
IJRECE VOL. 7 ISSUE 3 JULY.-SEPT 2019 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 164 | P a g e

A REVIEW ARTICLE 32 BIT RISC PROCESSOR DESIGN
Amit Yadav1, Deepak Sharma2

Lord Krishna College of Technology

Abstract - In this paper, we propose 32-bit pipelined RISC

processor using VLIW architectures. This processor is

especially used for both D.S.P applications and general

purpose applications. Reduced instruction is the main criteria

used to develop in this processor. With a single instruction

scheme, more executions can be done using S.I.M.E.

processor consists of the blocks namely program counter,

clock control unit, ALU, IDU and registers. Advantageous

architectural modifications have been made in the

incrementer circuit used in program counter and carry select

adder unit of the ALU in the RISC CPU core. In this paper,

we have extended the utility of the processor towards

convolution and correlation applications, which are the most

important digital signal processing applications.

Keywords - RISC, VLIW, SIME, Convolution, Correlation.

I. INTRODUCTION

A processor is something which processes the given task. It

is developed to make human task easy, and when it processes

micro things it is called as a microprocessor. It contains

basically two things. One is the CPU and second is the

memory .CPU stands for central processing unit. It controls

the whole processor; we can also call it a human brain. The

design of processor needs the designing of CPU and memory.

The memory can be static or random. Design of CPU can be

done in different ways but its fundamental operation remains

the same. CPU is designed on small scale and large scale

integration. Processors are designed with enhancements like

decreasing power consumption, increasing more pipeline

stages, increasing speed and minimizing the chip area. The

basic operation performed by a processor is fetching,

decoding and executing the given instruction. After that the

output will store in memory. For storing the results in

memory some mechanism is applied.

II. DESIGN RULES IN VLSI

The rules are made to check whether the design is correct or

not. After full verification of each rule the design goes to the

fabrication lab for fabrication. This process is called as

Electronic design Automation. These rules basically check

layout not the schematic. There are lambda based rules, Meta

rules and micro based rules. Amongst them most popular is

lambda based rules. These rules play an important role

because they are an interface between design engineers and

fabrication engineers. There are design rules checking

software. There are basic three rules for width, length and

masks. Some of the lambda rules are as follows-

• Well to well spacing should be 2 χ

• Well to poly spacing should be 2 χ

• Well to metal spacing should be 3 χ

• Poly-active minimum spacing should be 1 χ

• Poly overlap spacing should be 2 χ

Pipelining Processors:

[4]The pipelining is a kind of parallel processing used to

increase the speed of the processor. It can be either software

or hardware. It consists of some stages one after another.

With pipeling much of the time is saved from processing,

improves speed of processor a lot. We can divide the pipe into

several segments, where each of the segments is dependent

on the other. We can add more no of segments as per need

but taking care of pipeline hazards.

III. VHDL CODING BASIC

VHDL stands for VHSIC (very high speed integrated

circuits) hardware description language. It is used for

designing digital circuits. This language describes the

architectural, behavioral and physical characteristics of the

circuit. VHDL describe the components of the circuit and

their interconnections. There are some inbuilt functions in

this language which can be used at run time. We can design

different modules in this language using Xilinx software. We

can also simulate the design using logic sim simulator.

Features of Xilinx allow us to make the design more

effective. We can also make layout of the design. For a

processor design we can design ALU, CU, and Memory etc

in different modules then we can add them all and simulate

them to find the actual delay. There are three modelling ways

in this language-behavioral modelling, dataflow modelling

and structural modelling. The execution of any VHDL

program allows us to verify the design prior to fabrication.

The language is very user friendly. It is very flexible

approach for designing digital circuits. There are three steps

for designing a model i.e. Design entity, Entity declaration,

Architecture body.

RISC Processors:

Some characteristics of RISC are as follows

Reduction of complexity was the main research for

RISC.Complex instructions are slower as compared to

simpler instructions. Here register to register transfer takes

place. Risc with pipeling shows better results.

1. Same length instruction:

Each instruction is the same length so that it may be fetched

in a single operation.

