Fractions January 30, 2023

MA+볌

MA+

Sarah R. Powell, Ph.D.

Associate Professor
The University of Texas at Austin

srpowell@utexas.edu

@sarahpowellphd

Say hello.

Describe one thing from our Operations session which you've put into action.

November 2022
Operations

- Addition and subtraction concepts
- Multiplication and division concepts
- Computation with addition, subtraction, multiplication, and division

March 2023
Word-Problem Solving

- Attack strategies
- Schemas

January 2023

Fractions

- Length, area, and set models
- Comparison of fractions
- Ordering of fractions
- Computation of fractions

April 2023

Geometry

- Understanding twodimensional shapes
- Lines and angles
- Understanding threedimensional shapes

Model fractions with three models

Compare and order fractions

Add and subtract fractions

Multiply and divide fractions

Instructional Platform

$\times A+1 \dot{1}$

Instructional Platform

INSTRUCTIONAL DELIVERY

INSTRUCTIONAL STRATEGIES
Fluency building

Model fractions with three models

Compare and order fractions

Add and subtract fractions

Multiply and divide fractions

Fraction Models

$\times A+1 \dot{1}$

LENGTH

SET

LENGTH

Fractions are appropriated by length

$\frac{2}{3}$| | | | |
| :--- | :--- | :--- | :---: |
| | | | |

Fraction tiles/bars

LENGTH

Fractions are appropriated by length

$\frac{2}{3}$

Cuisenaire rods
$x \mid A+H_{1}$

LENGTH
 Fractions are appropriated by length

Models of Fractions

$\frac{2}{3}$			
$\frac{1}{4}$			
$1 \frac{1}{2}$			
$\frac{3}{7}$			
Frater			

Show fractions with the length model.

Shapes divided into equal sections

$\frac{2}{3}$

Fraction circles

MA+:

Shapes divided into equal sections

$\frac{2}{3}$

Geoboards
$\times \mathrm{x}+\dot{1}$

Shapes divided into equal sections

$\frac{2}{3}$

Pattern blocks

Shapes divided into equal sections

$\frac{2}{3}$

Legos

$\frac{2}{3}$		
Frater leant		
$\frac{1}{4}$		
$1 \frac{1}{2}$		
$\frac{3}{7}$		
seat		

Show fractions with the area model.

SET

Individual shapes match the fraction

Two-color counters
$x \mathrm{~A}+\cdots$

SET

Individual shapes match the fraction

$\frac{2}{3}$

Models of Fractions

$\frac{2}{3}$			
$\frac{1}{4}$			
$1 \frac{1}{2}$			
$\frac{3}{7}$			
Frater			

Show fractions with the set model.
(1) Model a fraction using each of the three models.
(2) Discuss how you would use each of these models in your teaching.

Model fractions with three models

Compare and order fractions

Add and subtract fractions

Multiply and divide fractions

Compare and Order Fractions

(1) Choose one of these activities.
(2) Model with representations.

Model fractions with three models

Compare and order fractions

Add and subtract fractions

Multiply and divide fractions

Addition with Fractions

$x A+1 \dot{1}$

What does it mean to add?

What are the two ways to interpret addition?

Total
 (combine, putting together)

Join
 (change increase, add on)

Total

(combine, putting together)
$2+4$
$7+3$

Join

(change increase, add on)
$8+2$
$3+5$

$\frac{1}{5}+\frac{3}{5}$

| Addition Fraction Computation
 $\frac{1}{5}+\frac{3}{5}$
 $\frac{2}{8}+\frac{5}{8}$
 $\frac{2}{3}+\frac{2}{3}$
 $\frac{3}{4}+\frac{2}{4}$
 $\frac{1}{2}+\frac{1}{4}$
 $\frac{4}{4}+\frac{1}{3}$
 $\frac{1}{4}+\frac{3}{4}$
 $\frac{4}{4}$ |
| :--- | :--- |

Notes on Addition:

What does it mean to subtract?

What are the two ways to interpret subtraction?

