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Abstract - Feature selection methods have been widely used 

in high dimensionality datasets. Of all supervised feature 

selection methods, LASSO was implemented on a dataset of 

76 PTP1b inhibitors with dimensions being n=76 and p=358. 

Feature selection is a very important step in data analysis and 

more importantly, to gain insight into inherent features of 

data. Initially OLS and ridge regression analysis was 

performed followed by LASSO regression. The lambda 

minimum and standard error were found to be 0.06 and 0.339 

respectively. The mean square error (MSE) was used to 

compare the analysis among OLS, ridge and lasso methods. 

The MSE of lasso was found to be 0.16 which is much lower 

than OLS or ridge regression methods. The coefficients 

obtained from LASSO method are computed and it was 

observed that 8 explanatory variables are selected as important 

such as EV, Dx, Dy, TL, Lx, Ly, MR and KC3. Further, the 

coefficients at different steps of regression were analyzed by 

least angle regression, forward stagewise, and forward 

stepwise algorithms. 
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I. INTRODUCTION 

The feature selection is the process that chose reduced number 

of explanatory variable to describe a response variable. The 

variable selection is even more important for the high-

dimensional datasets; here the number of features is very high 

[1]. On the other hand, it is difficult, due to dimensionality 

issues, to build and interpret a model that takes into 

consideration all the variables. For these reasons the feature 

selection is an important task [2]. Feature selection models are 

easier to interpret as the method employed removes redundant 

variables. The over fitting is reduced by eliminating irrelevant 

variables that are not associated with the response variable, 

which enables algorithm to run faster and handles high-

dimensional data [3]. In the literature several types of methods 

are reported to perform feature selection paradigm. Feature 

selection algorithms can be categorized into supervised [4], 

unsupervised [5] and semi-supervised feature selection [6]. 

Supervised feature selection methods can further be broadly 

categorized into filter models, wrapper models and embedded 

models. First the Filter Methods select the features by ranking 

them on how useful they are for the model, to compute the 

usefulness score statistical test and correlation results are 

used. Secondly Wrapper Methods generates different subsets 

of features, each sub- set is then used to build a model and 

train the learning algorithm. The best subset is selected by 

testing the algorithm.  To select the features for the subsets 

different criteria are used (e.g. Forward and Backward 

selection). Finally, the Embedded Methods are a combination 

between the two previous methods. LASSO (Least Absolute 

Shrinkage and Selection Operator) is an example of 

Embedded method which performs regularization and feature 

selection [7]. Embedded methods have the advantage that they 

include the interaction with the classification model, while at 

the same time being far less computationally intensive than 

wrapper methods [8]. The method applies a shrinking 

(regularization) process where it penalizes the coefficients of 

the regression variables shrinking some of them to zero. 

During features selection process the variables that still have a 

non-zero coefficient after the shrinking process are selected to 

be part of the model. An advantage of LASSO is shrinking 

and removing the coefficients can reduce variance without a 

substantial increase of the bias. The tuning parameter λ 

controls the strength of the penalty. When λ is sufficiently 

large then coefficients are forced to be exactly equal to zero. 

Moreover, the bias increases and variance decreases when λ 

increases [9]. Therefore, LASSO helps to increase the model 

interpretability by eliminating irrelevant variables that are not 

associated with the response variable, which would otherwise 

reduce overfitting. Feature selection is a very important step in 

data analysis and more importantly, to gain insight into 

inherent features of data. The initial step of data analysis is to 

select the relevant features or chose a model which 

automatically identifies the relevant features. After collecting 

the data and extracting the features, the relevant features are 

selected. 

 

In this paper, we report application of feature selection 

algorithm by LASSO on a dataset of 76 PTP1b inhibitors with 

dimensions being n=76 and p=358 respectively. 

 

II. MATERIALS AND METHODS 

Dataset 

A dataset of anti-diabetic inhibitors that are intended to 

interact and bind with specific protein target such as Protein 

tyrosine phosphatase 1B (PTP1B) were extracted from 
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literature. Further, the bio activity data of 76 inhibitory 

compounds are treated as response variable (dependent 

variable) and nearly 358 properties of compounds comprising 

2-dimensional and/or 3-dimensional features are considered as 

explanatory (independent) variables. These variables explain 

how the response variable is influenced by the change in 

property values. Certain independent variables show positive 

correlation within themselves or with response variable, while 

few may be negative or neutral. 

