

OBOGS Chemical Challenge Test Stand Development UPDATE

05 August 2023

Presented to: 2023 OSCG Annual Meeting

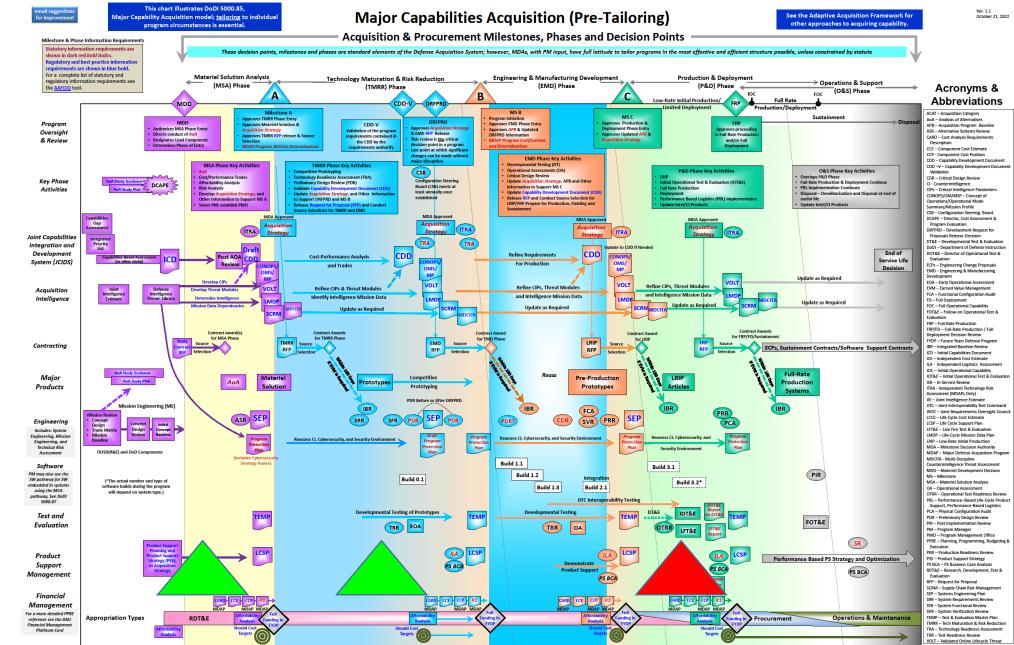
Presented by: Dr. Leah R. Eller, NAWCAD HSE ARI Senior Chemist

NAVAIR

NAVAIR Public Release 2023-522 Distribution Statement A: "Approved for public release. Distribution is unlimited."

- The opinions expressed in this brief are those of the presenter and do not represent an official position of the US Government
- I have no financial relationships to disclose

Purpose of this brief


- Provide stakeholders and other interested parties with the current state of this work effort
- Highlight technical accomplishments in the area of chemical challenge testing
- Provide the most current timeline for this work effort
- Discuss implications for future OBOGS testing against MIL-STD-3050 requirements/recommendations regarding chemical protectiveness of oxygen equipment

NOTE: Use slide show to view this chart

Distribution A

NAVAIR

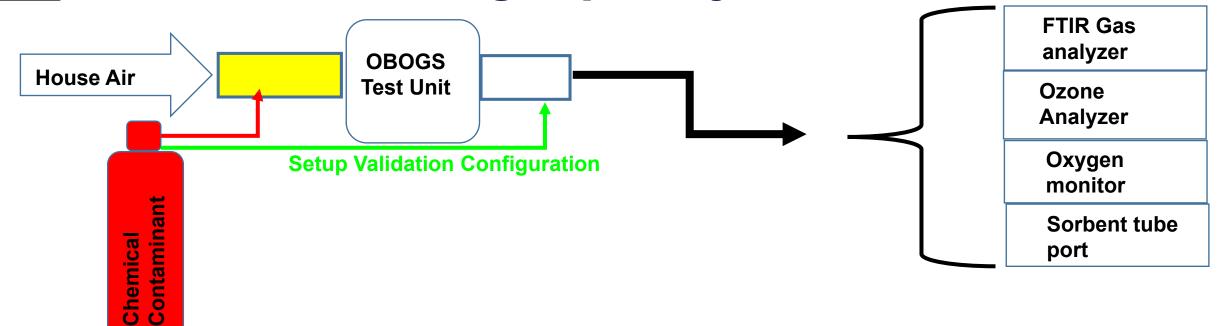
NAVAIR Public Release 2023-522 Distribution Statement A: "Approved for public release. Distribution is unlimited."

