential diagnosis is necessarily broad (Table 1).
Skeinoid fibers are associated with lower-grade
lesions as are foci of calcification.

CD34 is expressed in 70% of GISTs and was the
first immunohistochemical marker that helped to
distinguish these tumors from leiomyomas and
leiomyosarcomas of the GI tract. In 1998, reports
by two groups that GISTs commonly express KIT
(CD117) led to more reliable diagnosis.7,8 The
staining may be membranous, diffusely cytoplasmic,
or concentrated in a dot-like perinuclear pattern.
The addition of DOG1 (ANO1) as another GIST
marker has made the diagnosis quite routine,9 as
DOG1 and CD117 each stain 495% of GISTs and,
between them, serve to mark essentially all cases.
These antigens are only rarely expressed in other
mesenchymal tumors. Smooth muscle actin and
muscle-specific actin are variably expressed in
GISTs, whereas desmin is usually absent. Immuno-
staining for SDHA and SDHB has recently been
shown to be effective in identifying tumors deficient

in succinate dehydrogenase activity,10 the signi-
ficance of which is discussed below.

Oncogenic mutations in GISTs

KIT

In 1998, Hirota et al7,8 published their breakthrough
discovery of KIT mutations in GISTs. Approximately
75% of GISTs harbor a KIT gene mutation, and these
mutations lead to constitutive activation of the
kinase. KIT is a member of the type III receptor
tyrosine kinase family that includes platelet-derived
growth factor receptors-a and -b (PDGFRA
and PDGFRB), as well as the macrophage colony-
stimulating-factor receptor (CSF1R) and the Fl
cytokine receptor (FLT3).11 Binding of the KIT
ligand (stem cell factor, SCF) to KIT results in
receptor homodimerization and kinase activation.

Figure 1 Examples of gastrointestinal stromal tumor (GIST) morphology. Spindle cell GISTs (left panels) often harbor a mutation in KIT
exon 9 or 11. Epithelioid GISTs (right panels) vary in their genotype, having either (or neither) a KIT or PDGFRA mutation.
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Oncogenic KIT mutations cause ligand-indepen-
dent kinase activation. The most common mutations
in KIT affect the juxtamembrane domain encoded
by exon 11 (Figure 2). Two-thirds of GISTs
harbor mutations in exon 11 that disrupt the
normal juxtamembrane secondary structure that
keeps the kinase activation loop from swinging into
an active conformation. These mutations include in-
frame deletions, insertions, substitutions, or
combinations thereof. The deletions are associated
with a shorter progression-free and overall survival
in comparison with the other exon 11 mutations.12–

18 In particular, deletions involving codons
557 and/or 558 are associated with malignant
behavior.19–21

Aside from exon 11 mutations, between 7 and
10% of GISTs have a mutation in an extracellular
domain encoded by exon 9.22 These mutations are
thought to mimic the conformational change that the
extracellular KIT receptor undergoes when ligand is
bound. Importantly, the kinase domain in exon 9-
mutant KIT is essentially the same as in wild-type
KIT, and this influences inhibitor sensitivity.
Interestingly, these mutations occur in tumors
arising in the small and large intestine, but are
very rarely seen in gastric GISTs.

Mutations in the activation loop (encoded by exon
17) of the kinase are uncommon. They stabilize the
active conformation.23 Primary mutations, such as
K642E in the ATP-binding region (encoded by exon
13), are also uncommon.23 The biological basis of
kinase activation by this mutation is unknown, but
it is speculated that it interferes with normal auto-
inhibitory function of the juxtamembrane domain.

The functional importance of KIT mutations in
GIST development is supported by several lines of
evidence. First, phosphorylated (activated) KIT is
detectable in GIST tumor extracts. Second, mutant
KIT is oncogenic, supporting the growth of stably

transfected BA/F3 cells in nude mice.7,24 Third,
when expressed in transfected cell lines, mutant
forms of KIT show constitutive kinase activity in the
absence of SCF, as evidenced by autophosphory-
lation and activation of downstream signaling
pathways.7,25 Finally, mice engineered to express
KIT with mutations of the type found in human
GISTs develop diffuse ICC hyperplasia within the
muscular wall of the stomach and intestine.26,27

These mice also develop GIST-like tumors.
This histologic picture is similar to that seen
in individuals with inherited KIT-activating
mutations.28,29

