Fractions January 30, 2023

Sarah R. Powell, Ph.D.

Associate Professor The University of Texas at Austin

srpowell@utexas.edu

Say hello.

Describe one thing from our Operations session which you've put into action.

November 2022 Operations

- Addition and subtraction concepts
- Multiplication and division concepts
- Computation with addition, subtraction, multiplication, and division

March 2023 Word-Problem Solving

- Attack strategies
- Schemas

January 2023 Fractions

- Length, area, and set models
- Comparison of fractions
- Ordering of fractions
- Computation of fractions

April 2023 Geometry

- Understanding twodimensional shapes
- Lines and angles
- Understanding threedimensional shapes

Model fractions with three models

Compare and order fractions

Add and subtract fractions

Multiply and divide fractions

Instructional Platform

bit.ly/srpowell

Model fractions with three models

Compare and order fractions

Add and subtract fractions

Multiply and divide fractions

Fraction Models

Models of Fractions		
1		

LENGTH

Fractions are appropriated by length

Fraction tiles/bars

LENGTH

Fractions are appropriated by length

Cuisenaire rods

Models of Fractions			
Fraction	Length	Area	Set
<u>2</u> 3			
<u>1</u> 4			
$1\frac{1}{2}$			
<u>3</u> 7			

Show fractions with the length model.

Models of Fractions		
1		

Fraction circles

2 3

Geoboards

Pattern blocks

2 3

Legos

Models of Fractions			
Fraction	Length	Area	Set
<u>2</u> 3			
<u>1</u> 4			
$1\frac{1}{2}$			
<u>3</u> 7			

Show fractions with the area model.

Models of Fractions		
1		

SET

Individual shapes match the fraction

Two-color counters

SET

Individual shapes match the fraction

Models of Fractions			
Fraction	Length	Area	Set
<u>2</u> 3			
<u>1</u> 4			
$1\frac{1}{2}$			
<u>3</u> 7			

Show fractions with the set model.

(1) Model a fraction using each of the three models.
(2) Discuss how you would use each of these models in your teaching. Model fractions with three models

Compare and order fractions

Add and subtract fractions

Multiply and divide fractions

Compare and Order Fractions

(1)Choose one of these activities.(2)Model with representations.

Model fractions with three models

Compare and order fractions

Add and subtract fractions

Multiply and divide fractions

Addition with Fractions

What does it mean to add?

What are the two ways to interpret addition?

Total (combine, putting together)

Join (change increase, add on)

Total (combine, putting together)

2 + 4 7 + 3

Join (change increase, add on)

8 + 2 3 + 5

$$\frac{1}{5} + \frac{3}{5}$$

 $\frac{1}{5} + \frac{3}{5}$

	Fraction Computation
Addition	
Problem	Representation
$\frac{1}{5} + \frac{3}{5}$	
$\frac{2}{8} + \frac{5}{8}$	
$\frac{2}{3} + \frac{2}{3}$	
$\frac{3}{4} + \frac{2}{4}$	
$\frac{1}{2} + \frac{1}{4}$	
$\frac{4}{6} + \frac{1}{3}$	
$\frac{4}{8} + \frac{3}{4}$	
$\frac{1}{4} + \frac{4}{6}$	
Notes on Ad	dition:

What does it mean to subtract?

What are the two ways to interpret subtraction?

Separate (change decrease)

Difference (compare)

Separate (change decrease)

8 – 5 10 – 7

Difference (compare)

9 – 2 14 – 8

$\frac{4}{5} - \frac{1}{5}$

	Fraction Computation
Subtraction	
Problem	Representation
$\frac{4}{5} - \frac{1}{5}$	
$\frac{6}{8} - \frac{3}{8}$	
$\frac{6}{5} - \frac{2}{5}$	
$\frac{9}{6} - \frac{4}{6}$	
$\frac{7}{8} - \frac{2}{4}$	
$\frac{8}{9} - \frac{1}{3}$	
$\frac{10}{12} - \frac{2}{3}$	
$\frac{1}{2} - \frac{2}{5}$	
Notes on Su	btraction:

Which vocabulary term do you use?