4

Target Chemicals for Test Stand

MIL-STD-3050A Table IV	INLET AIR CONTAMINANT	OUTLET AIR CONTAMINANT	Room Temp. State	Representative compound(s)	Comments
Acrolein	0.1 ppmv	0.05 ppmv	liquid	acetone, acrolein	
Aldehydes	1 ppmv	0.2 ppmv	liquid or gas	acetalydehyde, propanal	
Aromatics	10 ppmv	0.1 ppmv	liquid	toluene, xylenes	
Carbon Dioxide	5000 ppmv	500 ppmv	gas	carbon dioxide	
Carbon Monoxide	50 ppmv/250 ppmv (Navy)	10 ppmv	gas	carbon monoxide	
Cobalt	0.1 mg/m^3	0.025 mg/m ³	solid	N/A	
Ethanol	1000 ppmv	500 ppmv	liquid	ethanol	
Fluorine (as HF)	0.1 ppmv	0.05 ppmv	liquid	HF	recommend separate filter testing
Halogenated Solvents	2 ppmv	0.2 ppmv	liquid or gas	dichloromethane, trichloroethylene	
Hydrogen Peroxide	1 ppmv	0.5 ppmv	liquid solution	hydrogen peroxide	material incompatible with zeolites
Methyl Alcohol	200 ppmv	100 ppmv	liquid	methyl alcohol	
Methyl Bromide	20 ppmv	1 ppmv	gas	methyl bromide	
Nickel	0.5 mg/m^3	0.125 mg/m ³	solid	N/A	
Nitrogen Oxides	5 ppmv	0.1 ppmv	gas	nitrogen dioxide	
Oil Breakdown Products	1 ppmv	0.1 ppmv	particles	N/A	
Oil and Particulate Matter	2 mg/m ³	0.2 mg/m^3	particles	N/A	
Ozone	0.1 ppmv	0.05 ppmv	gas	ozone	
Sub-micron particles	0.5 mg/m^3	0.05 mg/m ³	particles	N/A	
Total hydrocarbons	250 ppmv	25 ppmv	liquid or gas	n-heptane, n-octane	
Unsaturated hydrocarbons					
(alkenes, alkynes)	2 ppmv		liquid or gas	ethylene, propyne	
Vapor Phase Water	≤ 95% non-condensing	-4 ^o F dew point	liquid	N/A	

NAVAIR



Challenges to Address

- Low target concentrations
 - Difficult to hold consistent vapor concentration
 - Signal-to-noise ratios in detection equipment
- Low vapor pressures in some target chemicals
 - COTS vapor generation insufficient
 - Maintain vapors at room temperature to avoid condensation during testing

- High oxygen concentrations can reduce sensitivity of industrial gas analyzers
 - Raises the LOD during testing with running OBOGS
- Pressure pulses from running OBOGS
 - Less stable baselines
 - Reduced signal-to-noise ratio

Test Rig Capability Overview

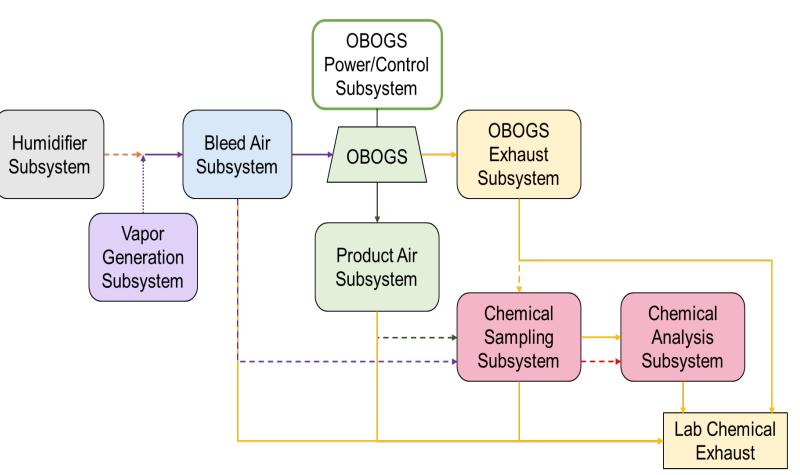
- High-flow vapor generation system
- Low-flow vapor generation system
- Ozone generation system
- Gas cylinder dilution system

