

Optical Biopsy of Colon Polyps

2016 PNWGS State-of-the-Art in Gastrointestinal Endoscopy Course

February 27, 2016

Uri Ladabaum, M.D., M.S. Professor of Medicine Division of Gastroenterology and Hepatology Stanford University School of Medicine

Outline

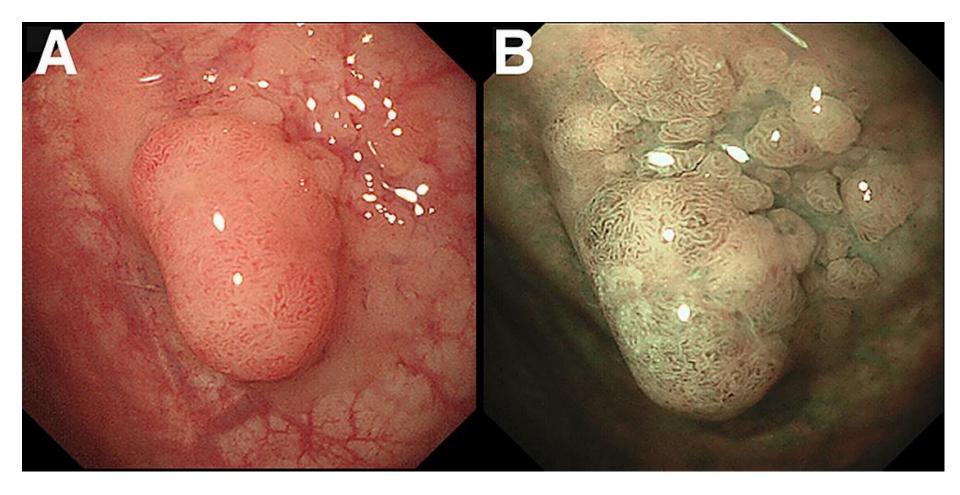
- What is optical biopsy?
- Available modalities
- Applications to colon polyps
- Ready for practice?

Outline

- What is optical biopsy?
- Available modalities
- Applications to colon polyps
- Ready for practice?

Optical biopsy

- Narrower definition: "histology through the endoscope"
 - Confocal laser endomicroscopy (CLE) approaches this the most
- Broader definition: "endoscopic features that correlate with histology"
 - e.g. "virtual chromoendoscopy" techniques


Optical biopsy of colon polyps

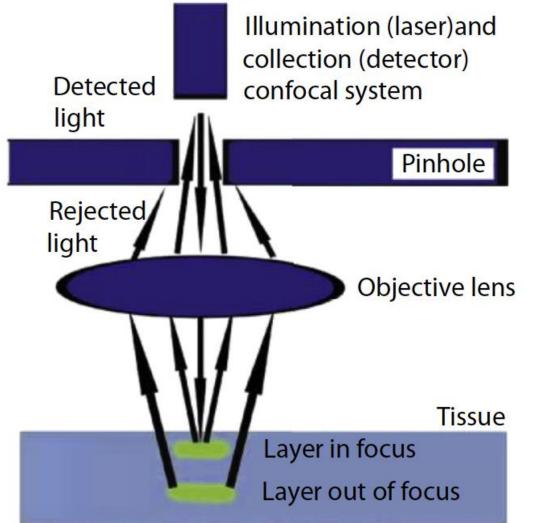
- What type of polyp is this?
 - Adenoma vs. hyperplasitc
 - Sessile serrated
- "High grade" features?
 - High grade dysplasia?
 - Malignancy?
- Extent of involvement / adequacy of resection

Lateral spread: HD white light vs. NBI

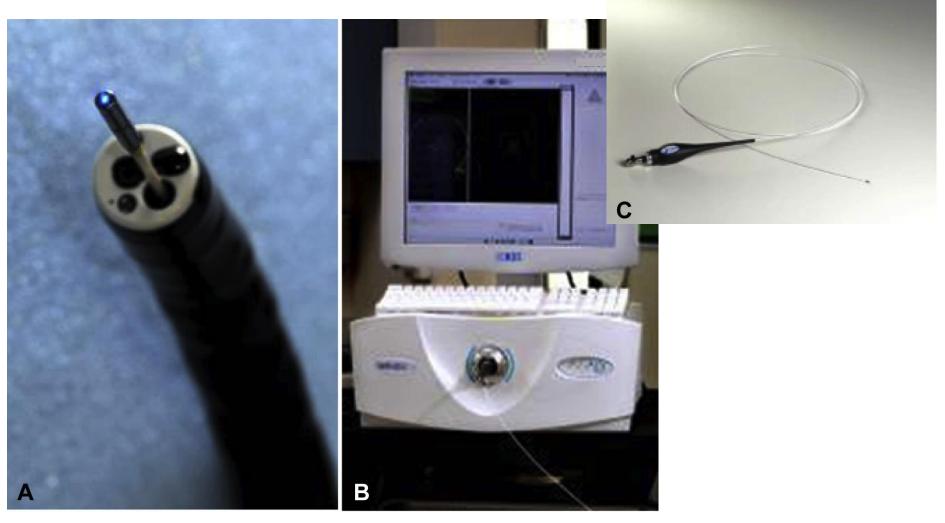
Subramanian and Ragunath, CGH 2014, 12:368

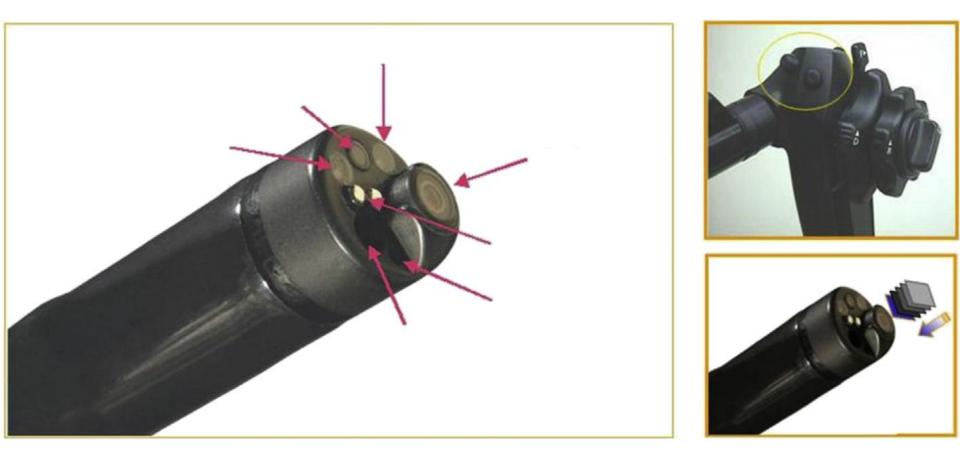
Outline

- What is optical biopsy?
- Available modalities
- Applications to colon polyps
- Ready for practice?