Multiple: The result when multiplying a number by an integer

Multiple: The result when multiplying a number by an integer

Factor: The numbers you multiply together

What are the factors of your favorite number (10-100)?

Least Common Multiple (LCM) Least Common Denominator (LCD)

$$\frac{1}{2} + \frac{1}{3} = \frac{1 \times 3}{2 \times 3} + \frac{1 \times 2}{3 \times 2} = \frac{5}{6}$$

Greatest Common Factor (GCF)

$$\frac{18}{48} = \frac{18 \div 6}{48 \div 6} = \frac{3}{8}$$

 $\frac{1}{2}$ + <u>1</u> 4

Least/lowest common multiple (LCM) Least/lowest common denominator (LCD)

1	2	3	4	5	6	7	8	9
2	4	6	8	10	12	14	16	18
3	6	9	12	15	18	21	24	27
4	8	12	16	20	24	28	32	36
5	10	15	20	25	30	35	40	45
6	12	18	24	30	36	42	48	54
7	14	21	28	35	42	49	56	63
8	16	24	32	40	48	56	64	72
9	18	27	36	45	54	63	72	81

Multiple Strips

	Fraction Computation
Addition	
Problem	Representation
$\frac{1}{5} + \frac{3}{5}$	
$\frac{2}{8} + \frac{5}{8}$	
$\frac{2}{3} + \frac{2}{3}$	
$\frac{3}{4} + \frac{2}{4}$	
$\frac{1}{2} + \frac{1}{4}$	
$\frac{4}{6} + \frac{1}{3}$	
$\frac{4}{8} + \frac{3}{4}$	
$\frac{1}{4} + \frac{4}{6}$	
Notes on Ad	dition:

$\frac{7}{8} - \frac{2}{4}$

	Fraction Computation
Subtraction	
Problem	Representation
$\frac{4}{5} - \frac{1}{5}$	
$\frac{6}{8} - \frac{3}{8}$	
$\frac{6}{5} - \frac{2}{5}$	
$\frac{9}{6} - \frac{4}{6}$	
$\frac{7}{8} - \frac{2}{4}$	
$\frac{8}{9} - \frac{1}{3}$	
$\frac{10}{12} - \frac{2}{3}$	
$\frac{1}{2} - \frac{2}{5}$	
Notes on Su	btraction:

(1) Teach an addition problem with fractions.
(2) Teach a subtraction problem with fractions.
(3) Discuss how you will emphasize addition and subtraction of fractions. Model fractions with three models

Compare and order fractions

Add and subtract fractions

Multiply and divide fractions

The procedure of multiplying fractions is easy. Knowing when to multiply fractions is hard.

The procedure of dividing fractions is easy. Knowing when to divide fractions is hard.

Kate bought 5 and 1/3 feet of ribbon. She plans to make bookmarks, and each bookmark requires 1/8 of a foot of ribbon. How many bookmarks can Kate make?

5 1/3 - 1/8

1/8 ÷ 5 1/3

5 1/3 ÷ 1/8

 $1/8 \times 5 1/3$

Copyright 2023 Sarah R. Powell, Ph.D.

5 1/3 × 1/8

What does it mean to multiply?

What are the two ways to interpret multiplication?

Equal Groups

Comparison

Equal Groups

Comparison

5 x 3 2 x 4

 $2 \times \frac{1}{2}$

Two groups of one-half...

equals one.

One-half **of** two...

equals one.

One-half of four-fourths...

equals one-half.

One-half of two-fourths...

equals one-fourth.

One-half of three-fourths...

equals three-eighths.

One-half of three-fourths...

equals three-eighths.

Two-thirds **of** three-fourths...

equals one-half.

Two-thirds **of** three-fourths...

equals one-half.

One-third **of** five-sixths...

equals five-eighteenths.