IJRECE VOL. 7 ISSUE 3 JULY.-SEPT 2019 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 165 | P a g e

2. Machine-cycle instructions:

Most instructions complete in one machine cycle, which

allows the processor to regulate several instructions at the

same time. This pipelining is a key technique used to speed

up RISC machines.

3. Higher speed:

If simpler instructions are there then easy for processor to

process them and generating output. Hence speed will

increase.

4 Less no of Transistors:

Obviously the complexity has reduced intern no of transistors

also reduce, And therefore power will be come.

IV. RISC PROCESSORS

Some characteristics of RISC are as follows

Reduction of complexity was the main research for RISC.

Complex instructions are slower as compared to simpler

instructions. Here register to register transfer takes place.

RISC with pipeling shows better results.

1. Same length instruction:

Each instruction is the same length so that it may be fetched

in a single operation.

2. Machine-cycle instructions:

Most instructions complete in one machine cycle, which

allows the processor to regulate several instructions at the

same time. This pipelining is a key technique used to speed

up RISC machines.

3. Higher speed:

If simpler instructions are there then easy for processor to

process them and generating output. Hence speed will

increase.

4. Less no of Transistors:

Obviously the complexity has reduced intern no of transistors

also reduce, And therefore power will be come.

Advantages of RISC Processors:

 It improves the speed of the processor.

 It has simpler instruction set.

 It is user friendly.

 By combining pipelining we can obtain better

results.

 The instructions executes in single cycle.

 It has large no of general purpose registers.

 Instructions are of same size, regularity is

maintained.

 Dedicated load/store instructions move data into and

out of the general purpose registers.

Figure 1: An abstract view of the RISC processor

V. RELATED WORK

Ben Keller, Jaehwa Kwak (2017) This paper presents a

RISC-V system-on-chip (SoC) with integrated voltage

regulation, adaptive clocking, and power management

implemented in a 28 nm fully depleted siliconon-insulator

process. A fully integrated simultaneous-switching switched-

capacitor DC–DC converter supplies an application core

using a clock from a free-running adaptive clock generator,

achieving high system conversion efficiency (82%–89%) and

energy efficiency (41.8 double-precision GFLOPS/W) while

delivering up to 231 mW of power. A second core serves as

an integrated power-management unit that can measure

system state and actuate changes to core voltage and

frequency, allowing the implementation of a wide variety of

power management algorithms that can respond at sub

microsecond timescales while adding just 2.0% area

overhead. A voltage dithering program allows operation

across a wide continuous voltage range (0.45 V–1 V), while

an adaptive voltage scaling algorithm reduces the energy

consumption of a synthetic benchmark by 39.8% with

negligible performance penalty.

J.Poornima, G.V.Ganesh (2016) The development of

CMOS technology provides very high density and high

performance integrated circuits. The performance provided

Hardwired
control unit

Instruction
cache

Data
cache

Data path

Main Memory

RISC ARCHITECTURE

Instruction Data

IJRECE VOL. 7 ISSUE 3 JULY.-SEPT 2019 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 166 | P a g e

by the existing devices has created a never-ending greed for

increasingly better performing devices. This predicts the use

of a whole RISC processor as a basic device by the year 2020.

However, as the density of IC increases, the power

consumption becomes a major threatening issue along with

the complexity of the circuits. Hence, it becomes necessary

to implement less complex, low power processor designs.

Here in this RISC processor design we mainly concentrate on

program counter and ALU.Then this RISC processor is

implemented to D.S.P applications like convolution and

correlation. In order to employ the processor for signal

processing applications, we have integrated a general

multiplication in ALU. We can achieve the high speed, low

power and area efficient operations by reducing the stronger

operations such as multiplication, at the cost of increasing the

weaker operations such as addition. The most important thing

is not only there structure but the timing relations of input and

output, there are some requirements with hardware

description language then only we can appreciate the

language.