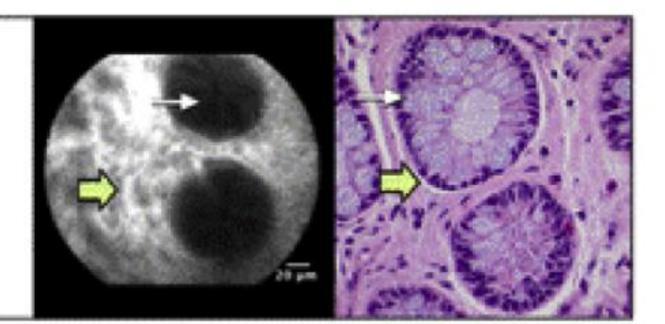


Optical biopsy

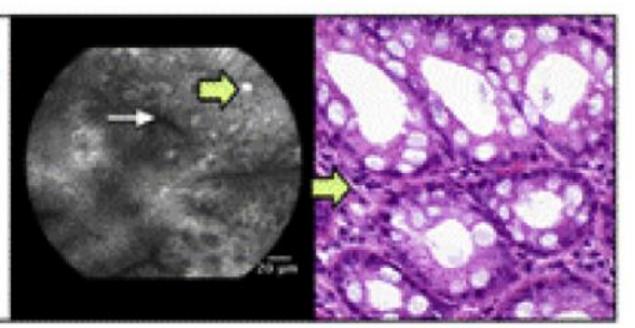

- Narrower definition: "histology through the endoscope"
 - Confocal laser endomicroscopy (CLE) approaches this the most
- Broader definition: "endoscopic features that correlate with histology"
 - e.g. "virtual chromoendoscopy" techniques



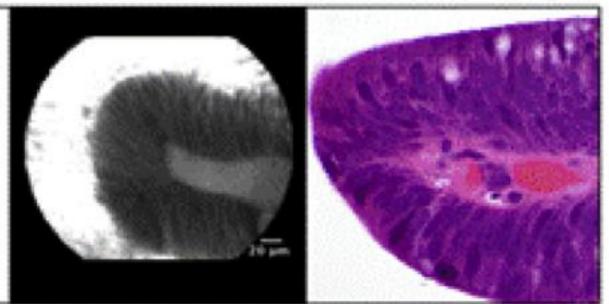
Confocal laser endomicroscopy – probe



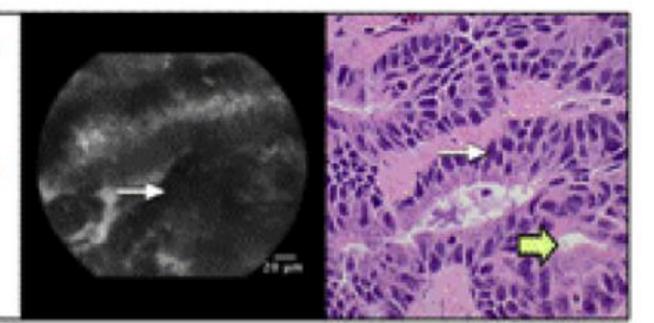
Confocal laser endomicroscopy – scope


Normal Colon

- Round crypt structures
- Dark goblet cells (arrow)
- Regular, narrow vessels surrounding crypts (block arrow)


Hyperplastic Polyp

- Crypts with slit or stellate openings (pits)
- Bright non-thickened, uniform epithelium
- Dark "goblet" cells (thin arrow)
- Small vessels (block arrow)


Adenoma

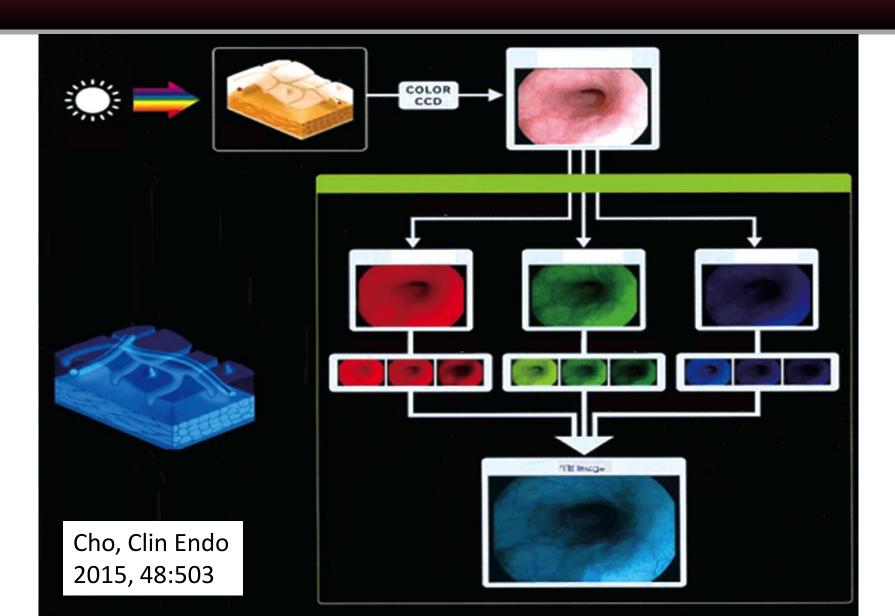
- Irregular or villiform structure (note even "tubular" adenoma may have villiform structure on pCLE)
- Dark, irregularly thickened epithelium
- Decreased goblet cells