Tumor extracts from KIT-mutant GISTs demon-
strate evidence of activation of downstream signal-
ing pathways, including the MAP kinase pathway
(RAF, MEK, and ERK), the PI3 kinase/AKT pathway,
and STAT3 (Figure 3a).24,30–32 The MAP kinase
pathway upregulates important transcriptional
regulators such as MYC, ELK, and CREB, and can
stimulate the cell cycle through FOS. AKT activation
through PI3 kinase and PDK1 leads to increased
protein translation, downregulation of the cell cycle
inhibitor p27KIP, and anti-apoptotic effects. Recent
studies have shown that ETV1 is an important
regulator of GIST-specific gene expression during
tumorigenesis.33 KIT signaling through the MAP
kinase pathway serves to maintain ETV1 activity.

In general, GISTs are heterozygous for a given
mutation; however, in B15% of tumors the remain-
ing wild-type KIT allele is lost and this is associated
with malignant behavior.29,34–36 In serial samples
from individual patients, Chen et al36 have provided
evidence that this occurs through mitotic non-
dysjunction, ie, failure of a chromosome 4 pair
bearing the wild-type KIT allele to separate during
mitosis, leaving one daughter cell with a single
chromosome 4 containing the mutant KIT allele
(uniparental monosomy). This correlates with
increased mitotic activity and topoisomerase II
expression.

Figure 2 KIT and PDGFRA mutations in gastrointestinal stromal
tumor (GIST).

Table 1. Differential diagnosis of GIST

Spindle cell tumors Epithelioid tumors

Fibromatosis (can be weakly CD117
positive)

Epithelioid leiomyoma

Leiomyoma (beware of intermixed
CD117-positive ICC cells)

Neuroendocrine tumors

Leiomyosarcoma Malignant mesothelioma
Schwannoma Metastatic melanoma (can

be CD117 positive)
Malignant peripheral nerve
sheath tumor

Angiosarcoma (can be
CD117 positive)

Inflammatory myofibroblastic tumor
Inflammatory fibroid polyp (may
have PDGFRA mutations)
Solitary fibrous tumor
Synovial sarcoma
Dedifferentiated liposarcoma
Endometrial stromal sarcoma
Sarcomatoid carcinoma

Abbreviations: GIST, gastrointestinal stromal tumor; ICC, interstitial
cells of Cajal; PDGFRA, platelet-derived growth factor receptors-a.
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Platelet-Derived Growth Factor Receptor-a

Immunoblots of GIST extracts from tumors
lacking KIT gene mutations sometimes show high
levels of phosphorylation of the a-receptor for
platelet derived growth factor (PDGFRA), which is
a close homolog of KIT.37 PDGFRA is activated in
GISTs harboring mutations in the juxtamembrane
domain (exon 12), the ATP-binding domain (exon
14), or the activation loop (exon 18) (Figure 2 and
Table 2). Consistent with their extensive functional

overlap, KIT and PDGFRA mutations are mutually
exclusive in GISTs.

Observations supporting the significance of
PDGFRA mutations in GIST parallel to those for
KIT mutations. When expressed in transfected cell
lines, mutant forms of PDGFRA have constitutive
kinase activity in the absence of their ligand,
PDGF-A,37,38 the activated downstream pathways
are identical to those in KIT-mutant GISTs,37,39

and PDGFRA is also stabilized by HSP90.40 In
addition, both types of tumors are immunopositive

Figure 3 (a) KIT and PDGFRA cell signaling pathways. Dimerization of KIT or platelet-derived growth factor receptors-a (PDGFRA) leads
to signaling through the mitogen-activated protein (MAP) kinase pathway (RAF, MEK and ERK) and the phosphoinositide 3-kinase
(PI3K) pathway (AKT, mammalian target of rapamycin (mTOR), S6 kinase). In addition, signal transducer and activator of transcription 3
(STAT3) is activated. The collective impact favors an increase in cell metabolism, cell cycle progression, and a decreased sensitivity to
apoptosis. (b) Cell signaling in ‘wild-type’ gastrointestinal stromal tumors (GISTs). Mutations in neurofibromatosis type I (NF1), RAS
genes, or BRAF lead to increased signaling through the MAP kinases MEK and ERK, promoting cell growth. Loss of the mitochondrial
succinate dehydrogenase complex through mutations in SDHA, SDHB, SDHC, or SDHD, leads to an accumulation of succinate, which
inhibits prolyl hydroxylase-mediated degradation of hypoxia-inducible factor-1a (HIF1a) through the proteosome complex. This results
in upregulated transcription of a number of genes, including VEGF, IGF1, and IGF2. Succinate also inhibits demethylation of DNA by
TET2 through increasing a-ketoglutarate levels.
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for the markers DOG1 and protein kinase C-y
(PKCy).9,41,42 These markers are highly selective for
GISTs over other mesenchymal tumors. Further,
as discussed below, both genotypes are associated
with cytogenetic changes that are distinctive for
GIST.37,43

