Sample Test 1 - Solutions
1. Find the unit tangent and unit normal vector for the following vector functions

(i) F(t) = <2t >

(ii) 7(t) = <e' cost, e sint >
Sol(i)
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2. Prove the limits either exist or do not exist. In the former case use the squeeze

theorem.
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Since following different paths lead to different limits, the limit DNE.
2 (ii)
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Along y =0, lim ;= lim —=-1
(xy)=>00) Y +x°  (xy)->(00) X
43
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Since following different paths lead to different limits, the limit DNE.

2 (iii) From the inequalities
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we have

which gives
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2 (iv) From the inequalities

O§x2§x2+y2
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we have
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by the squeeze theorem
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3. Find the equation of the tangent plane to the given surface at the specified point
X’y +xz+yz2 =3, P(1,2,-1)

Sol: If we define F = x?y + xz + yz*> — 3 then F, = 2xy +z, F, = x* + z% and
F, = x + 2yz. Evaluating these at the point P gives F; = 3, F, = 2 and F, = —3.
The equation of the tangent plane is thus 3(x — 1) +2(y —2) —3(z+1) =0

4.1fz = x2 — yz, calculate the following chain rules:
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(i) T if x=cost, and y =sint
.\ 0Z 0z . cos s sins
(i7) 3 and P if X =—= and y=—

Sol: We will need the following derivatives
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5. Find the directional derivative of z = x? + 3xy + y? at (1,1) in the direction of
< —3,4 >. In what direction should you move for maximum increase?

Sol: The gradient is given by Vz =< 2x + 3y,3x + 2y > and at the point (1,1) it
becomes Vz =< 5,5 >. The direction derivative is then given by
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The directional you should travel for maximum increase is in the direction of the

gradient < 5,5 > .
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