Adenocarcinoma

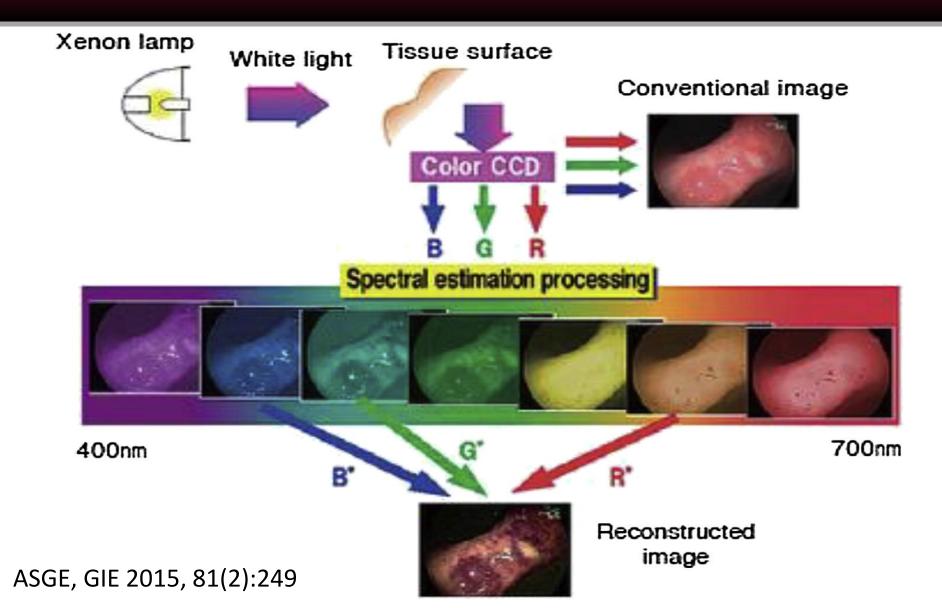
- Disorganized villiform or lack of structure
- Dark, irregurlarly thickened epithelium (thin arrow)
- Dilated vessels (block arrow on H&E)

Optical biopsy

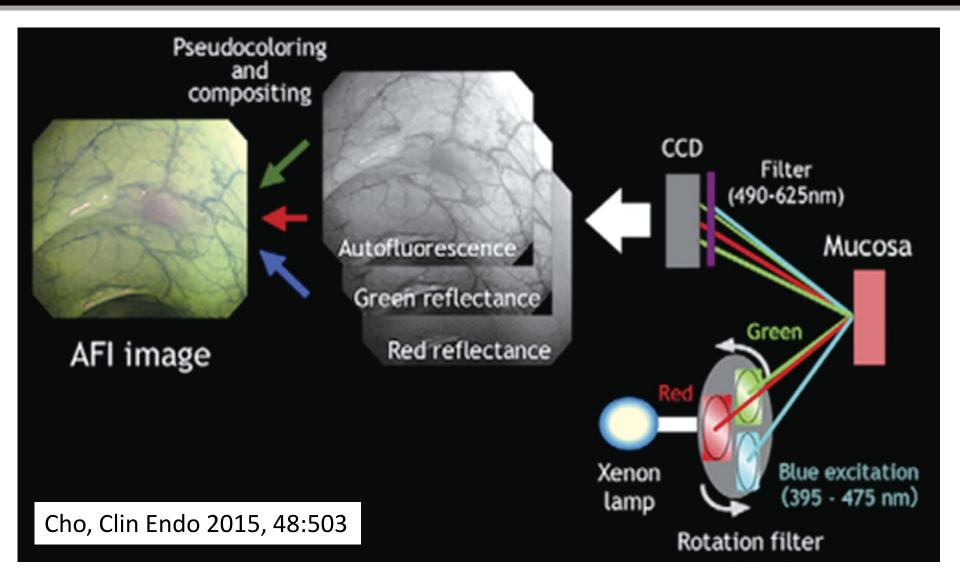
- Narrower definition: "histology through the endoscope"
 - Confocal laser endomicroscopy (CLE) approaches this the most
- Broader definition: "endoscopic features that correlate with histology"
 - e.g. "virtual chromoendoscopy" techniques

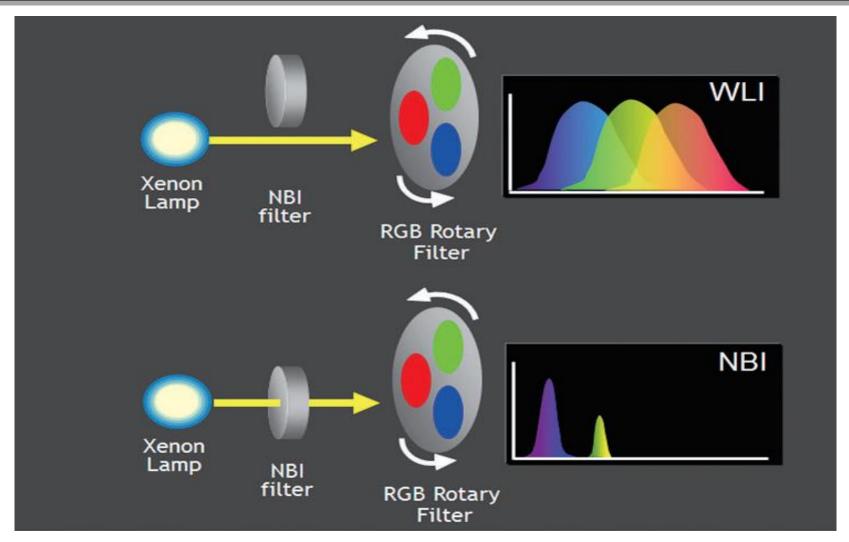

Electronic Chromoendoscopy

- Selected wavelength tissue-light interaction
- Software post-image processing
 - i-SCAN (PENTAX Endoscopy)
 - Flexible spectral imaging color enhancement (FICE) (Fujinon)
- Endogenous autofluorescence
 - Aurofluorescence imaging (AFI) (Olympus)
- Optical filtering of white light
 - Narrow-band imaging (NBI) (Olympus)

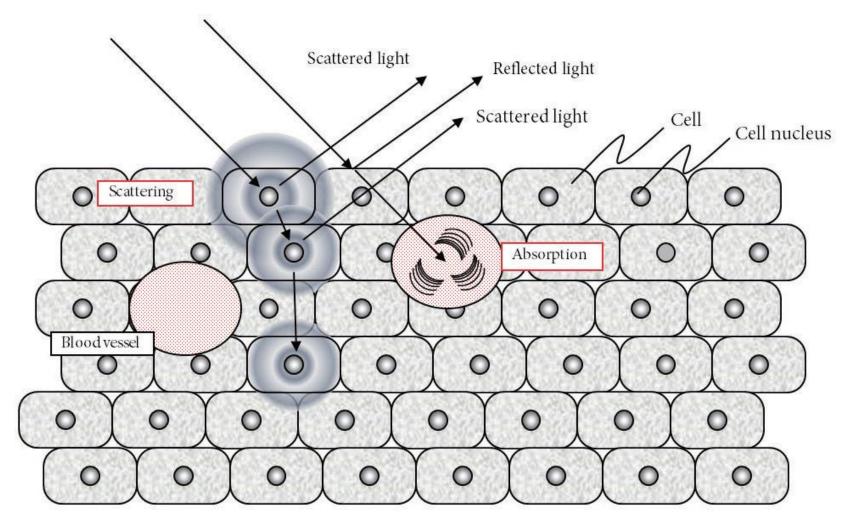


ASGE, GIE 2015, 81(2):249


Tone enhancement (i-Scan)