 

LASSO algorithm 

Lasso was originally formulated for least squares models, 

however, lasso regularization is easily extended to a wide 

variety of statistical models including generalized linear 

models, generalized estimating equations, proportional 

hazards models, and M-estimators [10]. Lasso’s ability to 

perform subset selection relies on the form of the constraint 

and has a variety of interpretations including in terms of 

geometry, Bayesian statistics, and convex analysis [11]. 

 

Glmnet is a package that fits a generalized linear model via 

penalized maximum likelihood. The regularization path is 

computed for the lasso or elastic net penalty at a grid of values 

for the regularization parameter lambda. The algorithm is 

extremely fast, and can exploit sparsity in the input matrix. It 

fits linear, logistic and multinomial, poisson, and Cox 

regression models. A variety of predictions can be made from 

the fitted models. It can also fit multi-response linear 

regression. LASSO is widely recognized to be the alternative 

in solving high-dimensional problems, where high-

dimensional refers to number of unknown parameters to be 

estimated, p, is of much larger order than the number of 

observations, n. 

 

III. RESULTS AND DISCUSSION 

The process of generating features from the raw data is called 

feature extraction. Extracting features becomes difficult when 

the data has more number of features than the observations. 

The dataset of PTP1b inhibitors with 15 independent variables 

were selected to perform linear regression analysis. A model 

matrix was constructed with x and y parameters followed by 

creating a  vector of lambda values. An OLS model was 

constructed and the following coefficients are obtained where 

it was observed from regression data that an R-squared value 

of 0.854 and F-value 23.4 were found to be reasonable as the 

data analyzed was devoid of outliers (n=76). 

 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept) -2.337e+00  2.909e-01  -8.034 4.28e-11 *** 

MV           3.034e-03  6.010e-03   0.505 0.615450     

EV          -6.365e-05  4.844e-05  -1.314 0.193854     

TD           6.391e-02  2.358e-02   2.711 0.008739 **  

Dx          -1.546e-02  2.269e-02  -0.681 0.498479     

Dy           3.501e-02  1.867e-02   1.875 0.065639 .   

Dz          -2.624e-02  2.343e-02  -1.120 0.267295     

TL           5.514e-03  1.231e-02   0.448 0.655813     

Lx           1.115e-02  1.098e-02   1.016 0.313835     

Ly          -3.527e-02  9.579e-03  -3.682 0.000498 *** 

Lz          -1.998e-02  1.223e-02  -1.634 0.107476     

MR           5.710e-03  1.571e-02   0.363 0.717579     

KC0         -6.413e-01  2.280e-01  -2.813 0.006619 **  

KC1          1.037e+00  5.182e-01   2.001 0.049954 *   

KC2         -3.018e-01  3.993e-01  -0.756 0.452720     

KC3          9.924e-01  4.923e-01   2.016 0.048283 *   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.3365 on 60 degrees of freedom 

Multiple R-squared:  0.854, Adjusted R-squared:  0.817

5  

F-statistic:  23.4 on 15 and 60 DF,  p-value: < 2.2e-16 

 

 

Regular OLS is able to determine few variables as significant 

such as TD, Dy, Ly, KC0, KC1 and KC3. Further, ridge 

regression was performed in order to compare the OLS 

regression result. The lambda minimum and standard error 

were found to be 0.06 and 0.339 respectively. 