- Fourier-Transform Infrared Spectrometer (FTIR) detector/analyzer
- Ozone analyzer
- Sorbent tube port

NAVAIR

Theoretical Capability of FTIR vs MILSTD3050A

Chemical	Wavelength	Absorption	MIL-STD Max Outlet	LoD from	Factor]
	(cm^{-1})	cross section	concentration (ppmv)	averaging 100	above	
		(cm ² /molecule)		scans (ppmv)	MILSTD	Fro
Acrolein	1730	9.33E-19	0.05	0.044	1.1	
Carbon Dioxide	2361	1.48E-17	500	0.003	181000	prii
Carbon Monoxide	2173	2.04E-18	10	0.020	500	spe
Ethanol	1066	3.03E-19	500	0.135	3711	rea
Hydrogen Peroxide	1250	3.74E-19 [13]	0.5	0.109	4.6	MIL
Methanol	1033	1.05E-18	100	0.039	2568	ofi
Methyl Bromide	1450	4.57E-19	1	0.089	11	
Ozone	N/A	N/A	N/A	N/A	N/A	req
Acetaldehyde	1761	4.56E-19	0.2	0.089	2.2	cor
Propanal	1754	4.76E-19	0.2	0.086	2.3]
Toluene	829	9.25E-19	0.1	0.044	2.3	
m-Xylene	769	7.18E-19	0.1	0.057	1.8	
Dichloromethane	750	7.76E-19	0.2	0.053	3.8	
Trichloroethylene	849	8.19E-19	0.2	0.050	4.0]
Nitrogen Dioxide	1603	2.63E-18	0.1	0.016	6.4	1
Nitric Oxide	1900	6.47E-19	0.1	0.063	1.6	1
n-heptane	2936	1.02E-18	25	0.040	623.7	1
n-Octane	2933	1.33E-18	25	0.031	813.0]
Ethylene	949	1.88E-18	0.2	0.022	9.2]
Propyne	635	1.53E-18	0.2	0.027	7.5	


From first principles, FTIR spectroscopy can reasonably detect MILSTD chemicals of interest at required concentrations

Develop new capability to generate MIL-STD-3050 chemical vapors at required pressures, flow rates, and controlled concentrations to introduce into an operating OBOGS.

- Verify vapor generation methods with multiple chemicals at a range of experimental conditions.
- Build a test stand that is capable of evaluating the chemical filtration performance of an OBOGS to ensure it meets MIL-STD-3050 requirements.