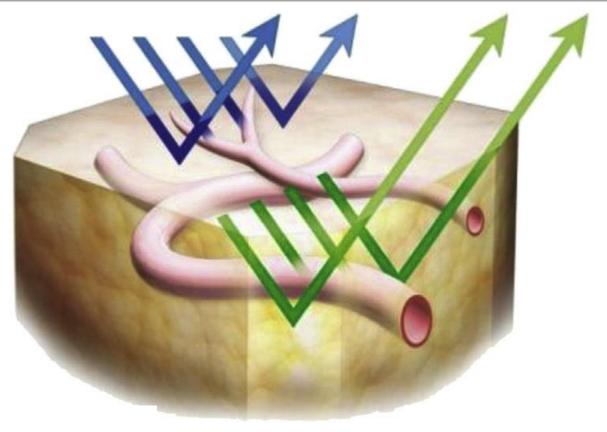

FICE

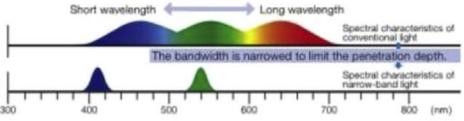
Autofluorescence imaging



Narrow band imaging (NBI)

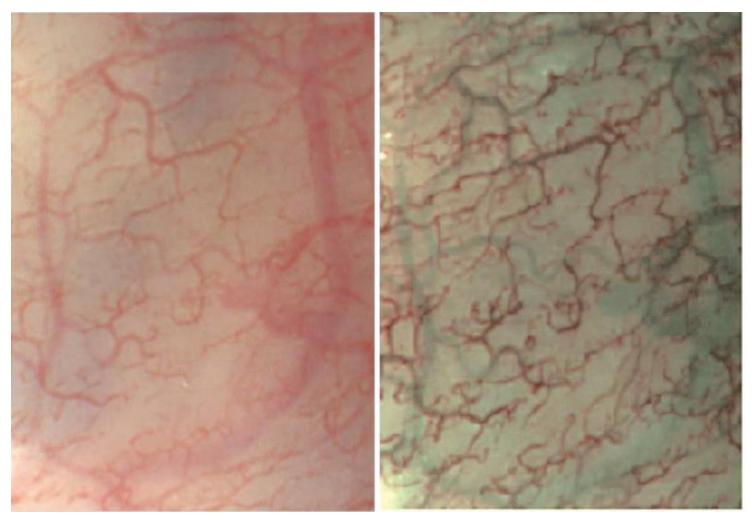
Gono, Clin Endo 2015, 48:476


Narrow band imaging (NBI)



Gono, Clin Endo 2015, 48:476

Narrow band imaging (NBI)