Separate
 (change decrease)

Difference
(compare)

Separate
(change decrease)

Difference
 (compare)

$$
8-5
$$

10-7

$$
9-2
$$

$$
14-8
$$

Subtraction

Problem	Representation
$\frac{4}{5}-\frac{1}{5}$	
$\frac{6}{8}-\frac{3}{8}$	
$\frac{6}{5}-\frac{2}{5}$	
$\frac{9}{6}-\frac{4}{6}$	
$\frac{7}{8}-\frac{2}{4}$	
$\frac{8}{9}-\frac{1}{3}$	
$\frac{10}{12}-\frac{2}{3}$	
$\frac{1}{2}-\frac{2}{5}$	

Notes on Subtraction:

Which vocabulary term do you use?

Multiple: The result when multiplying a number by an integer

What are the first 5 multiples of your favorite number (1-9)?

Multiple: The result when multiplying a number by an integer

Factor: The numbers you multiply together

What are the factors of your favorite number (10-100)?

Least Common Multiple (LCM) Least Common Denominator (LCD) $\frac{1}{2}+\frac{1}{3}=\frac{1 \times 3}{2 \times 3}+\frac{1 \times 2}{3 \times 2}=\frac{5}{6}$

Greatest Common Factor (GCF)
$\frac{18}{48}=\frac{18 \div 6}{48 \div 6}=\frac{3}{8}$

1	2	3	4	5	6	7	8	9
2	4	6	8	10	12	14	16	18
3	6	9	12	15	18	21	24	27
4	8	12	16	20	24	28	32	36
5	10	15	20	25	30	35	40	45
6	12	18	24	30	36	42	48	54
7	14	21	28	35	42	49	56	63
8	16	24	32	40	48	56	64	72
9	18	27	36	45	54	63	72	81

Multiple Strips

| Addition Fraction Computation
 $\frac{1}{5}+\frac{3}{5}$
 $\frac{2}{8}+\frac{5}{8}$
 $\frac{2}{3}+\frac{2}{3}$
 $\frac{3}{4}+\frac{2}{4}$
 $\frac{1}{2}+\frac{1}{4}$
 $\frac{4}{4}+\frac{1}{3}$
 $\frac{1}{4}+\frac{3}{4}$
 $\frac{4}{4}$ |
| :--- | :--- |

Notes on Addition:

| | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

Subtraction

Problem	Representation
$\frac{4}{5}-\frac{1}{5}$	
$\frac{6}{8}-\frac{3}{8}$	
$\frac{6}{5}-\frac{2}{5}$	
$\frac{9}{6}-\frac{4}{6}$	
$\frac{7}{8}-\frac{2}{4}$	
$\frac{8}{9}-\frac{1}{3}$	
$\frac{10}{12}-\frac{2}{3}$	
$\frac{1}{2}-\frac{2}{5}$	

Notes on Subtraction:
(1) Teach an addition problem with fractions.
(2) Teach a subtraction problem with fractions.
(3) Discuss how you will emphasize addition and subtraction of fractions.

Model fractions with three models

Compare and order fractions

Add and subtract fractions

Multiply and divide fractions
$\frac{2}{3} \times \frac{3}{4}$
$\frac{7}{8} \div \frac{1}{4}$
The procedure of multiplying fractions is easy. Knowing when to multiply fractions is hard.

The procedure of dividing fractions is easy. Knowing when to divide fractions is hard.

Kate bought 5 and $1 / 3$ feet of ribbon. She plans to make bookmarks, and each bookmark requires $1 / 8$ of a foot of ribbon. How many bookmarks can Kate make?

5 1/3-1/8
$1 / 8 \div 51 / 3$
$1 / 8 \times 51 / 3$

$$
51 / 3 \times 1 / 8
$$

$$
51 / 3 \div 1 / 8
$$

What does it mean to multiply?

What are the two ways to interpret multiplication?

Equal Groups

Comparison

Equal Groups

3×2
2×6
5×3

Comparison

2×4

Two groups of one-half...
equals one.

One-half of two...
equals one.

One-half of four-fourths...
equals one-half.

One-half of two-fourths...

equals one-fourth.

One-half of three-fourths...

equals three-eighths.

One-half of three-fourths...
equals three-eighths.

$\frac{2}{3} \times \frac{3}{4}$

Two-thirds of three-fourths...
equals one-half.

$\frac{2}{3} \times \frac{3}{4}$
Two-thirds of three-fourths...
equals one-half.

One-third of five-sixths...
equals five-eighteenths.

