Sample Test 1 - Solutions

1. Find the unit tangent and unit normal vector for the following vector functions

(*i*)
$$\vec{r}(t) = \langle 2t, t^2 \rangle$$

(ii)
$$\vec{r}(t) = \langle e^t \cos t, e^t \sin t \rangle$$

Sol(i)

$$\overrightarrow{r}' = \left\langle 2t, t^2 \right\rangle$$

$$\overrightarrow{r}' = \left\langle 2, 2t \right\rangle$$

$$\|\overrightarrow{r}'\| = 2\sqrt{t^2 + 1}.$$

so

$$\overrightarrow{T} = \frac{\overrightarrow{r'}}{\|\overrightarrow{r'}\|} = \left\langle \frac{1}{\sqrt{t^2 + 1}}, \frac{t}{\sqrt{t^2 + 1}} \right\rangle$$

Further

$$\overrightarrow{T}' = \left\langle \frac{-t}{(t^2+1)^{3/2}}, \frac{1}{(t^2+1)^{3/2}} \right\rangle$$

$$\|\overrightarrow{T}'\| = \frac{1}{t^2+1}.$$

so

$$\overrightarrow{N} = \frac{\overrightarrow{T}'}{\|\overrightarrow{T}'\|} = \left\langle \frac{-t}{\sqrt{t^2 + 1}}, \frac{1}{\sqrt{t^2 + 1}} \right\rangle$$

Sol(ii)

$$\overrightarrow{r} = \langle e^t \cos t, e^t \sin t \rangle$$

$$\overrightarrow{r'} = \langle e^t \cos t - e^t \sin t, e^t \sin t + e^t \cos t \rangle$$

$$\|\overrightarrow{r'}\| = \sqrt{(e^t \cos t - e^t \sin t)^2 + (e^t \sin t + e^t \cos t)^2} = \sqrt{2} e^t.$$

so

$$\overrightarrow{T} = \frac{\overrightarrow{r'}}{\|\overrightarrow{r'}\|} = \left\langle \frac{\cos t - \sin t}{\sqrt{2}}, \frac{\sin t + \cos t}{\sqrt{2}} \right\rangle$$

Further

$$\overrightarrow{T}' = \left\langle \frac{-\sin t - \cos t}{\sqrt{2}}, \frac{\cos t - \sin t}{\sqrt{2}} \right\rangle.$$

since

$$\|\overrightarrow{T}'\| = \sqrt{\left(\frac{-\sin t - \cos t}{\sqrt{2}}\right)^2 + \left(\frac{\cos t - \sin t}{\sqrt{2}}\right)^2} = 1,$$

then

$$\overrightarrow{N} = \frac{\overrightarrow{T}'}{\|\overrightarrow{T}'\|} = \left\langle \frac{-\sin t - \cos t}{\sqrt{2}}, \frac{\cos t - \sin t}{\sqrt{2}} \right\rangle.$$

2. Prove the limits either exist or do not exist. In the former case use the squeeze theorem.

$$\begin{array}{ll} (i) & \lim_{(x,y)->(0,0)} \frac{x^2+xy+y^2}{x^2+y^2} & (ii) & \lim_{(x,y)->(0,0)} \frac{y-x^3}{y+x^3} \\ (iii) & \lim_{(x,y)->(0,0)} \frac{x^3+y^3}{x^2+y^2} & (iv) & \lim_{(x,y)->(0,0)} \frac{x^4+2y^4}{x^2+y^2} \end{array}$$

2 (i)

Along
$$y = 0$$
, $\lim_{(x,y) \to (0,0)} \frac{x^2 + xy + y^2}{x^2 + y^2} = \lim_{(x,y) \to (0,0)} \frac{x^2}{x^2} = 1$
Along $y = x$, $\lim_{(x,y) \to (0,0)} \frac{x^2 + xy + y^2}{x^2 + y^2} = \lim_{(x,y) \to (0,0)} \frac{3x^2}{2x^2} = \frac{3}{2}$.

Since following different paths lead to different limits, the limit DNE. 2 (ii)

Along
$$y = 0$$
, $\lim_{(x,y) \to (0,0)} \frac{y - x^3}{y + x^3} = \lim_{(x,y) \to (0,0)} \frac{-x^3}{x^3} = -1$
Along $x = 0$, $\lim_{(x,y) \to (0,0)} \frac{y - x^3}{y + x^3} = \lim_{(x,y) \to (0,0)} \frac{y}{y} = 1$.

Since following different paths lead to different limits, the limit DNE.