 Penetration properties of light ≈ wavelength

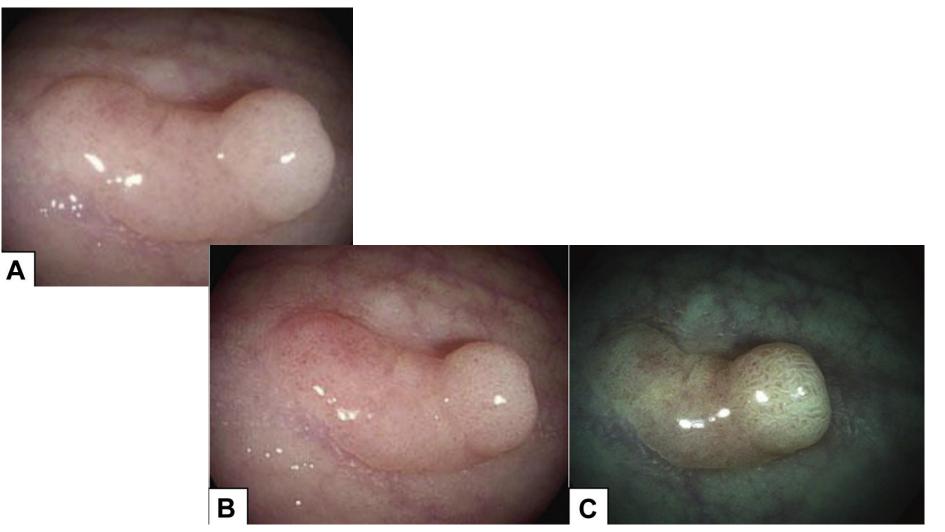
ASGE, GIE 2015, 81(2):249

Tongue: White light vs. NBI

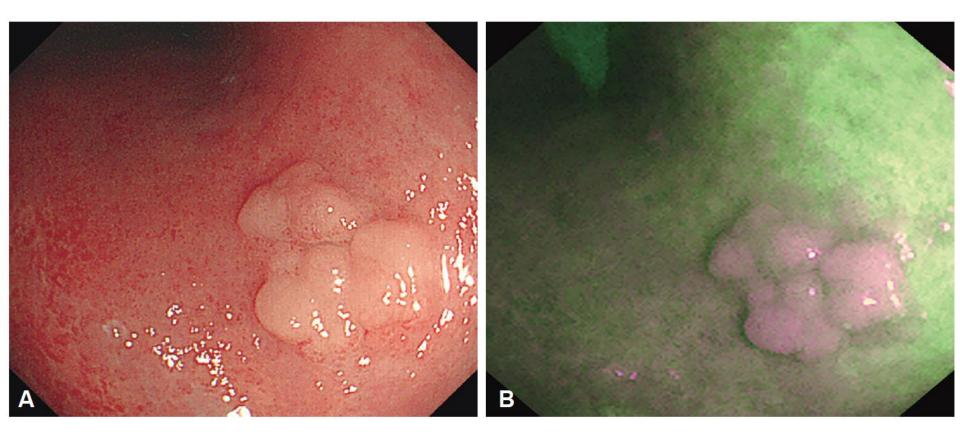
Gono, Clin Endo 2015, 48:476

Outline

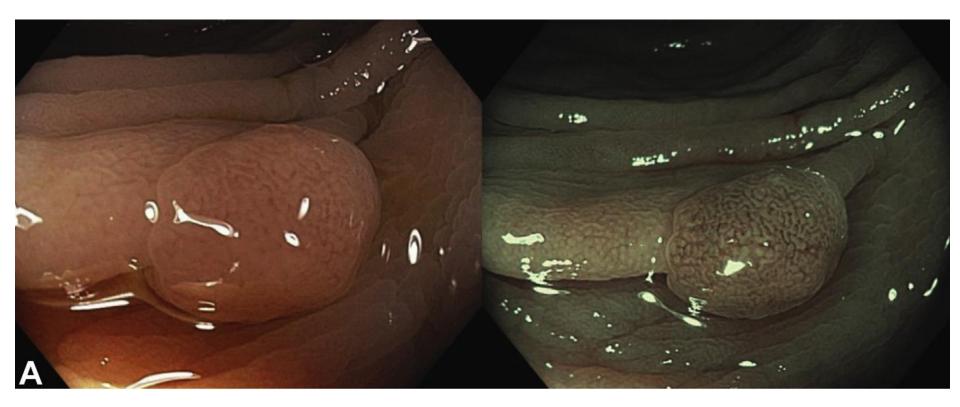
- What is optical biopsy?
- Available modalities
- Applications to colon polyps
- Ready for practice?


Optical biopsy of colon polyps

- What type of polyp is this?
 - Adenoma vs. hyperplasitc
 - Sessile serrated
- "High grade" features?
 - High grade dysplasia?
 - Malignancy?
- Extent of involvement / adequacy of resection



Adenoma: White light vs. i-SCAN 1 and 2


ASGE, GIE 2015, 81(2):249

Adenoma: White light vs. AFI

Cho, Clin Endo 2015, 48:503

Adenoma: White light vs. NBI

ASGE, GIE 2015, 81(2):249

NBI International Colorectal Endoscopic (NICE) Classification

	Type 1	Type 2
Color	Same or lighter than background	Browner relative to background (verify color arises from vessels)
Vessels	None, or isolated lacy vessels may be present coursing across the lesion	Thick brown vessels surrounding white structures
Surface Pattern	Dark spots surrounded by white	Oval, tubular or branched white structures surrounded by brown vessels
Most likely pathology	Hyperplastic	Adenoma

NBI International Colorectal Endoscopic (NICE) Classification

	Type 1	Type 2
Color	d	Browner relative to background (verify color arises from vessels)
Vessels	No p be n	Thick brown vessels surrounding white structures
Surface Pattern		Oval, tubular or branched white structures surrounded by brown vessels
Most likely pathology		Adenoma

NBI International Colorectal Endoscopic (NICE) Classification

	Type 1	Type 2
Color	d	P C C C C C C C C C C C C C C C C C C C
Vessels	No p be n	T
Surface Pattern		
Most likely pathology		

Hyperplastic Polyp: NBI vs. White Light

Kaltenback et al, CGH 2015, 13(6):10

Adenoma: NBI vs. White Light

Kaltenback et al, CGH 2015, 13(6):10

Sessile Serrated Polyp: NBI vs. White Light

Kaltenback et al, CGH 2015, 13(6):10

ASGE PIVI: real-time endoscopic assessment of histology of diminutive colorectal polyps

 PIVI: "Preservation and Incorporation of Valuable Endoscopic Innovations"

Rex et al., GIE 2011, 73(3):419

1. In order for polyps ≤ 5 mm to be resected and discarded without pathologic assessment, endoscopic technology (when used with high confidence*) used to determine histology of polyps ≤ 5 mm in size, when combined with the histopathologic assessment of polyps >5 mm in size, should provide a $\geq 90\%$ agreement in assignment of post-polypectomy surveillance intervals when compared to decisions based on pathology assessment of all identified polyps.

1. In order for polyps ≤ 5 mm to be resected and discarded without pathologic assessment, endoscopic technology (when used with high confidence*) used to determine histology of polyps ≤ 5 mm in size, when combined with the histopathologic assessment of polyps >5 mm in size, should provide a ≥90% agreement in assignment of post-polypectomy surveillance intervals when compared to decisions based on pathology assessment of all identified polyps.

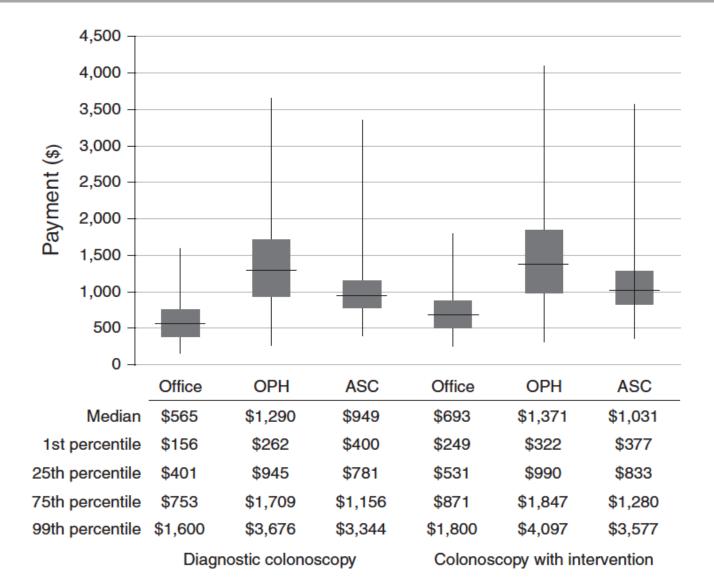
In order for a technology to be used to guide the decision to leave suspected rectosigmoid hyperplastic polyps ≤5 mm in size in place (without resection), the technology should provide ≥90% negative predictive value (when used with high confidence*) for adenomatous histology.

2. In order for a technology to be used to guide the decision to leave suspected rectosigmoid hyperplastic polyps ≤5 mm in size in place (without resection), the technology should provide ≥90% negative predictive value (when used with high confidence*) for adenomatous histology.

What the PIVI boils down to...

- 1. If you resect and discard diminutive polyps, get the surveillance recommendation right...
- 2. If you leave diminutive rectosigmoid polyps in place, make sure they are hyperplastic...