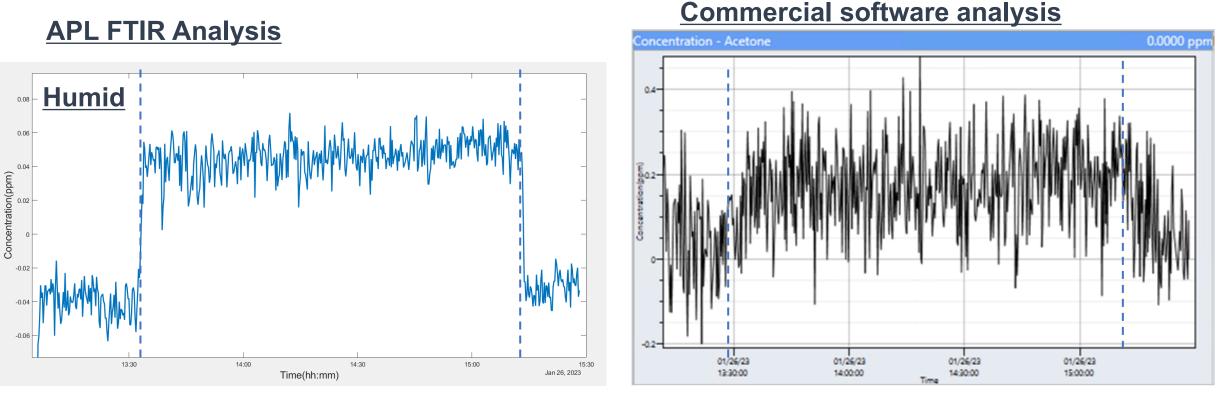
OBOGS Test Stand System Overview

Some RDTE Focus Chemicals

- Acrolein (Acetone proxy)
- Acetaldehyde
- Octane

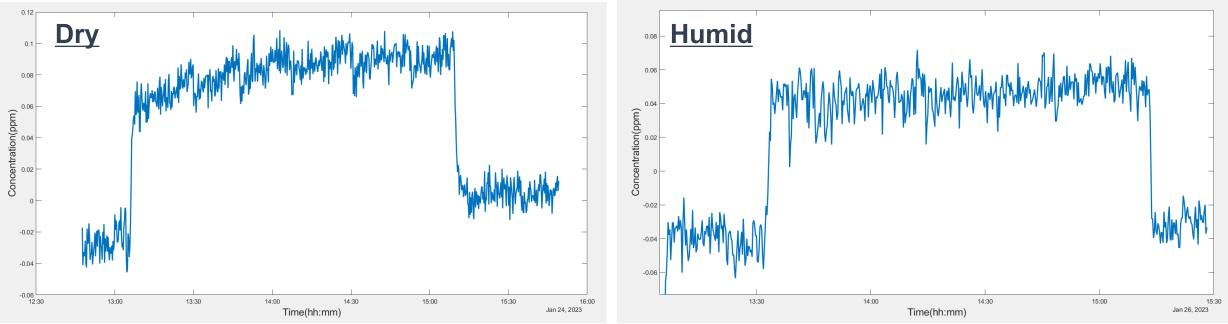
Ozone

- Lowest target outlet concentration; low detection factor above need based on absorption cross-section
- Fairly polar; test gas-dilution system
- Higher concentrations to test; testing high-flow vapor generator developed by JHU/APL
- Test ozone generator and detector