Despite these molecular similarities, PDGFRA-
mutant GISTs do show features distinctive from
KIT-mutant GISTs, including differences in gene
expression profile,39,44 a striking predilection for the
stomach, variable (sometimes negative) expression
of KIT,20,41,45–48 and a generally lower potential for
malignancy.49 Morphologically, however, PDGFRA-
mutant GISTs are not reliably distinguishable from
KIT-mutant GISTs (Figure 1).

Other Driver Mutations

Approximately 15% of GISTs do not have a
detectable mutation in either KIT or PDGFRA. In
other respects, these so-called ‘wild-type’ GISTs are
clinically indistinguishable from KIT- or PDGFRA-
mutant GISTs, having identical morphology, expres-
sing high levels of KIT, and occurring anywhere in
the GI tract. Phosphorylated KIT is detectable in
these tumors, suggesting that KIT is still activated,30

but the mechanism of this activation is unclear.
However, recent studies have revealed that wild-
type GISTs are a heterogeneous group and display
various oncogenic mutations (Table 2). For example,
the BRAF V600E substitution common in papillary
thyroid carcinoma and melanoma is present in up to
13% of wild-type GISTs.50 HRAS, NRAS and
PIK3CA gene mutations also occur, but are much
more rare. As BRAF and the RAS proteins are
constituents of the MAP kinase signaling cascade,

they can result in KIT-independent growth
stimulation (Figure 3b) and are possible causes for
resistance to KIT/PDGFRA kinase inhibitors.

It is estimated that 7% of patients with neurofi-
bromatosis type I (NF1) develop one or more
GISTs.51–56 Most arise in the small intestine and
they do not readily metastasize.51 The majority of
these GISTs are wild type for KIT and PDGFRA, but
as expected they do show either somatic mutation or
loss of the remaining wild-type NF1 allele, resulting
in signaling through the MAP kinase cascade
(Figure 3b).51,54,55,57

SDH-Deficient GISTs

Approximately half of all wild-type GISTs show loss
of respiratory chain complex II enzymatic activ-
ity.10,58 This complex comprises four subunits
(SDHA, SDHB, SDHC, and SDHD) and serves to
oxidize succinate to fumarate as part of the
mitochondrial Krebs cycle. Loss of any of these
subunits through gene mutation or post-trans-
criptional downregulation destabilizes the complex
and causes the accumulation of succinate. This
results in increased transcription of HIF1a-regulated
genes and decreased DNA demethylation
(Figure 3b).59 Indeed, SDH-deficient GISTs show a
global increase in DNA methylation similar to that
seen in gliomas and leukemias with IDH1 and IDH2
mutations.60

Germline mutations in SDHA, SDHB, or SDHC
increase the risk not only for the development of one
or more SDH-deficient GISTs but also for paragan-
gliomas (Carney–Stratakis syndrome).10,61 The
GISTs in affected patients show either loss or
somatic mutation (second hit) of the remaining

Table 2 Molecular Classification of GISTs

Genetic type
Relative

frequency (%) Anatomic distribution
Germline
example

KIT mutation 75
Exon 8 Rare Small bowel One kindred
Exon 9 ins AY502–503 8 Small bowel, colon None
Exon 11 (deletions, single nucleotide substitutions, and insertions) 65 All sites Several kindreds
Exon 13 K642E 1 All sites Three indreds
Exon 17 D820Y, N822K, and Y823D 1 All sites Five kindreds

PDGFRA mutation 10
Exon 12 (eg, V561D) 1 All sites Two kindreds
Exon 14 N659K Rare Stomach None
Exon 18 D842V 6 Stomach, mesentery, omentum None
Exon 18 (eg, del IMHD 842-846) 2 All sites One kindred

KIT and PDGFRA wild type 15 All sites
BRAF V600E B2 None
SDHA/B/C/D mutations B6 Stomach and small bowel Carney–Stratakis
HRAS, NRAS, and PIK3CA mutation o1 None
Pediatric/Carney triad B1 Stomach Not heritable
NF1-related o1 Small bowel Numerous