- Supporting considerations:
 - Pathology gold standard is imperfect
 - > 85-95% accuracy for adenoma vs. hyperplastic
 - Several factors already affect optimal adherence to surveillance guidelines
 - In this context, some error due to endoscopic histology assessment is acceptable



- Rationale for "resect diminutive and discard" and "diagnose distal hyperplastic and don't resect":
 - May reduce cost
 - \$33 million/year in US? (Hassan et al., CGH 2010, 8:865)
 - \$1 billion/year in US? (Kessler et al., Endo 2011, 43:683)
 - May improve patient safety
 - May avoid delay in making surveillance recommendation

ASGE, GIE 2015, 81(2):249

Colonoscopy: commercial payments

Ladabaum et al., AJG 2014, 109:1513

Colonoscopy: commercial payments for pathology

	Pathology Claim within 7 Days					
	Proportion of all procedures (%)	Median (10–90 Mean (s.d.) percentiles)				
Colonoscopy						
Office	55	\$232 (\$239)	\$148 (\$67–481)			
OP Hosp	46	\$352 (\$346)	\$243 (\$90–745)			
ASC	47	\$228 (\$215)	\$161 (\$72–450)			
Overall	52	\$272 (\$284)	\$185 (\$69–576)			

Ladabaum et al., AJG 2014, 109:1513

Outline

- What is optical biopsy?
- Available modalities
- Applications to colon polyps
- Ready for practice?

Performance characteristics: Systematic review and meta-analysis

NBI

ASGE Tech Cte, GIE 2015, 81:502

Performance characteristics: Systematic review and meta-analysis

- NPV for adenoma with NBI:
 - Overall: 91% (95% CI, 88–94%)
 - Academic medical centers: 91.8% (95% CI, 89-94%)
 - Experts 93%: (95% CI, 91-96%)
 - High confidence 93%: (95% CI, 90-96%)

ASGE Tech Cte, GIE 2015, 81:502

NPV for NBI Optical Biopsy

Study name

	Mean	Lower limit	Upper limit	Total	NPV 90%
	Mean	mme	mme	Total	_
East 2008	94.0	89.1	98.9	96	_ 4
Rogart 2008	81.0	73.0	89.0	265	-0-1
Ignjatovic 2009	82.3	73.8	90.7	213	-0-1
Rex 2009	95.4	92.7	98.1	314	Ē,
Sano 2009	90.0	82.9	97.1	150	육
Van Den Broek 2009	90.2	85.1	95.4	206	9
Henry 2010	90.7	84.5	96.9	90	
Lee 2011	92.0	86.7	97.3	125	<u>e</u>
Gupta 2012	95.4	93.1	97.7	516	þ
Hewett_1_2012	99.4	98.8	100.0	201	;o
Hewett_2_2012	95.0	91.0	99.0	178	P
Kuiper_2012	86.6	79.8	93.3	231	-0-
Paggi_2012	86.4	80.9	92.0	399	언
Sakamoto_2012	62.2	46.9	77.5	270	-œ- ¦
Shahid_2012	75.0	66.1	83.9	103	i
Ladabaum_2013	91.4	86.3	96.5	219	Ð
Repici_2013	92.0	88.0	96.0	204	φ.
Singh_2013	100.0	79.9	100.0	40	-¦o-→
Wallace_1_2014	96.0	93.0	99.0	104	þ
Wallace_2_2014	97.0	95.0	99.0	89	iD
Random	91.1	88.7	93.6		0

ASGE Tech Cte, GIE 2015, 81:502

Subgroup by Endoscopist Expertise

	Group by	Study name	Statist	ics for eacl	h study	
	Expert		Mean	Lower limit	Upper limit	NPV 90%
	No No	Rogart 2008 Ignjatovic 2009	81.0 82.3	73.0 73.8	89.0 90.7	-D-I
	No No No	Van Den Broek 2009 Hewett_2_2012 Kuiper_2012	90.2 95.0 86.6	85.1 91.0 79.8	95.4 99.0 93.3	-04 -04
	No No	Sakamoto_2012 Ladabaum_2013	62.2 91.4	46.9 86.3	77.5 96.5	
Random	No		87.3	83.3	91.3	•
	Yes	East 2008	94.0	89.1	98.9	Þ
	Yes	Rex 2009	95.4	92.7	98.1	存 中
	Yes	Sano 2009	90.0	82.9	97.1	- -
	Yes	Henry 2010	90.7	84.5	96.9	- -
	Yes	Lee 2011	92.0	86.7	97.3	Ð
	Yes	Gupta 2012	95.4	93.1	97.7	
	Yes	Hewett_1_2012	99.4	98.8	100.0	ID
	Yes	Paggi_2012	86.4	80.9	92.0	- Cl
	Yes	Shahid_2012	75.0	66.1	83.9	!
	Yes	Repici_2013	92.0	88.0	96.0	ሱ ASGE
	Yes	Singh_2013	100.0	79.9	100.0	$-\frac{1}{1}$ Tech Cte,
	Yes	Wallace_1_2014	96.0	93.0	99.0	
	Yes	Wallace 2 2014	97.0	<u>95.0</u>	99.0	GIE 2015,
Random	Yes		93.2	90.6	95.8	81:502

Performance characteristics: Systematic review and meta-analysis

- Agreement in surveillance intervals with NBI:
 - Overall: 89% (95% CI, 85-92%)
 - Academic settings: 91% (95% CI, 86-95%)
 - Experienced endoscopists: 92% (95% CI, 88-96%)
 - High confidence 91%: (95% CI, 88-95%)

ASGE Tech Cte, GIE 2015, 81:502

Agreement with Surveillance Intervals Outcome for NBI Optical Biopsy

Study name

	Mean	Lower limit	Upper limit	Total	90% Agr
Ignjatovic 2009	95.00	91.06	98.94	82	
Rex 2009	94.12	91.27	96.97	136	
Gupta 2012	86.10	82.91	89.29	410	I
Paggi 2012	85.28	80.69	89.87	197	I
Kuiper 2012	81.48	72.44	90.52	54	-0
Coe 2012	70.00	65.32	74.68	317	
Repici 2013	92.00	88.02	95.98	212	
Singh 2013	96.55	94.13	98.97	87	
Ladabaum 2013	79.90	72.51	87.29	1065	Ð
Wallace-1 2014	95.00	93.01	96.99	264	
Wallace-2 2014	94.00	91.01	96.99	258	
Random	88.63	84.57	92.70		

reement

ASGE Tech Cte, GIE 2015, 81:502

Subgroup by Endoscopist Expertise

	Group by	Study name	Statistics for each study					
	Expert		Mean	Lower limit	Upper limit	90% Agreement		
	No	Ignjatovic 2009	95.00	91.06	98.94	io		
	No	Kuiper2012	81.48	72.44	90.52	-04 -04		
	No	Coe2012	70.00	65.32	74.68	οľ		
	No	Ladabaum2013	79.90	72.51	87.29			
Kandom	No		81.87	75.50	88.24	ے ا		
	Yes	Rex 2009	94.12	91.27	96.97			
	Yes	Gupta 2012	86.10	82.91	89.29			
	Yes	Paggi 2012	85.28	80.69	89.87	a'		
	Yes	Repici 2013	92.00	88.02	95.98	- -		
	Yes	Singh 2013	96.55	94.13	98.97	io i		
	Yes	Wallace-1 2014	95.00	93.01	96.99			
	Yes	Wallace-2 2014	94.00	91.01	96.99			
Random	Yes		91.99	87.62	96.35	•		
						- 1		