2 (iii) From the inequalities

$$-\sqrt{x^2 + y^2} \le x \le \sqrt{x^2 + y^2} -\sqrt{x^2 + y^2} \le y \le \sqrt{x^2 + y^2}$$

we have

$$-\left(x^2 + y^2\right)^{3/2} \le x^3 \le \left(x^2 + y^2\right)^{3/2}$$
$$-\left(x^2 + y^2\right)^{3/2} \le y^3 \le \left(x^2 + y^2\right)^{3/2}$$

which gives

$$-2\left(x^2+y^2\right)^{3/2} \le x^3+y^3 \le 2\left(x^2+y^2\right)^{3/2}.$$

Thus,

$$-2\left(x^2+y^2\right)^{1/2} \le \frac{x^3+y^3}{x^2+y^2} \le 2\left(x^2+y^2\right)^{1/2}$$

and

$$-2\lim_{(x,y)->(0,0)} \left(x^2+y^2\right)^{1/2} \le \lim_{(x,y)->(0,0)} \frac{x^3+y^3}{x^2+y^2} \le 2\lim_{(x,y)->(0,0)} \left(x^2+y^2\right)^{1/2}.$$

Since

$$\lim_{(x,y) \to (0,0)} (x^2 + y^2)^{1/2} = 0$$

by the squeeze theorem

$$\lim_{(x,y)->(0,0)} \frac{x^3+y^3}{x^2+y^2} = 0.$$

2 (iv) From the inequalities

$$0 \le x^2 \le x^2 + y^2$$
$$0 < y^2 < x^2 + y^2$$

we have

$$0 \le x^4 \le \left(x^2 + y^2\right)^2$$
$$0 \le y^4 \le \left(x^2 + y^2\right)^2$$

which gives

$$0 \le x^4 + 2y^4 \le 3\left(x^2 + y^2\right)^2.$$

Thus,

$$0 \le \frac{x^4 + 2y^4}{x^2 + y^2} \le 3\left(x^2 + y^2\right)$$

and

$$0 \le \lim_{(x,y) \to (0,0)} \frac{x^4 + 2y^4}{x^2 + y^2} \le 3 \lim_{(x,y) \to (0,0)} x^2 + y^2.$$

Since

$$\lim_{(x,y)->(0,0)} x^2 + y^2 = 0$$

by the squeeze theorem

$$\lim_{(x,y)->(0,0)} \frac{x^4 + 2y^4}{x^2 + y^2} = 0.$$

3. Find the equation of the tangent plane to the given surface at the specified point

$$x^2y + xz + yz^2 = 3$$
, $P(1, 2, -1)$

Sol: If we define $F = x^2y + xz + yz^2 - 3$ then $F_x = 2xy + z$, $F_y = x^2 + z^2$ and $F_z = x + 2yz$. Evaluating these at the point P gives $F_x = 3$, $F_y = 2$ and $F_z = -3$. The equation of the tangent plane is thus 3(x - 1) + 2(y - 2) - 3(z + 1) = 0

4. If $z = x^2 - y^2$, calculate the following chain rules:

(i)
$$\frac{dz}{dt}$$
 if $x = \cos t$, and $y = \sin t$

(ii)
$$\frac{\partial z}{\partial r}$$
 and $\frac{\partial z}{\partial s}$ if $x = \frac{\cos s}{r}$, and $y = \frac{\sin s}{r}$

Sol: We will need the following derivatives

$$\frac{\partial z}{\partial x} = 2x, \quad \frac{\partial z}{\partial y} = -2y, \quad \frac{dx}{dt} = -\sin t, \quad \frac{dx}{dt} = \cos t,$$
$$\frac{\partial x}{\partial r} = -\frac{\cos s}{r^2}, \quad \frac{\partial x}{\partial s} = -\frac{\sin s}{r}, \quad \frac{\partial y}{\partial r} = -\frac{\sin s}{r^2}, \quad \frac{\partial y}{\partial s} = \frac{\cos s}{r}.$$

(i)
$$\frac{dz}{dt} = \frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial y}\frac{dy}{dt} = 2x(-\sin t) - 2y(\cos t) = -4\sin t\cos t.$$

$$(ii) \quad \frac{\partial z}{\partial r} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial r} = 2x \left(-\frac{\cos s}{r^2} \right) - 2y \left(-\frac{\sin s}{r^2} \right) = 2 \frac{\sin^2 s - \cos^2 s}{r^3}$$
$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s} = 2x \left(-\frac{\sin s}{r} \right) - 2y \left(\frac{\cos s}{r} \right) = \frac{4 \sin s \cos s}{r^2}$$

5. Find the directional derivative of $z = x^2 + 3xy + y^2$ at (1,1) in the direction of < -3, 4>. In what direction should you move for maximum increase?

Sol: The gradient is given by $\nabla z = \langle 2x + 3y, 3x + 2y \rangle$ and at the point (1,1) it becomes $\nabla z = \langle 5, 5 \rangle$. The direction derivative is then given by

$$\nabla z \cdot \frac{\vec{u}}{\|\vec{u}\|} = <5, 5 > \frac{<-3, 4>}{5} = \frac{-15+20}{5} = 1$$

The directional you should travel for maximum increase is in the direction of the gradient < 5, 5 >.

4

- 6. Sketch and name the following surface
 - (i) $-x^2 + y^2 + z^2 = 1$ Hyperboloid of 1 sheet

(ii) $-x^2 + y^2 - z^2 = 1$ Hyperbolid of 2 sheets

(iii) $x^2 + y^2 - z = 0$ Paraboloid

(iv) $-y^2 + z = 0$ Parabolic cylinder