Abbreviations: GIST, gastrointestinal stromal tumor; ICC, interstitial cells of Cajal; PDGFRA, platelet-derived growth factor receptors-a; NF1,
neurofibromatosis type I.
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wild-type allele. The absence of immunostaining for
SDHA, as well as SDHB, is helpful in identifying
GISTs with possible SDH gene mutations.58,58,62–66

Approximately 50% of wild-type GISTs demon-
strate high expression of IGF1R.67 In SDH-deficient
GISTs, upregulation of IGF1 and IGF2 may activate
IGF1R in an autocrine manner (Figure 3b), resulting
in signaling through both the MAP kinase and PI3
kinase/AKT pathways.68

GISTs that arise in pediatric patients (B1–2% of all
GISTs) are predominantly SDHB immunonegative,
but rarely harbor an SDH gene mutation. These
tumors, which often metastasize but tend to grow
slowly, have a different gene expression signature
from KIT/PDGFRA-mutant GISTs.69–71 Some
pediatric-type GISTs are accompanied by pulmonary
chondromas and/or paragangliomas, referred to as
Carney triad, a non-heritable syndrome, the genetic
cause for which has yet to be determined.72

The origin of GISTs

Interstitial Cells Of Cajal

During the 1990s, a number of investigators noted
similarities between GISTs and a population of cells
in the GI tract called the interstitial cells of Cajal
(ICCs), which serve as pacemakers for peristaltic
contractions. These observations led to the hypoth-
esis that ICCs could be the cell-of-origin of GISTs.
Mice engineered to express KIT with mutations of
the type found in human GISTs develop diffuse ICC
hyperplasia within the muscular wall of the sto-
mach and intestine.26,27 These mice also develop
GIST-like tumors. Diffuse ICC hyperplasia has been
described in several kindreds with heritable
mutations in KIT (Table 2), and is associated with
dysphagia and the development of multiple
GISTs,26,29,53,73–78 although many of the tumors do
not follow a malignant course.

The relationship between GISTs and ICCs is
further supported by parallels in gene expression.
For example, high levels of PKCy, nestin, and DOG1
are expressed in both GISTs and ICCs. In addition,
the ETS family transcription factor ETV1 is highly
expressed in both GISTs and in the specific
subpopulations of ICCs (myenteric and intramuscu-
lar, as opposed to submucosal) thought to give rise to
GISTs.33

The observation that some KIT and PDGFRA
mutations in GISTs correlate closely with anatomi-
cal location (Table 2) might be explained by their
ICC origin. For example, GISTs with a KIT exon 9
mutation, which arise primarily in the intestines,
may derive from a different subgroup of ICCs than
those with a PDGFRA D842V mutation, which occur
only in the stomach, mesentery, and omentum. The
more common KIT mutations, by contrast, can be
found in GISTs throughout the GI tract, perhaps
deriving from a more ubiquitous ICC subtype.

Micro-GISTs

Minute growths (1–10 mm) of ICC/GIST-like cells
are present in between 2.9 and 35% of the stomachs
thoroughly examined after surgical removal or
at autopsy.79–82 These so-called micro-GISTs
are mitotically inactive and often partially
calcified, suggesting tumorigenic arrest. In contrast
to the diffuse ICC hyperplasia observed in the
presence of a germline KIT mutation, micro-GISTs
appear to represent a nodular form of ICC
overgrowth caused in most cases by local, somatic
acquisition of a KIT mutation. The type and
frequency of KIT mutations in micro-GISTs is
essentially the same as in clinically significant
tumors.83 Subcentimeter GISTs with PDGFRA
mutations have also been reported.79 These
observations on micro-GISTs suggest that kinase
gene mutations occur very early in GIST tumor-
igenesis; however, the mutations are probably not
sufficient for progression to an oncologically
threatening lesion (Figure 4). The large pool of
micro-GISTs in the general population likely ex-
plains the multiple reported cases in which two or
more genotypically distinct GISTs are found in a
patient during a single surgical procedure.53,79,84

Chromosomal and Molecular Alterations During GIST
Progression

Although oncogenic kinase mutations have a sig-
nificant role in the development of GISTs, other
genetic events are important in their clinical
progression (Figure 4). Approximately two-thirds