ASGE Tech Cte, GIE 2015, 81:502

Performance characteristics: Systematic review and meta-analysis

i-SCAN

ASGE Tech Cte, GIE 2015, 81:502

NPV for i-SCAN Optical Biopsy

	Group by	Study name	Statist	tics for ea		
	Expert		Mean	Lower limit	Upper limit	NPV 90%
	No	Hong_1_2012	67.00	58.71	75.29	- D - ¦
	No	Hong_2_2012	76.20	71.08	81.32	Οi
	No	Chan 2012	70.00	57.15	82.85	- o ¦
	No	Schachschal 2014	69.00	61.03	76 97	-D- ;
Random	No		72.31	68.59	76.04	♦ 1
	Yes	Hoffman_1_2010	97.00	94.52	99.48	
	Yes	Hoffman_2_2010	96.50	93.65	99.35	10
	Yes	Lee 2011	94.74	90.72	98.76	b
	Yes	Piao 2013	93.00	86.26	99.74	D-
Random	Yes		96.16	94.39	97.93	

ASGE Tech Cte, GIE 2015, 81:502

Performance characteristics: Systematic review and meta-analysis

FICE

ASGE Tech Cte, GIE 2015, 81:502

NPV for FICE Optical Biopsy

	Group by	Study name	Statist	ics for ea	ch study		
	Magnification		Mean	Lower limit	Upper limit	NPV 90%	
	No	Pohl 2008	77.00	67.06	86.94	-0-1	
	No	Togashi 2009	76.00	61.59	90.41	ᅳᆷᆛ	
	No	Buchner 2010	50.00	31.30	68.70	i	
	No	Longcroft 2011	78.00	72.05	83.95		
Random	No		73.98	66.69	81.28	🔶 ¦	
	Yes	Dos Santos 2010	92.00	85.08	98.92	-D-	
	Yes	Kim 2011	83.00	79.21	86.79	o¦	
	Yes	Longcroft 2012	84.00	75.11	92.89	-0-i	
	Yes	Dos Santos 2012	79.00	66.17	91.83	بے۔	
Random	Yes		85.08	78.93	91.22	◆	ASGE Tech Cte

ASGE Tech Cte, GIE 2015, 81:502

Optical biopsy of polyps: So, can it be done?

- Test performance = f (technology, operator)
- Optical biopsy can be done
- Will most of us be able to do it right?
- Will savings on biopsies be counteracted by inappropriately short surveillance?
- Training?
- Quality assurance?
- What if surveillance recommendations change?

Ladabaum, Lancet Onc 2013, 14:1253

Reality check...

- Surveillance recommendations are evolving...
- Diminutive polyps histology: Much ado about nothing?

US MSTF Surveillance Recommendations

Baseline colonoscopy: most advanced finding(s)	Recommended surveillance interval (y)
No polyps	10
Small (<10 mm) hyperplastic polyps in rectum or sigmoid	10
1–2 small (<10 mm) tubular adenomas	5–10
3–10 tubular adenomas	3
>10 adenomas	<3
One or more tubular adenomas ≥10 mm	3
One or more villous adenomas	3
Adenoma with HGD	3

US MSTF Surveillance Recommendations

Baseline colonoscopy: most advanced finding(s)

Recommended surveillance interval (y)

No polyps	10
Small (<10 mm) hyperplastic polyps in rectum or sigmoid	10
1–2 small (<10 mm) tubular adenomas	5–10
3–10 tubular adenomas	3
>10 adenomas	<3
One or more tubular adenomas ≥10 mm	3
One or more villous adenomas	3
Adenoma with HGD	3

European Surveillance Recommendations

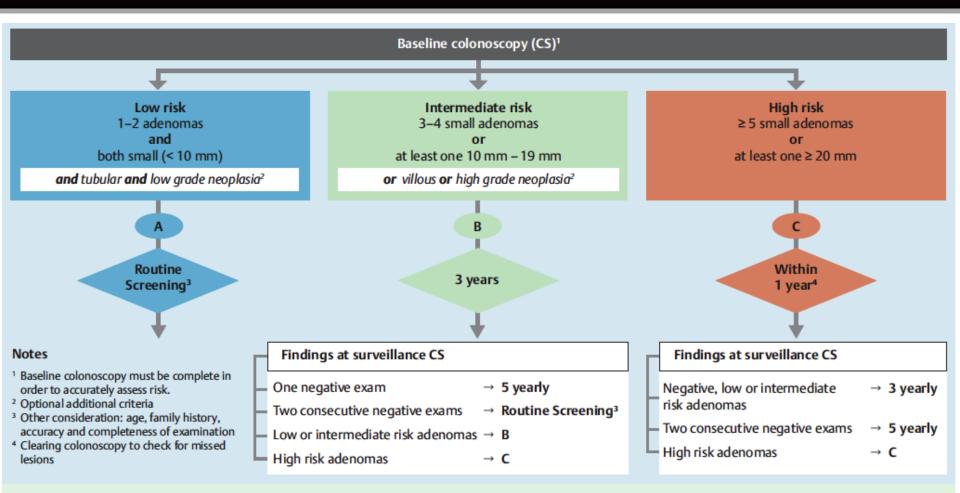


Fig. 9.1 Recommended surveillance following adenoma removal. (For explanation see Recommendations 9.1 – 9.20 and Sections 9.3 – 9.5)

Copyright[®] 2010 v1 10/2010 W. Atkin et al. The work may be copied provided this notice remains intact. No unauthorized revision or modification permitted.