Canturk Isci(2016) Chip-level power and thermal

implications will continue to limiters. The gap between

average and peak power actually widens with increased levels

of core integration. As such, if per-core control of power

levels (modes) is possible, a global power manager should be

able to dynamically set the modes suitably. This would be

done in tune with the workload characteristics, in order to

always maintain a chip-level power that is below the

specified budget. Furthermore, this should be possible

without significant degradation of chip-level throughput

performance. We analyze and validate this concept in detail

in this paper. We assume a per-core DVFS (dynamic voltage

and frequency scaling) knob to be available to such a

conceptual global power manager. We evaluate several

different policies for global multi-core power management.

In this analysis, we consider various different objectives such

as prioritization and optimized throughput. Overall, our

results show that in the context of a workload comprised of

SPEC benchmark threads, our best architected policies can

come within 1% of the performance of an ideal oracle, while

meeting a given chip-level power budget. Furthermore, we

show that these global dynamic management policies

perform significantly better than static manage.

This paper presents a RISC-V system-on-chip (SoC) with

integrated voltage regulation, adaptive clocking, and power

management implemented in a 28 nm fully depleted silicon

on- insulator process. A fully integrated simultaneous-

switching switched-capacitor DC–DC converter supplies an

application core using a clock from a free-running adaptive

clock generator, achieving high system conversion efficiency

(82%–89%) and energy efficiency (41.8 double-precision

GFLOPS/W) while delivering up to 231 mW of power. A

second core serves as an integrated power-management unit

that can measure system state and actuate changes to core

voltage and frequency, allowing the implementation of a

wide variety of power management algorithms that can

respond at sub microsecond timescales while adding just

2.0% area overhead. A voltage dithering program allows

operation across a wide continuous voltage range (0.45 V–1

V), while an adaptive voltage scaling algorithm reduces the

energy consumption of a synthetic benchmark by 39.8% with

negligible performance penalty.

Ben Keller, Jaehwa Kwak (2017) VHDL is used to write

text models that describe a logic circuit. There is a simulation

program for test the logic design using simulation models to

represent the logic circuits that interface to the design. This

collection of simulation models is commonly called a test

bench. VHDL has filed input and output capabilities, and can

be used as a general-purpose language for text processing, but

files are more commonly used by a simulation test bench for

stimulus or verification data. In this case, it might be possible

to use VHDL to write a test bench to verify the functionality

of the design using files on the host computer to define

stimuli, to interact with the user, and to compare results with

those expected. Many designers leave this job to the

simulator. VHDL is a Dataflow language which all runs

sequentially, one instruction at a time. It is capable of

describing very complex behavior. For designing any digital

system VHDL is the best language. Pipeling is something we

come across day to day life. To design a CPU we need

instruction set, no of registers and their details, data path i.e.

data will from which source to which destination and the

control circuits for execution of instructions there can be two

types hardware control signals and software control signals.

Distributed computer is mostly used. We want to do more no

of tasks in less amount of time for that we require a new

concept i.e. pipelining which will help in reducing execution

time The most important thing is not only there structure but

the timing relations of input and output. There are some

requirements with hardware description language then only

we can appreciate the language. The four requirements are

abstraction, modularity, concurrency and hierarchy. VHDL

is used to write text models that describe a logic circuit. There

is a simulation program for test the logic design using

simulation models to represent the logic circuits that interface

to the design. This collection of simulation models is

commonly design and verification of digital circuits at higher

register-transfer level of abstraction. It is also used in the

verification of analog circuit and mixed-signal circuits, as

well as in the design of genetic circuits.

In the design implementation of 16 bit CPU the clock period

is highly reduced as called a test bench. VHDL has filed input

and output capabilities, and can be used as a general-purpose

language for text processing, but files are more commonly

used by a simulation test bench for stimulus or verification

data. In this case, it might be possible to use VHDL to write

a test bench to verify the functionality of the design using

files on the host computer to define stimuli, to interact with

the user, and to compare results with those expected. Many

designers leave this job to the simulator. VHDL is a Dataflow

language which all runs sequentially, one instruction at a

time. It is capable of describing very complex behavior. For

designing any digital system VHDL is the best language.