Figure 4 Origin and progression of gastrointestinal stromal
tumors (GISTs). Under the influence of a KIT or platelet-derived
growth factor receptors-a (PDGFRA) mutation, a clonal outgrowth
of interstitial cells of Cajal (ICCs) may form a discrete nodule
(micro-GIST) measuring o1 cm and showing essentially no
mitotic activity. A conservative estimate for the prevalence of
micro-GISTs in the US population would exceed 10 million
lesions. With the accumulation of additional mutations and
chromosomal changes, a micro-GIST may progress to a larger
lesion that is clinically significant. Approximately 5000 such
lesions are identified each year in the United States, of which
2000 are of high risk or are malignant.
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of GISTs demonstrate either monosomy of chromo-
some 14, or partial loss of 14q.37,85–89 Interestingly,
these chromosome 14 abnormalities are observed in
both KIT-mutant and PDGFRA-mutant GISTs.37,43

Deletions of 14q11.2 include the genes PARP2,
APEX1, and NDRG2, whereas deletions of 14q32
include the SIVA gene.90 Loss of the long arm of
chromosome 22 is observed in B50% of
GISTs.37,43,85,86,89,91

Losses on chromosomes 1p, 9p, 11p, and 17p are
successively less common than 14q and 22q losses,
but are more significantly associated with malig-
nancy (Figure 4).37,43,85,89,91–94 Losses on chromo-
somes 10, 13q, and 15q have also been reported in
GISTs.43,91 Gains on chromosomes 8q (including
MYC), 3q (including SMARCA3), and 17q are
associated with metastatic behavior.86,95

In a recent array-based analysis of gene copy
number in 42 GISTs (23 with recurrence or metas-
tasis), the tumors were separated into four groups
reflecting their accumulated chromosomal changes.
The overall survival of group 1 (loss of 22q, 19, and
1p distal) and group 2 (additional loss of 14q) was
significantly better than that of group 3 (added
losses of 15q and 1p proximal) and group 4
(additional loss of 10). Specific genes implicated
in this analysis included OXA1L on 14q, as well as
AKAP13 and C15orf5 on 15q.

None of the above karyotypic changes is present
in pediatric-type GISTs, which remain near-diploid,
again emphasizing the different biology of these
tumors. In contrast, GISTs arising in NF1 patients
often show losses of 14q and 22q.96

On the basis of gene expression profiling of high-risk
versus low-risk GISTs, the high-risk tumors show
significant changes in genes regulating the cell cycle,
including genes influenced by the PI3 kinase pathway
and genes involved in the G2/M checkpoint.97

A significant fraction of malignant GISTs show
inactivation of the tumor suppressor gene CDKN2A
(which encodes the cell cycle regulatory protein
p16INK4A) through chromosome 9p21 deletion, either
biallelic or in combination with mutation or promoter
methylation.98–101 TP53 mutations and decreased p53
immunostaining also correlate with a poor
prognosis.102–104 Likewise, amplifications of MDM2
and CCND1 (cyclin D1), although uncommon in
GISTs, are associated with malignancy.105

Kinase mutations and tyrosine kinase
inhibitor therapy

Until the year 2000, treatment options for patients
with advanced GIST were poor. The response rate to
conventional chemotherapy was o5% and median
survival for patients with advanced disease was
B18 months.

The tyrosine kinase inhibitor (TKI) imatinib was
developed in the early 1990s as a treatment for
chronic myelogenous leukemia because of its

ability to inhibit the fusion oncoprotein BCR–
ABL.106 The observation that ABL shares
structural similarity with KIT, and several other
tyrosine kinases led to experiments showing that
imatinib can inhibit the growth of cells expressing
mutant forms of KIT.25 In addition, imatinib
showed potent activity against a KIT-mutant GIST
cell line. Imatinib inhibits KIT kinase by directly
binding to the ATP pocket and competitively
inhibiting ATP binding. The KIT receptor is
normally in equilibrium between active and
inactive conformations. The latter is favored by
steric hindrance conferred by the juxtamembrane
domain (exon 11), which prevents the activation
loop from assuming the conformation required for
kinase activation.