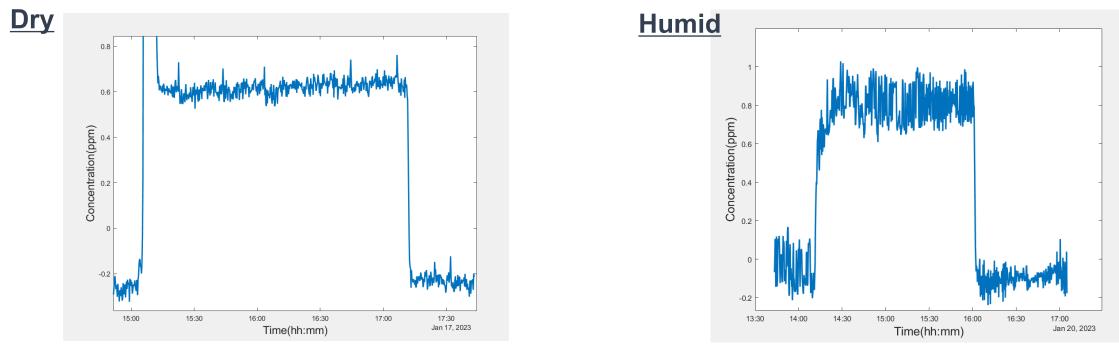

Acrolein vs Acetone in RDTE Testing

Chemical			Dipole moment		Surface Tension			
classification	Chemical	Polarity	(d)	Density (g/mL)	(mN/m)	MW (g/mol)	Viscosity (mPa-s)	Boiling Point (1 atm)
Aromatics	Benzene	nonpolar	0	0.879	28.22 at 25 °C	78.11	0.604 at 25 °C	176.2 °F
Aromatics	Toluene	nonpolar	0.375	0.867	27.73 at 25 °C	92.14	0.560 at 25 °C	231.1 °F
Alcohols	Ethanol	polar	1.66	0.79	21.97 at 25 °C	46.07	1.074 at 25 °C	173.3 °F
Alcohols	Methyl Alcohol	polar	1.7	0.792	22.07 at 25 °C	32.04	0.544 at 25 °C	148.3 °F
Alkane	Decane	nonpolar	0.07	0.73	23.37 at 25 °C	142.28	0.838 at 25 °C	345.4 °F
Halogenated								
Solvents	Dichloroethene	polar	1.9	1.21	24 at 20 °C	96.94		118 to 140 °F
Organobromine	Methyl Bromide	polar	1.83	1.73	24.5 at 15 °C	94.94	0.397 at 0 °C	38.4 °F
Aldehyde	Acrolein	polar	3.11	0.838	24 at 20 °C	56.06	0.35 at 20 °C	126 °F
	Water	polar	1.8546	1	71.97 at 25 °C	18.015	0.8949 at 25 °C	212 °F
Carboxylate ester	Ethyl Acetate	polar	1.78	0.902	24 at 20 °C	88.11	0.423 at 25 °C	171 °F
Ketone	Acetone	polar	2.88	0.791	23.7 at 20 °C	58.08	0.32 at 20 °C	133 °F
Ether	Diethyl ether	nonpolar	1.15	0.714	17.06 at 20 °C	74.12	0.2448 at 20 °C	94.3 °F
Nitrile	Acetonitrile	polar	3.92	0.787	29.04 at 20 °C	41.05	0.35 at 20 °C	178.9 °F
Ketone	2-pentanone	nonpolar	2.7	0.809	25.09	86.13	0.473 at 25 °C	212 to 214 °F
Ketone	cyclohexanone	nonpolar	2.9	0.945	35.05 at 20 °C	98.14	2.2 at 25 °C	312.1 °F
Alcohols	Glycerol	polar	2.56	1.261	63.4 at 20°C	92.09	954 at 25 °C	554 °F

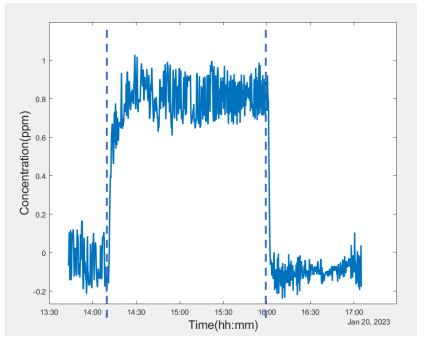
- Acrolein NIOSH TWA REL 0.1 ppm; 15 min REL 0.3 ppm; IDLH 2 ppm
- Acetone NIOSH TWA REL 250
 ppm; IDLH 2500 ppm

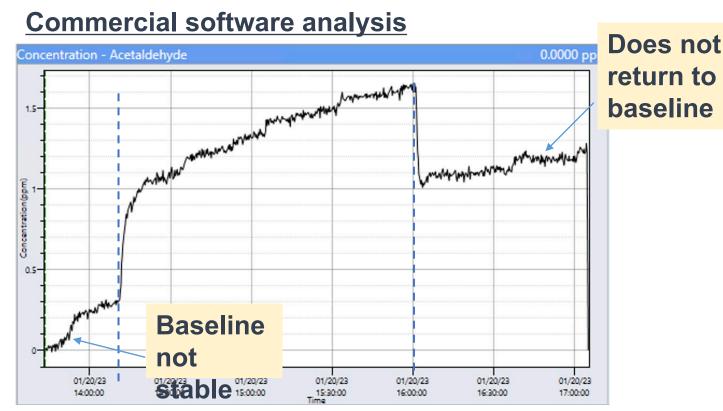

100 ppb acetone in humid conditions – APL FTIR analysis compared to commercial analysis

- Plots show analysis from same experimental data set using APL developed method (left) versus software (right) INJECTION LOCATION DOWNSTREAM OF RUNNING OBOGS
- Blue dashed lines indicate when chemical was introduced to bleed air and shut off.
- Obtaining much higher signal to noise using APL analysis compared to COTS software