IJRECE VOL. 7 ISSUE 3 JULY.-SEPT 2019 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 167 | P a g e

Software Used

XILINX’S is truly integrated EDA software encompassing

IC designs from concept to completion, enabling chip

designers to design beyond their imagination. XILINX’S

integrates traditionally separated front-end and back-end chip

design into an integrated flow, accelerating the design cycle

and reduced design complexities. XILINX’S thus facilitates

to vary the parameters of MOSFETS etc so that our study

becomes easy.

Methodology

In mathematics, optimization is the selection of a best

element under some constraints from some set of available

solutions. Optimization problem consists of maximizing or

minimizing a real function by systematically choosing input

values from within an allowed set and computing the value

of the function. The generalization of optimization theory and

techniques to other formulations comprises a large area of

applied mathematics. More generally, optimization includes

finding "best available" values of some objective function

given a defined domain or a set of constraints. Types of

optimization techniques are discussed below.

VI. CLASSICAL OPTIMIZATION TECHNIQUES

The classical optimization techniques are useful in finding

the optimum solution or unconstrained maxima or minima of

continuous and differentiable functions. These are analytical

methods and make use of differential calculus in locating the

optimum solution. The classical methods have limited scope

in practical applications as some of them involve objective

functions which are not continuous and/or differentiable. Yet,

the study of these classical techniques of optimization form a

basis for developing most of the numerical techniques that

have evolved into advanced techniques more suitable for

today's practical problems.

PARAMETERS OF GENETIC ALGORITHMS

A number of parameters control the precise operation of the

genetic algorithm. They are:

1. Crossover probability: It is the measure of how often

crossover will be performed. If there is no crossover,

offspring are exact copies of parents. If there is

crossover, offspring are made from parts of both parent's

chromosome. If crossover probability is 100%, then all

offspring are made by crossover. If it is 0%, whole new

generation is made from exact copies of chromosomes

from old population. Crossover is made in hope that new

chromosomes will contain good parts of old

chromosomes and therefore the new chromosomes will

be better.

2. Mutation probability: It is the measure of how often parts

of chromosome will be mutated. If there is no mutation,

offspring are generated immediately after crossover

without any change. If mutation is performed, one or

more parts of a chromosome are changed. If mutation

probability is 100%, whole chromosome is changed, if it

is 0%, nothing is changed. Mutation generally prevents

the genetic algorithm from falling into local extremes

and helps in recovering the lost genetic material.

Mutation should not occur very often, because then

genetic algorithms would act as to random search.

3. Population size: It is the number of how many

chromosomes are present in the population (representing

one generation). If there are too few chromosomes,

genetic algorithm has few options available for crossover

and only a small part of search space is explored. On the

counterpart, if there are too many chromosomes in one

population then the speed of genetic algorithm slows

down.

STEPS IN BASIC GENETIC ALGORITHM

1. [Start] Define the fitness function f(x) according to the

problem definition.

2. [Initialise] Generate random population of n

chromosomes – each chromosome being the potential

solution.

3. [Fitness] Evaluate the fitness f(x) of each chromosome x

in the population.

4. [New population]Repeat the following steps to create the

new population of chromosomes:

a. [Selection] Select some parent chromosomes

from a population according to their fitness

to form mating pool.

b. [Crossover] Mate the selected chromosomes

as per given crossover probability to form

new off-springs.

c. [Mutation]Mutate new chromosomes as per

given mutation probability.

d. [Replace] Replace the old population of

chromosomes with the new population.

5. [Convergence check] If the maximum number of

generations is reached, then stop, and return the best

solution. 6. [Loop] Go to step 3.