With the knowledge that imatinib inhibits KIT
signaling, imatinib was first used clinically to treat a
50-year-old female with metastatic GIST, and a
dramatic response was observed.107 Promising
results from phase I and II trials led to two inter-
national phase III trials, each using similar protocols
that would allow a subsequent meta-analysis. The
phase III trials compared 400 versus 800 mg daily
doses of imatinib. Overall, imatinib achieved disease
control in 70–85% of patients with advanced KIT-
immunopositive GISTs, and the median progression-
free survival was 20–24 months.108–112 Currently, the
median survival for patients with advanced disease
treated with frontline imatinib is 5 years, with 34% of
patients surviving more than 9 years.113

A meta-analysis of the phase III trials proved that
patients with exon 9-mutant GIST had a signifi-
cantly longer progression-free survival if they were
treated with 800 mg of imatinib; hence, this is now
the target dose for these patients. In contrast, only
400 mg of imatinib is needed to manage exon
11-mutant tumors.112

The success with imatinib in patients with meta-
static disease quickly led to trials of the drug in the
adjuvant setting. It was initially shown that 12 months
of imatinib after primary resection of a GIST signifi-
cantly delayed disease recurrence versus a placebo.114

A subsequent trial proved that 36 months of adjuvant
imatinib was superior to 12 months.115

Assessing GIST prognosis

FDA approval for the use of imatinib in the adjuvant
setting has made it imperative that the prognosis of a
newly resected GIST be predicted as accurately as
possible. In a 2-year prospective study of sarcomas
in France, 485% of GISTs presented as localized
lesions.116 Thus, the question of whether to use
adjuvant therapy must be considered for the great
majority of newly diagnosed GISTs. Kinase genotype
does not factor into overall survival once a GIST
becomes metastatic. Thus, a KIT or PDGFRA
mutation may set the initial course of a GIST, but
the prognosis at the time of clinical presentation is
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clearly influenced by other genetic events.
Unfortunately, our knowledge of these additional
mutations remains limited, and current
recommendations for assessing prognosis are based
on three simple parameters: tumor size, tumor
location, and mitotic index (mitoses/5 mm2).
A number of risk assessment schemes have been
published; the most widely used scheme was
developed at the Armed Forces Institute of Patho-
logy by Miettinen et al117–119, whose considerable
efforts in studying the outcome of patients before the
advent TKIs have provided the most complete data
available (Table 3). It should be noted that tumor
rupture, either before or during surgery, is another
important negative prognostic factor. Incomplete
resection, particularly in the area of the rectum, is
also associated with a higher risk of recurrence.120

As a group, PDGFRA-mutant GISTs appear to be
less aggressive than KIT-mutant GISTs,49 yet
PDGFRA-mutant tumors can still progress and kill
patients. These tumors are assessed using the same
criteria as other GISTs.

Responses to TKI therapy

Clinical Disease Persistence

Clinical data suggest that even long-term TKI
treatment fails to eradicate GIST cells, resulting in
disease persistence. In an attempt to determine the
optimal duration of imatinib therapy for advanced,
unresectable GIST, an interesting trial randomized
patients who had continuous control of their disease
during 3 years of imatinib treatment to either
continue or to discontinue treatment.121 For those
continuing treatment progression-free survival over
the next 2 years was 80%, but for those who stopped
therapy it was only 16%. Patients who relapsed after
discontinuation of therapy did so because of
persistent disease. In contrast, the progression that
developed in some of the patients who maintained
therapy was due to resistant disease.

Persistence of GIST cells during TKI treatment
could be due to the failure of these drugs to
eradicate mature GIST cells and/or the failure to
eliminate GIST stem cells. Current evidence suggests
that both mechanisms underlie GIST persistence in
the face of prolonged TKI therapy. Agaram et al122

examined a series of 43 clinically responsive GISTs
lesions from 28 patients. Histological responses in
these resected tumors after 1–31 months of imatinib
treatment ranged from o10% to 490% reduction in
tumor cellularity, but tumor cells persisted in all
lesions. Three quarters of the lesions showed an
absence of mitoses and a proliferative index of 0%
by Ki-67 staining, indicating biological quiescence.
Interestingly, some of the tumor cells showed
transdifferentiation. Indeed, examples of rhabdo-
myoblastic, cartilaginous, and osseous differentia-
tion have all been observed in cases of treated GIST
(Figure 5). Thus, under imatinib suppression, GIST
cells may avoid apoptosis by exiting the cell cycle
and expressing genes associated with a differen-
tiated phenotype. Whether these cells proliferate
again when a TKI is discontinued, or whether GIST
stem cells are the source of renewed growth, has not
been determined.