European Surveillance Recommendations

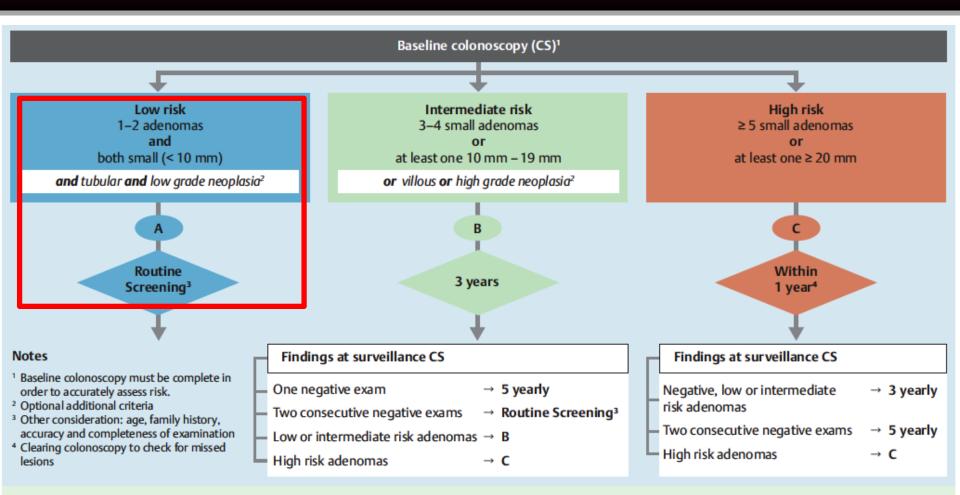


Fig. 9.1 Recommended surveillance following adenoma removal. (For explanation see Recommendations 9.1 – 9.20 and Sections 9.3 – 9.5)

Copyright[®] 2010 v1 10/2010 W. Atkin et al. The work may be copied provided this notice remains intact. No unauthorized revision or modification permitted.

Requirements for viability in clinical practice

Professional society endorsement

Development of credentialing protocols

Development of validated training tools

Documentation of endoscopic decision making (image storage)

- Medical-legal coverage
- Documentation of adenoma detection rate²

Revision of institutional policies on requirements to submit tissue to pathology²

Reimbursement or other financial incentives for endoscopic determination of pathology

Rex, Endosc Int Open 2015, 03:E186

ESGE Guideline: Advanced imaging for colorectal neoplasia

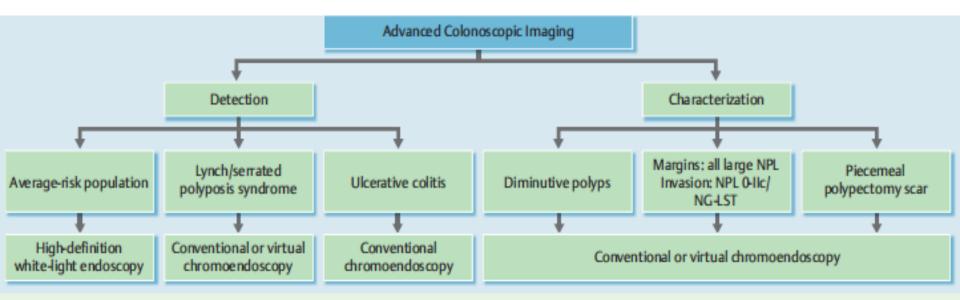


Fig. 1 Summary of the recommendations. NPL, nonpolypoid lesion; 0-IIc, lesions with a depressed component; NG-LST, non-granular laterally spreading tumor.

Kaminski et al, Endo 2014, 46:435

ESGE Guideline: Advanced imaging for colorectal neoplasia

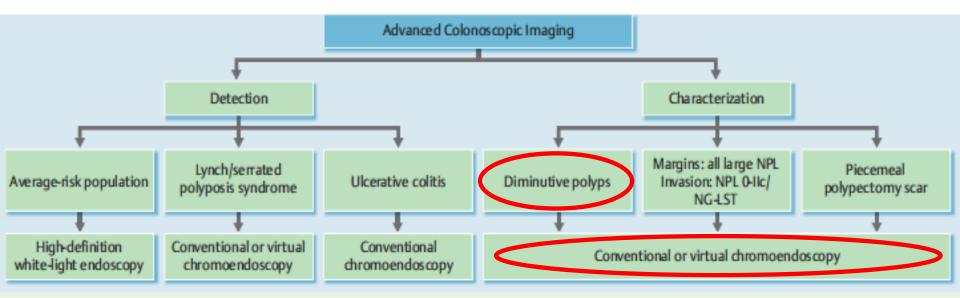
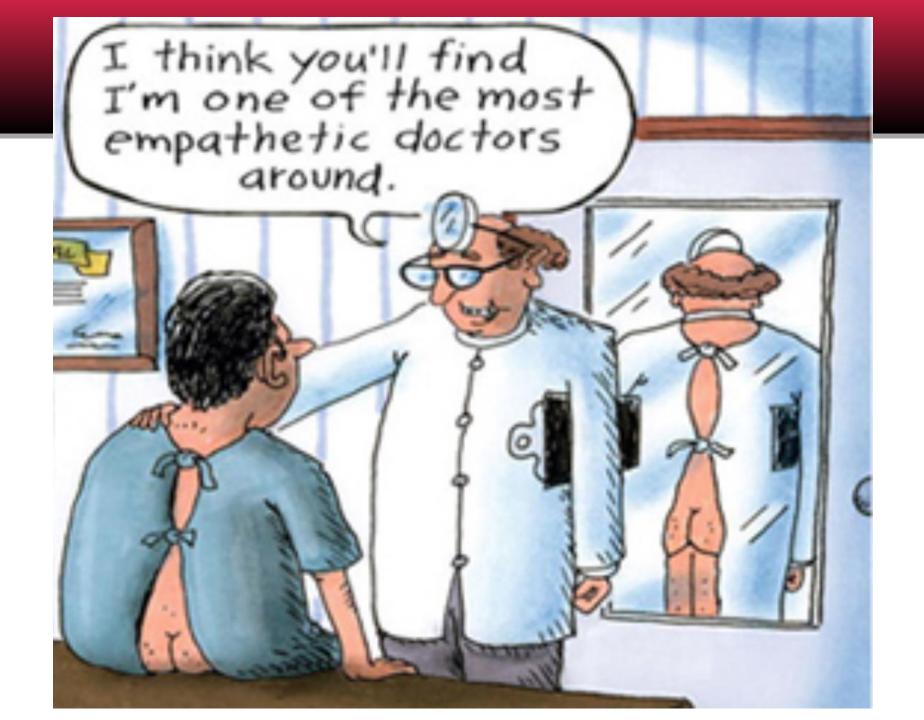


Fig. 1 Summary of the recommendations. NPL, nonpolypoid lesion; 0-IIc, lesions with a depressed component; NG-LST, non-granular laterally spreading tumor.

Kaminski et al, Endo 2014, 46:435


Outline

- What is optical biopsy?
- Available modalities
- Applications to colon polyps
- Ready for practice?

When we look, what can we see?