Multiplication	
Problem Representation 2×3 $2 \times \frac{1}{2}$ $\frac{1}{2} \times 2$ $\frac{1}{2} \times \frac{4}{4}$ $\frac{1}{2} \times \frac{2}{4}$ $\frac{1}{2} \times \frac{3}{4}$ $\frac{2}{3} \times \frac{3}{4}$ $\frac{1}{3} \times \frac{5}{6}$ $\frac{3}{4} \times \frac{7}{8}$ $\frac{5}{8} \times \frac{1}{4}$	

What does it mean to divide?

What are the two ways to interpret division?

Partitive Division (Equal Shares)

Quotative Division

Partitive Division (Equal Shares)

$$
\begin{aligned}
& 10 \div 2 \\
& 15 \div 3
\end{aligned}
$$

Quotative Division

$$
\begin{aligned}
& 8 \div 4 \\
& 20 \div 5
\end{aligned}
$$

$3 \div \frac{1}{2}$

Three divided by groups of one-half...
equals six.

MA+!

$\frac{1}{2} \div 2$

A one-half group divided by two...
equals one-fourth.

$\frac{4}{4} \div \frac{1}{2}$

Four-fourths divided by a group of one-half... equals two.

How many sets of one-half can you make with four-fourths?

Two-fourths divided by a group of one-half... equals one.

How many sets of one-half can you make with two-fourths?

1 set of one-half

$\frac{3}{4} \div \frac{1}{2}$
Three-fourths divided by a group of one-half... equals one and one-half.

How many sets of one-half can you make with three-fourths?

Seven-eighths divided by a group of one-fourth... equals three and one-half.

How many sets of one-fourth can you make with seven-eighths?

$\frac{5}{6} \div \frac{2}{3}$

Five-sixths divided by a group of two-thirds... equals one and one-fourth.

How many sets of two-thirds can you make with five-sixths?

| $\|$Division
 $6 \div 3$
 Problem
 $6 \div \frac{1}{2}$
 $\frac{1}{2} \div 2$
 $\frac{4}{4} \div \frac{1}{2}$
 $\frac{2}{4} \div \frac{1}{2}$
 $\frac{3}{4} \div \frac{1}{2}$
 $\frac{7}{8} \div \frac{1}{4}$
 $\frac{5}{6} \div \frac{2}{3}$
 $\frac{1}{2} \div \frac{3}{8}$
 $\frac{9}{6} \div \frac{1}{3}$ |
| :--- | :--- |

(1) Teach a multiplication problem with fractions.
(2) Teach a division problem with fractions.
(3) Discuss how you will emphasize multiplication and division of fractions.

Model fractions with three models

Compare and order fractions

Add and subtract fractions

Multiply and divide fractions

Instructional Platform

INSTRUCTIONAL DELIVERY

INSTRUCTIONAL STRATEGIES
Fluency building

MODELING

Step-by-step explanation

PRACTICE

Guided practice

Independent practice

Planned examples

SUPPORTS

Ask high-level and low-level questions
Eliciting frequent responses
Providing affirmative and corrective feedback

What are your strengths with modeling fractions?
 What are your opportunities for growth?

Use formal math language

Use terms precisely

What are five essential math vocabulary for fractions?

Explicit Instruction
Problem
Step-by-Step Explanation

1. Choose a math problem.
2. Write a step-by-step explanation. Focus on the language of math in your explanation. Consider the representations you will use.

Explicit Instruction

1. Describe the practice opportunities you will use.
2. Write 3 high-level questions.
3. Write 3 low-level questions.
4. Write 2 ways to provide affirmative feedback.
5. Write 2 ways to provide corrective feedback.

November 2022
Operations

- Addition and subtraction concepts
- Multiplication and division concepts
- Computation with addition, subtraction, multiplication, and division

March 2023
Word-Problem Solving

- Attack strategies
- Schemas

January 2023

Fractions

- Length, area, and set models
- Comparison of fractions
- Ordering of fractions
- Computation of fractions

April 2023

Geometry

- Understanding twodimensional shapes
- Lines and angles
- Understanding threedimensional shapes

Sarah R. Powell, Ph.D.

Associate Professor
The University of Texas at Austin

srpowell@utexas.edu

@sarahpowellphd