 

The coefficients of regression from ridge method are 

comparable with OLS method. However, to improve the 

estimate, ridge regression was performed with a subset of 

dataset and the best lambda minimum was obtained. The mean 

square error (MSE) was used to compare the analysis among 

OLS, ridge and lasso methods. In ridge regression, a penalty 

was added by tuning parameter called lambda which is chosen 

using cross validation which makes the fit apparent by 

producing small residual sum or squares while adding a 

shrinkage penalty. The shrinkage penalty is refers to the 

lambda times the sum of squares of the coefficients, which 

means that the large coefficients are penalized. As lambda 

approaches high value, the bias is unchanged but the variance 

reduces. The main drawback of ridge regression is that it does 

not select variables instead includes all of the variables in the 

final model. 
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Figure 1: Ridge regression plot of coefficients vs lambda 

 

The above plot (Figure 1) shows that when lambda values get 

small, it gets unregularized. However, a ridge cross validation 

picks the best value for lambda and the resulting plot indicates 

that the unregularized full model does pretty well in this case 

(Figure 2). 

 

 
Figure 2: Cross-validation analysis of ridge regression 

 

 

With s=bestlam, in other words, with best lambda minimum, 

the coefficients obtained are more reasonable than earlier runs 

for ridge regression. Data obtained suggests that the 

coefficient estimates are more conservative and lambda 

minimum provided better coefficients than the remaining. 

 

Further, lasso was implemented where the shrinkage term was 

employed as the lasso takes the absolute value of the 

coefficient estimate. In other words, the penalty is the sum of 

the absolute values of the coefficients. Lasso method shrinks 

the coefficient estimates towards zero and when lambda is 

large it sets variables exactly equal to zero while ridge does 

not. Hence, much like the best subset selection method, lasso 

performs variable selection. The tuning parameter lambda is 

chosen by cross validation. When lambda is small, it results in 

least squares estimates and as lambda increases, shrinkage 

occurs and the variables at zero are therefore excluded. An 

advantage of lasso is that it is a combination of both shrinkage 

and selection of variables. When a dataset has large number of 

features, lasso finds an efficient sparse model which involves 

only a small subset of the features. 

The MSE of lasso was found to be 0.16 which is much lower 

than OLS or ridge regression methods (Table 1), which means 

that the LASSO method is superior to the remaining. 

 

Table 1: MSE (Mean Square Error) estimates of three 

methods. 

Method MSE 

OLS 0.233 

Ridge Regression 0.194 

LASSO 0.163 

 

Further, the coefficients obtained from LASSO method are 

computed and it was observed that 8 explanatory variables are 

selected as important such as EV, Dx, Dy, TL, Lx, Ly, MR 

and KC3. The data can be evidenced by a plot between 

coefficients and log lambda (Figure 3). The plot in Figure 4 

suggests the deviance explained by the model which is similar 

to R-squared value. 

 

coef(lasso.mod, s=best_se)) 

16 x 1 sparse Matrix of class "dgCMatrix" 

                        1 

(Intercept) -2.666451e+00 

MV           .            

EV          -6.583015e-05 

TD           .            

Dx           3.856798e-02 

Dy           4.683199e-02 

Dz           .            

TL           9.176919e-03 

Lx           .            

Ly          -4.137166e-02 

Lz           .            

MR           1.269523e-02 

KC0          .            

KC1          .            

KC2          .            

KC3          1.356044e-01 

 

 

The output shows that only those variables that had 

determined to be significant on the basis of p-values have non-

zero coefficients. The coefficients of all other variables have 

been set to zero by the algorithm. Lasso has reduced the 

complexity of the fitting function. The simpler function (8 

non-zero coefficients) should be preferred than the original 

one (15 non-zero coefficients) because it is less likely to 

overfit the training data. 
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Figure 3: LASSO log lambda Vs coefficients 

 

 

 
Figure 4: Fraction deviance similar to R-squared explained by 

the model. 

 

 

 
Figure 5: Cross-validation analysis of LASSO regression 

  

The plot in Figure 5 shows that the log of the optimal value of 

lambda (i.e. the one that minimizes the root mean square 

error) is approximately -7.  

 

The exact value can be viewed by examining the 

variable lambda_min and the objective of regularisation is to 

balance accuracy and simplicity. From the analysis it was 

observed that the value of lambda that gives the simplest 

model was found to be 0.00103 but also lies within one 

standard error of the optimal value of lambda, 0.03236, 

respectively. 

 

LASSO is less prone to overfitting and hence generalizes 

better. The sequence of lasso moves is given below and the 

coefficients that obtained certain values at certain steps given 

in Figure 6. 

