

Solvent Cleaning Replacement for Breathing Air Oxygen Systems/Components

7/31/2019

Presented to:

OSCG

Presented by:

Kami Carter

43420 Materials Engineering Lead

Background

Navy investigation of **Solstice PF-HP NESDI Funded**

Implementation

Updating MIL-STD-1330. Consulting **NAVAIR** tech warrant holders

Phase out of HCFC 225 No production after 2015

NASA Solvent Investigation

As of 2015 requires **CNO** waiver

Phase out of

Freon 113

2

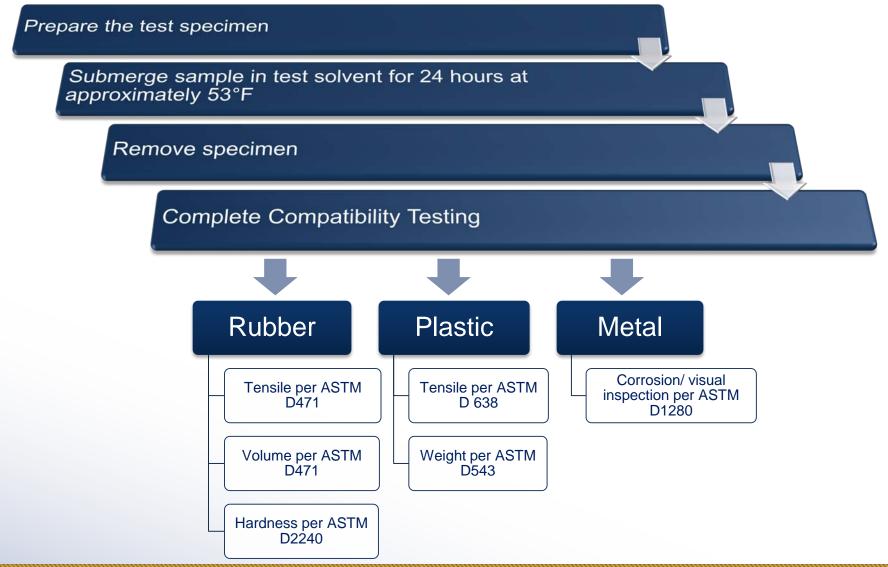
3

Cleaning Efficiency

Prepare Specimens IAW ASTM D2109

Contaminate Specimens Bake specimens at 130 °F for 2 hours

Cool in desiccator


Measure the mass of the specimens

Calculate PPM residue remaining

	Solstice PF-HP		Freon 113	
Contaminant	Average PPM	Pass/Fail	Average PPM	Pass/Fail
JP5	3.17	Pass	1.67	Pass
JP8	1.33	Pass	1.75	Pass
MIL-H-5606	0.05	Pass	2.00	Pass
MIL-PRF-17331	6.33	Fail	10.67	Fail
MIL-PRF-23699	1.33	Pass	1.17	Pass
MIL-PRF-27617 Type II	179.7	Fail	19.17	Fail
Skydrol LD-4	4.75	Pass	4.67	Pass
MIL-PRF-83282	0	Pass	0	Pass

Compatibility Test Protocol

Rubber Compatibility

Tensile and Elongation (% original)

Compatible ≥85

12Hr ≥75 and <85

1Hr ≥60 and <75

Incompatible <60

Hardness (change in units)

Compatible ≤±5

12Hr >±5 and ≤±7

1Hr >±7 and ≤±9

Incompatible >±9

Volume (% change)

Compatible ≥0 and ≤+10

12Hr ≥-5 and ≤0

1Hr ≥-10 and ≤-5 >+10 and ≤+15

Incompatible <-10 >+15

Adiprene		
Butadiene-nitrile MIL-P-5510	♥	
Butadiene-nitrile MIL-P-5516 Class A	8	
Butadiene-nitrile MIL-P-5516 Class B	Ø	S
Butadiene-nitrile MIL-P-25732	Ø	S
Butadiene-nitrile MIL-P-83461	8	8
Butadiene-styrene, Commercial	8	S
Ethylene Propylene MIL-G-22050 Duro 65	8	(
Ethylene Propylene MIL-G-22050 Duro 80	Ø	(
Ethylene Propylene AIA NAS 1613 Duro 70	0	•
Ethylene Propylene AIA NAS 1613 Duro 80	8	S
Ethylene Propylene MIL-R-83285 Duro 60	8	S
Hypalon-40 MIL-R-81828	Ø	(
Kel-F- Polychlorotrifluoroethylene	(A)	
Neoprene	(
Silicone, Commercial	Ø	•
Polysulfide	•	
Viton, MIL-R-83248 Duro 75	Ø	Ø
Viton, MIL-R-83248 Duro 90	Ø	

Incompatible

Not Tested 12 Hr Limit Compatible

Plastic Compatibility

Tensile (% original)

.

Compatible ≥95

-

12 Hr ≥90 and <95

-

1 hr ≥85 and <90

-

Incompatible <85

Weight (% change)

.