Basic flowchart of Genetic Algorithm

IJRECE VOL. 7 ISSUE 3 JULY.-SEPT 2019 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 168 | P a g e

VII. CONCLUSIONS

We will be designing the arithmetic unit of the RISC

processor using pipelining approach. In the above reviewed

papers of the MIPS (Multiprocessor Interlocked processing

system) architecture is used for the fixed arithmetic values

which will cause the error for the floating numbers. By the

use of the floating point unit in the CPU architecture the error

will not happen. By using the R-type, I-type, J-type and I/O

type of instruction sets the delay can be minimized, power

consumption is optimized. As the delay is decreased the

speed of the processor is undoubtedly increased. All the

modules will be designed in Xilinx using VHDL language.

VIII. REFERENCES

[1]. Sarika U. Kadam, S. D. Mali, “Design of Risc Processor using

VHDL”, 2016International Journal of Research Granthaalaya,

Vol.4 (Iss.6): June, 2016, DOI:10.5281/zenodo.56647.

[2]. Swati Joshi ,Sandhya Shinde,Amruta Nikam, “32-bit pipeline

Risc Processor in VHDL using Booth Algorithm

,”International Research Journal of Engineering and

Technology(IRJET), e-ISSN: 2395 -0056, Volume: 03 Issue:

04 | April-2016 ,pp.2484-2487.

[3]. Vishwas V.Balpande ,Vijendra P.Meshram,Ishan A.

Patilm,Sukeshini N.Tamgadem,Prashant Wanjari, “Design and

Implementation of RISC processor on FPGA,”Indian Journal

of Advanced Research in computer science and software

Engineering, ISSN:2277 128xVol 9(8),Volume 5,Issue

3,March 2015,pp.1161- 1165.

[4]. Soumya Murthy, Usha Verma, “FPGA based Implementation

of Power Optimization of 32 Bit RISC Core using DLX

Architecture,” 2015 International Conference on Computing

Communication Control and Automation, DOI

10.1109/ICCUBEA.2015.191

[5]. Mohit N. Topiwala, N. Saraswathi , “Implementation of a 32-

bit MIPS Based RISC Processor using Cadence,” 2014 IEEE

International Conference on Advanced Communication

Control and Computing Technologies (ICACCCT), ISBN No.

978-1-4799-3914-5/14/©2014 1EEE.

[6]. Mrs. Rupali S. Balpande,Mrs. Rashmi S. Keote, “Design of

FPGA based instruction Fetch and Decode Module of 32-bit

(MIPS) processor,” International Conference on

communication Systems and Network

Technologies,DOI:10.1109/CSNT.2011.91,2011.

[7]. Preetam Bhosle, Hari Krishna Moorthy, "FPGA

Implementation of low power pipelined 32-bit RISC

Processor", International Journal of Innovative Technology

and Exploring Engineering (IJITEE), August 2012.

[8]. Sharda P. Katke, G.P. Jain,"Design and Implementation of 5

Stages Pipelined Architecture in 32 Bit RISC Processor",

IJETAE, Volume 2. Issue 4 April 2012, pp. 340-346.

[9]. RISC, CISC and Floating point Wikipedia.

[10]. Kui YI, Yue-Hua DING, “32-bit RISC CPU Based on MIPS

Instruction Fetch Module Design”, 2009 International Joint

Conference on Artificial Intelligence, 978-0-7695-3615-6/09,

2009 IEEE.

[11]. Gautham P, Parthasarathy R. Karthi, Balasubramanian. "Low

Power Pipelined MIPS Processor Design," in the proceedings

of the 2009, l2th international symposium,2009 pp. 462-465.

[12]. Neenu Joseph. Sabarinath. S. "FPGA based Implementation of

High Performance Architectural level Low Power 32-bit RISC

Core", 2009 IEEE.

[13]. Harpreet Kaur, Nitika Gulati, "Pipelined MIPS With Improved

Datapath", IJERA, Vol. 3, Issue 1, January -February 2013,

pp.762-765.

[14]. Pejman Lotfi-Kamran. Ali-Asghar Salehpour.

AmirMohammad Rahmani. Ali Afzali-Kusha, and

Zainalabedin Navabi. "Dynamic Power Reduction of Stalls in

Pipelined Architecture Processors", International Journal Of

Design, Analysis And Tools For Circuits And Systems. Vol. I,

No. I, June 2011.