 

Sequence of LASSO moves: 

     Ly MR Lx TL KC2 Lz TD Dy EV Lx Dz KC3 KC0 Lx Dx 

KC1 KC2 MV KC2 

Var   9 11  8  7  14 10  3  5  2 -8  6  15  12  8  4  13 -14  1  14 

Step  1  2  3  4   5  6  7  8  9 10 11  12  13 14 15  16  17 18  19 

 

 

 

 
Figure 6: The coefficients that obtained certain values at 

certain steps of LASSO. 

 

 

Further, least angle regression (LAR) [12] was employed to 

study the coefficients at different steps for the PTP1b data set 

fitted by LASSO, least angle regression, forward stagewise, 

and forward stepwise algorithms. Hence, the different solution 

paths for different methods are listed (LASSO, least angle 

regression, forward stagewise, and forward stepwise) below 

and it was observed that LASSO performed better than other 

methods. 

 

Sequence of LAR moves: 

     Ly MR Lx TL KC2 Lz TD Dy EV Dz KC3 KC0 Dx MV 

KC1 

Var   9 11  8  7  14 10  3  5  2  6  15  12  4  1  13 

Step  1  2  3  4   5  6  7  8  9 10  11  12 13 14  15 
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Figure 7: The coefficients obtained at certain steps of LAR. 

 

 

Sequence of Forward Stagewise moves: 

     Ly MR Lx TL Lx Lx Lx KC2  MR Lz TD Dy KC3 KC2 E

V Dx KC2 Dz Lx TD Dx TD TD MV 

Var   9 11  8  7 -8  8 -8  14 -11 10  3  5  15 -14  2  4  14  6  8 -

3 -4  3 -3  1 

Step  1  2  3  4  4  5  5   6   6  7  8  9  10  10 11 12  13 14 15 15 

15 16 16 17 

     KC3 KC3 KC3 KC0 Ly TL  Lz EV EV Lz EV  Lz Dx MV 

TD MR TL MV KC1  MR Ly Lz Dy Dy 

Var  -15  15 -15  12 -9 -7 -10 -2  2 10 -2 -10  4 -1  3 11  7  1  1

3 -11  9 10 -5  5 

Step  17  18  18  19 19 19  19 19 20 20 20  20 21 21 22 23 24 

25  26  26 27 28 28 29 

     Dy KC3 KC2 MV Dy EV KC2 TL EV EV EV MV Lx EV 

MR TL Lx 

Var  -5  15 -14 -1  5  2  14 -7 -2  2 -2  1 -8  2 11  7  8 

Step 29  30  30 30 31 32  33 33 33 34 34 35 35 36 37 38 39 

 

 
Figure 8: The coefficients that obtained at different steps by 

forward stagewise. 

 

 

 

 

Sequence of Forward Stepwise moves: 

     Ly MR TD TL Lz KC3 Dy EV Dz Dx MV Lx KC2 KC0 

KC1 

Var   9 11  3  7 10  15  5  2  6  4  1  8  14  12  13 

Step  1  2  3  4  5   6  7  8  9 10 11 12  13  14  15 

 
 

Figure 9: The coefficients that obtained at different steps by 

forward stepwise algorithm. 

 

IV. CONCLUSION 

An attempt has been made to implement LASSO method in 

extracting features from a high dimensional dataset of PTP1b 

inhibitors. On a comparative note, OLS method was able to 

determine few variables as significant such as TD, Dy, Ly, 

KC0, KC1 and KC3 whereas LASSO resulted in EV, Dx, Dy, 

TL, Ly, MR and KC3. Evaluation of Mean Square error 

among three methods resulted in MSE of lasso to be 0.16 

which is much lower than OLS or ridge regression methods. 

Finally, it was observed that LASSO is less prone to 

overfitting and hence generalizes better. The sequence of lasso 

moves and the coefficients that obtained certain values at 

certain steps when compared with the PTP1b data set fitted by 

least angle regression, forward stagewise, and forward 

stepwise algorithms showed that the LASSO performed better 

than other methods. 
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