In rare cases, GISTs may progress to high grade,
anaplastic sarcomas that lose CD117 expression.
This has been observed in both imatinib-treated and
TKI-naive tumors.123

Resistance to TKI therapy

Primary Resistance

Resistance to treatment with KIT/PDGFRA inhibi-
tors such as imatinib can be divided into two types:
primary and secondary. Approximately 10% of
patients with GIST have primary resistance, defined
as progression within the first 6 months of treat-
ment. On the basis of data from phase II and phase
III trials, tumor response to imatinib correlates with
the underlying kinase genotype.34,41,112,124,125 The

Table 3 Assessing GIST prognosis

Size (cm)
Gastric

(n¼ 1055), %
Jejunum/ileum

(n¼629), %
Duodenum
(n¼ 144), %

Rectum
(n¼111), %

Mitotic index r5/5 mm2 r2 0 0 0 0
42r5 1.9 4.3 8.3 8.5
45r10 3.6 24 Insufficient data Insufficient data
410 10 52 34 57

Mitotic index 45/5 mm2 r2 None High Insufficient data 54
42r5 16 73 50 52
45r10 55 85 Insufficient data Insufficient data
410 86 90 86 71

Abbreviations: GIST, gastrointestinal stromal tumor.
The risk of disease recurrence or metastasis can be estimated based on three parameters defined in this table: (1) the mitotic index (either r5
mitoses/5 mm2 or 45 mitoses/5 mm2); (2) tumor size (largest diameter); and (3) tumor site of origin. The table is based on data published by
Miettinen et al.117,118,150
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probability of primary resistance to imatinib for KIT
exon 11, KIT exon 9, and wild-type GISTs is 5, 16
and 23%, respectively.34 These findings likely
reflect the underlying sensitivities of different KIT
genotypes. Exon 11-mutant KIT is highly sensitive to
imatinib, with an IC50 of o100 nM, whereas exon
9-mutant KIT and wild-type KIT are less sensitive
to the drug (IC50 B1000 nM for each).126 Thus,
underdosing of imatinib in patients with exon 9
mutations probably accounts for some of the
apparent resistance.112

On the basis of in vitro data, the most common
PDGFRA mutation in GISTs, D842V, is fully resistant
to the effects of imatinib.34,38,127,128 This mutation
favors the active conformation of the kinase
domain and consequently disfavors imatinib
binding.34,129,130 This is corroborated by clinical
results, as patients with PDGFRA D842V-mutant
GIST have low response rates and very short
progression-free and overall survivals during
imatinib treatment. Crenolanib is a TKI that has

activity versus D842V and is now being tested in a
clinical trial. There are, however, other PDGFRA
mutations that are sensitive to imatinib in vitro and
patients with these mutations have shown durable
responses to imatinib.

Wild-type GISTs include tumors with mutations
downstream of KIT;10,50,131,132 hence, these subsets
of wild-type GISTs might respond better to other
targeted agents, such as VEGFR inhibitors for
pediatric/SDH-deficient GIST and BRAF/MEK
inhibitors for BRAF and RAS mutant GIST.133

Secondary Resistance

After an initial response to imatinib, the vast
majority of patients eventually develop disease
progression. This secondary resistance may mani-
fest in a number ways, including growth of a nodule
within a pre-existing, clinically quiescent lesion,
the development of one or more new lesions, or

Figure 5 Differentiation of gastrointestinal stromal tumor (GIST) cells under suppression of a tyrosine kinase inhibitor (TKI).
In some cases, imatinib treatment may lead to rhabdomyoblastic differentiation (left panel), or else chondroid or osseous differentiation
(right panels).
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widespread disease throughout the liver or abdominal
cavity. It is now established that acquired mutations
in KIT or PDGFRA account for most secondary
resistance, and that these mutations occur almost
exclusively in the same gene and allele as the
primary oncogenic driver mutation.35,134–140

In a phase II imatinib study for advanced GIST,
67% of the patients whose tumor showed imatinib
resistance had a new, or secondary, mutation in KIT.
Notably, these mutations were common among
tumors with a primary exon 11 mutation, but were
not observed in wild-type GIST samples.137 Unlike
primary mutations that activate KIT, which
are predominantly in the juxtamembrane regions
encoded by exons 9 and 11, the secondary mutations
were concentrated in two regions of the KIT kinase
domain. One is the ATP-binding pocket, encoded by
exons 13 and 14, mutations of which directly
interfere with drug binding. The second is the
activation loop (exons 17 and 18), where mutations
can stabilize KIT in the active conforma-
tion and thereby hinder drug interaction. Drug
resistance has also been observed in PDGFRA-
mutant GISTs, in which the most common one is
an acquired D842V mutation (activation loop).135,137