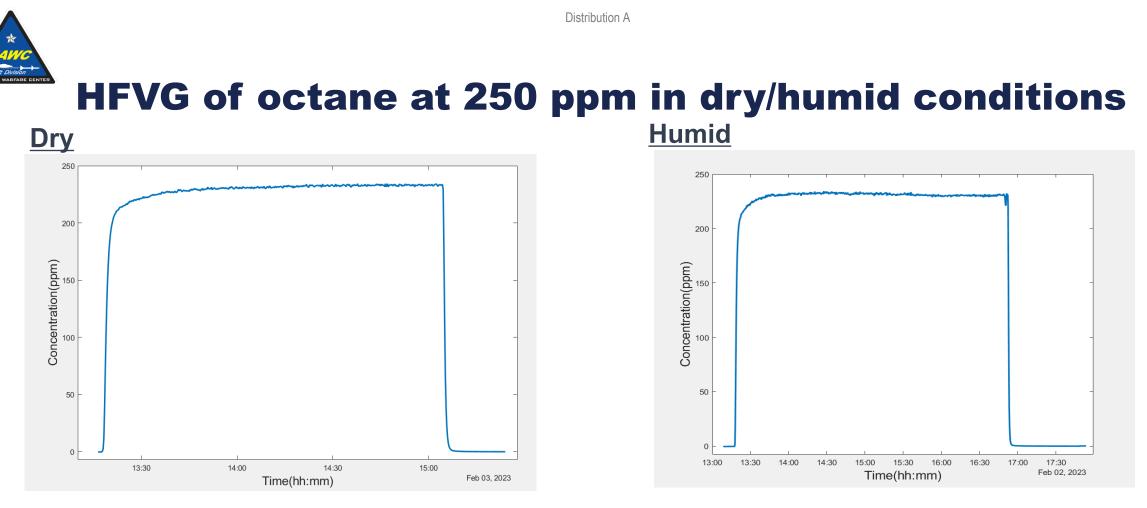

Acetone at 100 ppb in dry/humid conditions

- FTIR instrument and APL analysis able to detect 100 ppb of acetone in dry and humid bleed air
- There is a zero baseline offset for acetone that needs to be taken into consideration.
- After accounting for baseline and cross calibrating, concentrations generated are 113 and 99.7 ppb in dry and humid conditions, respectively.
- Note the standard deviation in the measurement for humid conditions was observed (strongest acetone IR features overlap with water vapor)


Acetaldehyde at 1 ppm in dry/humid conditions

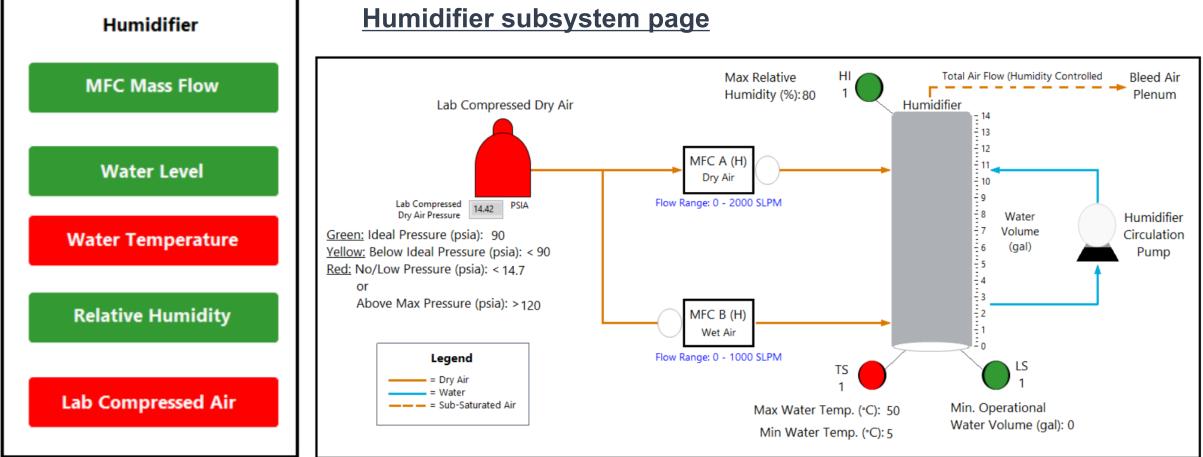


- There is a zero baseline offset (~0.1-0.25 ppm).
- After accounting for baseline and using calibration curve from previous collected data, concentrations generated are 1.03 ppm and 1.04 ppm in dry/humid conditions, respectively.
- Note there was a larger standard deviation in the measurement for humid conditions (strongest acetaldehyde IR features overlap with water vapor)
 NAVAIR Public Release 2023-522 Distribution Statement A: "Approved for public release. Distribution is unlimited."

