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1. Introduction

In a pair of previous notes (“The Evolution of Darkness”, and “Klein Geometry”), | have tried to
explore fundamental issues associated with the MacDowell-Mansouri extension of the first-
order Einstein-Cartan formalism for general relativity. The MacDowell-Mansouri version is a
gauge theory which in many ways is more similar to QED, QCD, and the electroweak gauge
theory than the textbook Einstein-Hilbert version of general relativity. Its action is quadratic in
the field strength F , although its character is more like a topological E* B theory rather than
the more familiar E% B™structure of its particle-theory predecessors. In addition, spacetime
is constructed from a vierbein, which in turn is found in the “coset” pieces of the MacDowell-
Mansouri gauge potential A.

As discussed by Derek Wise, the mathematical underpinnings of this description originate with
the Erlangen program for geometry created by Felix Klein in the 19" century. So there is a rich
mathematical heritage underlying the formalism. Alas, | am not mathematical enough to exploit
this feature directly. In the aforementioned notes, | have instead tried to infer the physics by
study of simple examples. This note is devoted to an even simpler strategy, namely to
concentrate on the situation in two spacetime dimensions, and to explore simple examples in
even more detail than in the previous notes.

In the next section, | will summarize some basic results of the previous notes, but restricted to
two spacetime dimensions. In Section llI, | will introduce fermionic degrees of freedom into the
story. Finally, in Section IV, | will re-introduce two compactified space dimensions in order to
simulate in simple terms the six extra compactified space dimensions conjectured to underly
the huge coefficient of 10 '2%n front of the MacDowell-Mansouri action. Section V is devoted to
concluding comments.

I\. Review of the Basic Issues

The simplest system to study is deSitter space. In the Macdowell-Mansouri formalism, this
spacetime is “pure gauge”. No equations of motion or action principle is needed; only the
requirement F = 0. We will choose the FRW form of the gauge potential:
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The line element has the form
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It is a matter of convention to demand that the coefficient of dt= be positive; this allows the
insertion of the prefactor )72, in the second line. The metric associated with the internal gauge
group will in what follows be either Euclidean or Minkowski; our notation is as follows:

O | 0O O

Tw = 1| © 2 © =‘7AgAB
2\ 0 O =l

. Again it is a matter of convention to choose v), =+1 . Consequently the metric is Euclidean if
the parameter V]l=+1 and Minkowski if 17' =-1.

For the record, there is another variant of the spacetime line element defined above, which
seems to have simple, albeit enigmatic, properties. We will denote it by d& and call it the
MacDowell-Mansouri line element:
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Our definition of the field strength is as follows:
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The conditions that F vanish lead to the following equations:
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These condense down to a single simple equation:
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This leads in turn to four cases to consider:
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The Euclidean choice, V}z=+1 , is clean. The three cases for R, =-1 arein fact familiar from
deSitter cartographies in four dimensional spacetime. They correspond to closed, open, and flat
deSitter cosmologies, as indicated by the nomenclature adjacent to the equations.

With these results, we can also catalog the MacDowell-Mansouri line elements for the various
cases. There are eight options, and in all cases the line elements are simple~—especially so for
the “flat” Minkowskian option of primary interest in this note:
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Certainly there is some message in the above pattern. We will however not pause to

contemplate this curious simplicity further. But we may return to this subject later on. In the
material to follow, we specialize to the “flat” choice 17, = 72_ = 1.



The central focus in previous notes resides in the concept of “darkness”. It is defined as the

number of purported topological structures inhabiting a guven volume of space. For deSitter

space in 3 + 1 dimensions, the darkness densuty scales as H MPQ NA Here /\le the

Zeldovich scale of about 20 MeV or 10 ' ~cm. In this note featuring only one space

dimension, we will assume that the darkness density is again of order 1 per 10" cm and that

the Hubble scale H associated with the accelerated expansion of space to be of order 10*%m. (-(’or H )

In this reduced case, we define the darkness in terms of the Einstein-Cartan O(1,1) curvature R.
The Gauss-Bonnet Lagrangian is
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Again, we have assumed that the dimensionless coefficient C of the Gauss-Bonnet action is
large, so that the darkness density comes out according to the criteria we specified:
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Note that, in the original 4-dimensional case, the coefficient C could have been written in the

same form:
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Choosing this form would excise all direct reference to the Planck scale from the MacDowell-
Mansouri effective action.