Additional studies using more sensitive assays
have identified secondary mutations in 480% of
drug-resistant GIST lesions.141–143 More sobering is
that there is significant heterogeneity of resistance
across different lesions, and even within different
areas of the same lesion. For example, there are
reports of up to five different drug resistance
mutations in different portions of an individual
lesion and up to seven different secondary resist-
ance mutations across multiple tumors in the same
patient.141 This heterogeneity of resistance signi-
ficantly impacts the efficacy of salvage TKI therapy
after frontline imatinib, because the diversity of
resistant, minority clones precludes the systemic
suppression of GIST cells by any particular TKI.

Approaches to imatinib-resistant GIST

Most GIST patients who develop secondary resis-
tance to imatinib will not respond to dose escala-
tion, forcing a switch to an alternative KIT/PDGFRA
TKI. Such salvage agents include sunitinib, sorafe-
nib, regorafenib, vatalanib, masatinib, nilotinib, and
dasatinib, as well as other investigational inhibitors.
Although all of these agents are KIT/PDGFRA
inhibitors, the majority of them (in contrast to
imatinib) also target VEGFR1/2.144 Whether the
disease stabilization that can be seen with these
salvage agents is related to VEGFR1/2 inhibition and
a consequent decrease in angiogenesis remains
unclear.

Sunitinib is FDA-approved for the treatment of
GIST patients with progression on imatinib,145 but
biochemical evidence suggests that its activity
against secondary imatinib-resistant kinase

mutations is suboptimal. KIT ATP-binding pocket
mutations are extremely sensitive to sunitinib
in vitro; however, the activation loop mutations are
strongly cross-resistant. Given the approximately
equal frequency of these different classes of
mutations in imatinib-resistant lesions and the
multiplicity of lesions in a typical patient, it is not
surprising that mixed responses are common during
sunitinib therapy.124,146

Most recently, the FDA has approved regorafenib
for the third-line treatment of patients with GIST
that is resistant to imatinib and sunitinib. In a phase
III trial, the progression-free survival on regorafenib
was 4.8 months.147 Thus, even with newer drugs
such as regorafenib, resistance develops over time,
suggesting that escape from ATP-competitive
inhibitors of KIT and PDGFRA is inevitable. A new
class of non-ATP mimetic kinase inhibitors (switch
pocket kinase inhibitors, such as DP-2976) have
shown high potency when tested in vitro and
represent hope in the fight against TKI
resistance.148,149

Summary and future directions

Achievements in the treatment of GISTs during the
past decade are the direct result of a growing
understanding of their molecular biology. The high
frequency of primary KIT and PDGFRA mutations in
these tumors makes them sensitive to kinase
inhibitors such as imatinib, and this drug is FDA-
approved for use in both the adjuvant and advanced
disease settings. Accurate assessment of the risk of
disease recurrence is essential in determining the
use of adjuvant imatinib after resection of a primary
tumor. Current recommendations for assessing re-
currence risk are based on tumor size, tumor
location, and mitotic index (mitoses/5 mm2).117–119

Resistance to imatinib develops in the majority of
advanced cases of GIST. An immediate research goal
is the development of new inhibitors that have
activity against secondary mutations in the activa-
tion loop. In addition, the development of effective
combination therapy is likely to improve tumor
control. Ongoing high-throughput genomic studies
may identify additional drivers/modifiers of GIST
biology that can be targeted.

Clinical genotyping of GISTs is important to
identify KIT exon 9-mutant tumors that require a
higher dose of imatinib for optimal disease control.
Further, there are other molecular subtypes of GIST
that do not respond well to conventional KIT
inhibitors, but may be better treated with other
agents (eg, SDH-deficient GIST and PDGFRA D842V
GIST). Thus, the GIST genotyping is critical in
personalizing the care of patients who need TKI
therapy.

In summary, new insights into the origin and
progression of GISTs are setting the stage for further
therapeutic innovations, with the goal not just to
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control disease growth, but to eliminate all tumor
cells at the time of initial therapy. Going forward,
the challenge will be to move from a paradigm of
tumor suppression to true cancer cure.
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