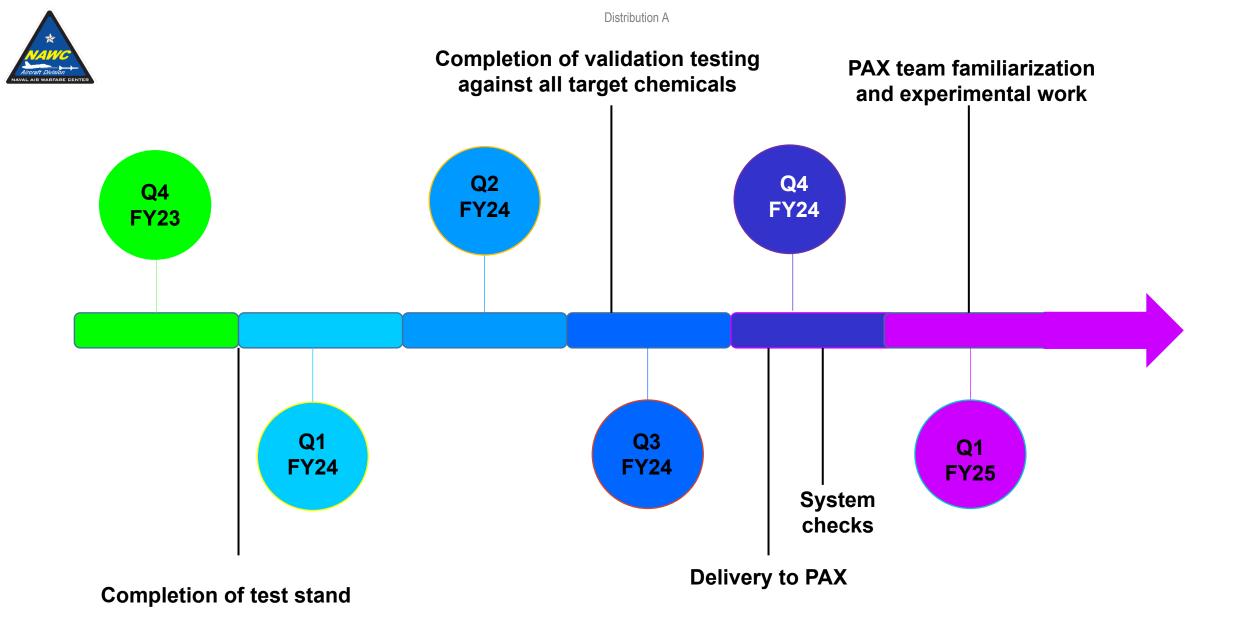

1 ppm acetaldehyde in humid conditions – APL FTIR analysis compared to commercial software analysis

APL FTIR Analysis

- Plots show analysis from same experimental data set using APL developed method (left) versus commercial software (right)
- Orange dashed lines indicate when chemical was introduced to bleed air and shut off.
- Commercial software real time analysis is not adequate for certain chemicals



- Irrespective of humidity, FTIR analysis showed concentration generated was reproducible (within 5 ppm between dry and humid conditions) and was within 8% of target concentration
 - FTIR analysis reading is ~232 ppm in both dry and humid conditions
- Humidity appeared to have little or no impact on vapor generator response time



A Look at the Control Software Design and Graphical User Interface (GUI)

Notifications Tab on GUI

NAVAIR

Bottom Line In Back (BLIB)

- All components of the test stand are in-hand and initially tested against a subset of target chemicals to address the hardest challenges
 - Low-flow vapor generator
 - High-flow vapor generator
 - Gas-dilution system
 - Ozone generator
 - FTIR gas analyzer
 - Ozone analyzer
- Final completed test stand assembled and functioning by end of fiscal year
 - Software interface
 - Power
 - Control software, etc.
- FY24 goals:
 - Complete all validation testing
 - Deliver test stand to PAX
- FY 25 and beyond: Utilize the test stand for acquisition testing, developmental testing, engineering investigations as needed

Our most sincere thanks to

- Asymmetric Operations Sector Applied Chemistry and Physics at the Johns Hopkins University Applied Physics Laboratory
- NAWCAD Life Support and Aeromedical Division
- Naval Undergraduate Flight Training Systems Program Office
- NAWCAD HSE Department
- OSCG 2023 attendees

Questions?

leah.r.eller.civ@us.navy.mil

NAVAIR Public Release 2023-522 Distribution Statement A: "Approved for public release. Distribution is unlimited."