A basic issue addressed in the previous note was the relation of spacetime, as defined via the
line element, to the input substrate variables---in this case x and t . We found that we could,
via gauge transformations, stop the FRW clock and separate pieces of spacetime from each
other. Furthermore, we were led to identify each unit of darkness with a “fundamental volume”
of space, scaled by the Zeldovich parameter. Each fundamental volume contained a
“fundamental energy” of order H. In an expanding deSitter universe, this value of the energy is
irreducible, since to measure it better would take a time long compared to the time the



universe doubles in size. In this simpler version, the fundamental volume is replaced by a
fundamental length or size, again of order the Zeldovich scale.

In the previous note, the disassembly of deSitter space led to isolated spacetime islands within
the substrate connected to each other by “rods”, which in turn were connected to each other
by “plates”. In a rod, the vierbein component along the axis of the rod vanished, while the
other two vierbein space components remained nonvanishing. In a plate, only the vierbein
component normal to the plate remained nonvanishing. In void regions outside spacetime
islands, rods, and plates, all components of the vierbein vanished.

In our simplified case, we only have spacetime islands, “ribbons”, and voids to deal with. In the
FRW geometry, the disassembly of deSitter space in terms of ribbons and voids is shown below.
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Finally, in the previous note we created a speculative description of inflation by exhibiting the
growth of darkness with time in terms of a genealogical tree. Two versions were presented
there. We do not reproduce the details here—only the tree structures for the two cases
(“Cartesian” and “Voronoi”) which were considered:
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However, in what follows we will only consider the “Cartesian” genealogy. But we should recall
that the motivation for the introduction of such an arcane description had to do with visualizing
the inflation process and especially its “reheating” termination. The basic idea is that, at the
onset of an inflationary episode, the fraction of substrate occupied by spacetime is very small.
At “reheating”, the fraction of substrate accupied by spacetime becomes of order unity.
Consequently, inflationary expansion thereafter becomes impossible.

n. Introduction of Fermions

The role of fermions in topology-rich field theory scenarios is typically very large. One sees this
very clearly in QCD, where the topological currents of pure Yang-Mills theory mix with the axial
vector currents of the quarks. It is therefore very natural to include them in the context of the
MacDowell-Mansouri description of gravity.

When we contract the gauge potentials into gamma matrices, they can for deSitter space be
written as follows:

v Ab =1
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Factors of two are troublesome in what follows. If in doubt write things out! The field strength
takes the form
f;w = Qb =DM+ [A, A ]
For the FRW description which we have used, the form of U(x,t) was worked out in previous

notes. The gamma matrices for our case are 2 x 2. The matrix U can be written as follows (We
often set H = 1 in what follows.):
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With this form, we easily find
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We connect with our original notation provided we define
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The gamma matrices consistent with these choices are all pure imaginary:
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The information in the matrix U can also be expressed in terms of spinor degrees of freedom.

Define
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These are known as parallel (or Killing?) spinors, and satisfy the equation
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This implies that they also satisfy the massless Dirac equation with gauge-invariant substitution
included. Therefore these parallel spinors are in a sense a kind of zero mode fermion. However,
they are not orthogonal, do not normalize nicely, and blow up as FRW time goes to infinity.
Much of this pathology is due to the fact that the matrix U is not unitary.

In any case, the properties of these spinors do not seem to match what can be expected from
the usual O(3,1) description. In that case, the description begins by writing down a Lagrangian—
something we did not need to do for the parallel spinors. It is ( for the case of 3 + 1 dimensional
;spacetimell)
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The equation of motion which follows from this is (watch for deadly minus signs and factors of
two!)
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This result of course resides in the literature, e.g. in arXiv 1101.3164.

For deSitter space, there is an exact solution in terms of Hankel functions. But it is not terribly
enlightening. For a zero-momentum spinor, the answer is easy:
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This solution is normalizable. The probability of finding the particle within a comoving volume
element is independent of time:
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Note that in one space dimension, the zero-momentum solution becomes
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Again this solution is normalizable. (This is why we bothered to exhibit the O(3,1)
generalization here.)

For nonzero comoving momenta, we can expect nontrivial complications, because in the distant
past the Dirac particle has high physical momentum, and is almost unaffected by the dark
energy. However as time passes the particle’s momentum and energy is redshifted, and it
eventually “crosses the horizon”. In phase space its Wigner function no longer looks like that of
a harmonic oscillator but evolves as a highly squeezed state. None of these features seem to be
present for the parallel spinors, suggesting that we must think of them in very different terms
from the spinors which describe “real particles”. In addition, real spin-1/2 particles all have
mass, and therefore have spheres of influence around them. The only possible exception
among the known quarks and leptons is the first-generation neutrino.

| am left with a real conundrum—is there any point in introducing and worrying about the
parallel spinors? At this point | simply do not know.