Compatible ≤1

-

12 Hr >1 and ≤2

-

1 Hr >2 and ≤3

-

Incompatible >3

MATERIALS

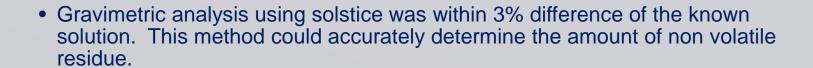
Derlin 150	8	0
PVC	8	8
Lexane	8	8
ABS	8	8
Ероху	8	^
Plexiglass	8	(
Torlon 4203	8	8
Polyurethane	Ø	0
<u>Surlyn</u> 9650	8	(
Teflon FEP	8	8
Nylon	^	8
Teflon TFE	8	0
Vespel-21	8	0
<u>Ultem</u> 1000	8	8
HDPE	8	(
Polypropylene	8	8
Flexible PVC**	8	0

Incompatible Not Tested 12 Hr Limit Compatible

Metal Compatibility

MATERIALS	c _o lstic _e	R-113
Aluminum, Alloy 5052-0	8	8
Aluminum, Alloy 5456	8	8
Aluminum, Alloy 6061-T6	8	8
Alloy Steel, Alloy HY-100	8	8
Alloy Steel, MIL-F-22606	Ō	Ō
Alloy Steel, Alloy 4130	8	8
Brazing Material, BCuP-5	0	0
Bronze; CDA922	8	8
Carbon Steel, ABS Grade EH36	<u> </u>	(A)
Copper, Alloy C12200-H80	8	8
Copper-Nickel Alloy C715-70/30	8	8
Inconel, Alloy N6600 CW	<u> </u>	8
Inconel N06625	8	<u> </u>
Naval Brass, Alloy 464	8	8
Nickel-Aluminum-Bronze Alloy C95800	0	0
Nickel-Aluminum-Bronze Alloy C63000-HR50	8	8
Nickel-Aluminum-Bronze Alloy C4200-HR50	8	8
Nickel-Copper MIL-T-1368	0	0
Nickel-Copper QQ-N-281	0	0
Nickel-Copper QQ-N-286	0	0
Stainless Steel, Alloy 304	<u> </u>	<u> </u>
Stainless Steel, Alloy 316 QQ-S-763	8	8
Titanium, Pure	8	<u> </u>
Titanium TI-6-AL-4V	8	8

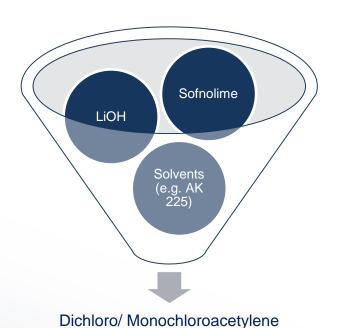
Nonvolatile Residue


Fourier Transform Spectrometry (FTIR)

• FTIR analysis was completed using 3 psi of gas in the testing cell at room temperature. FTIR was able to correctly identify target solstice peak. Peak wavelength is approximately 1150.

Surface Quality Monitor (SQM)

Gravimetric Analysis


Gauge Adsorbents

Preparation of Samples

Prepare supply cylinder of CO2 to 15 psig and 60 psig

Expose Solstice PF-HP at defined times

Evaluate using GC FID

Exposures	Detection
LiOH 15 psi 30 min of CO2/30 min solvent exposure	None Detected
LiOH 15 psi 30 min of CO2/60 min solvent exposure	None Detected
LiOH 15 psi 60 min of CO2/ 30 min solvent exposure	None Detected
LiOH 60 psi 30 min of CO2/30 min solvent exposure	None Detected
LiOH 60 psi 30 min of CO2/ 60 min solvent exposure	None Detected
LiOH 60 psi 60 min of CO2/30 min solvent exposure	None Detected
LiOH 60 psi 60 min of CO2/ 60 min solvent exposure	None Detected
Sofnolime 15 psi 30 min of CO2/30 min solvent exposure	None Detected
Sofnolime 15 psi 30 min of CO2/60 min solvent exposure	None Detected
Sofnolime 15 psi 60 min of CO2/30 min solvent exposure	None Detected
Sofnolime 60 psi 30 min of CO2/30 min solvent exposure	None Detected
Sofnolime 60 psi 30 min of CO2/60 min solvent exposure	None Detected
Sofnolime 60 psi 60 min of CO2/30 min solvent exposure	None Detected
Sofnolime 60 psi 60 min of CO2/60 min solvent exposure	None Detected

Honeywell

Precursor Compounds

Navy Laboratory Recommendations

NAMRU-Dayton

Awaiting final decision

NMCPHC

Risk Assessment Code (RAC) is set to Medium.

Approved for use in well ventilated

areas and with the use of gloves.

Recommended "RESTRICTED" use on submarines

NEDU

Recommended "RESTRICTED" use

Off- gas analysis was completed by NASA White Sands Test Facility. They performed off gas analysis IAW TP-WSTF-629. The result were less than reporting limits.

Summary

Multiple methods for cleaning oxygen components and systems.

6

Boiling Point is 66° F

Can be used on all metals tested.

5

2

Can not be used on most rubbers and plastics.

Currently updating MIL-STD-1330

4

3

Ability to use multiple process verification methods.

Conclusion

Solstice PF-HP will be the target solvent for implementation into the MIL-STD-1330

NSN for 10 lb cylinder is 6830-01-678-3176 (~\$600) Establishing NSN for 200 lb cylinder

Special Thanks to:

Alex Goloub and Sara Jane Neal
Verita Grannum
Graeme Nichols
Aliasger Ezzi