Fraction Computation			
Multiplication			
Problem	Representation		
2 × 3			
$2 \times \frac{1}{2}$			
$\frac{1}{2} \times 2$			
$\frac{1}{2} \times \frac{4}{4}$			
$\frac{1}{2} \times \frac{2}{4}$			
$\frac{1}{2} \times \frac{3}{4}$			
$\frac{2}{3} \times \frac{3}{4}$			
$\frac{1}{3} \times \frac{5}{6}$			
$\frac{3}{4} \times \frac{7}{8}$			
$\frac{5}{8} \times \frac{1}{4}$			

What does it mean to divide?

What are the two ways to interpret division?

Partitive Division (Equal Shares)

Quotative Division

Partitive Division (Equal Shares)

10 ÷ 2 15 ÷ 3

Quotative Division

8 ÷ 4 20 ÷ 5

Three divided by groups of one-half...

equals six.

A one-half group divided by two...

equals one-fourth.

Four-fourths divided by a group of one-half...

equals two.

How many sets of one-half can you make with four-fourths?

1 set of one-half	1 set of one-half

Two-fourths divided by a group of one-half...

equals one.

How many sets of one-half can you make with two-fourths?

Three-fourths divided by a group of one-half... equals one and one-half.

How many sets of one-half can you make with three-fourths?

1 set of one-half	1/2 set of one-half

Seven-eighths divided by a group of one-fourth... equals three and one-half.

How many sets of one-fourth can you make with seven-eighths?

1 set of	1 set of	1 set of	1/2 set of
one-fourth	one-fourth	one-fourth	one-fourth

Five-sixths divided by a group of two-thirds... equals one and one-fourth.

How many sets of two-thirds can you make with five-sixths?

Fraction Computation		
Division		
Problem	Representation	
6÷3		
$3 \div \frac{1}{2}$		
$\frac{1}{2}$ ÷ 2		
$\frac{4}{4} \div \frac{1}{2}$		
$\frac{2}{4} \div \frac{1}{2}$		
$\frac{3}{4} \div \frac{1}{2}$		
$\frac{7}{8} \div \frac{1}{4}$		
$\frac{5}{6} \div \frac{2}{3}$		
$\frac{1}{2} \div \frac{3}{8}$		
$\frac{9}{6} \div \frac{1}{3}$		

(1)Teach a multiplication problem with fractions.
(2)Teach a division problem with fractions.
(3)Discuss how you will emphasize multiplication and division of fractions. Model fractions with three models

Compare and order fractions

Add and subtract fractions

Multiply and divide fractions

MODELING

Step-by-step explanation

Cutiles

Guided practice

PRACTICE

Independent practice

Planned examples

SUPPORTS Ask high-level and low-level questions

Eliciting frequent responses

Providing affirmative and corrective feedback

What are your strengths with modeling fractions? What are your opportunities for growth?

Use formal math language

Use terms precisely

What are five essential math vocabulary for fractions?

What are the representations you'll use to teach fractions?

Explicit Instruction		
Explicit Instruc	Ction Step-by-Step Explanation	

1. Choose a math problem.

2. Write a step-by-step explanation. Focus on the language of math in your explanation. Consider the representations you will use.

Explicit Instruction		
Problem	Practice Opportunities	
	High-Level Questions	
	Low-Level Questions	
	Affirmative Feedback	
	Corrective Feedback	

- Describe the practice opportunities you will use.
- 2. Write 3 high-level questions.
- 3. Write 3 low-level questions.
- 4. Write 2 ways to provide affirmative feedback.
- 5. Write 2 ways to provide corrective feedback.

November 2022 Operations

- Addition and subtraction concepts
- Multiplication and division concepts
- Computation with addition, subtraction, multiplication, and division

March 2023 Word-Problem Solving

- Attack strategies
- Schemas

January 2023 Fractions

- Length, area, and set models
- Comparison of fractions
- Ordering of fractions
- Computation of fractions

April 2023 Geometry

- Understanding twodimensional shapes
- Lines and angles
- Understanding threedimensional shapes

Sarah R. Powell, Ph.D.

Associate Professor The University of Texas at Austin

srpowell@utexas.edu

