
1

CAP 4630

Artificial Intelligence

Instructor: Sam Ganzfried

sganzfri@cis.fiu.edu

2

• http://www.ultimateaiclass.com/

• https://moodle.cis.fiu.edu/

• HW1 out 9/5 today, due 9/28

– Remember that you have up to 4 late days to use throughout

the semester.

– https://www.cs.cmu.edu/~sganzfri/HW1_AI.pdf

– http://ai.berkeley.edu/search.html

• Office hours: ECS 254 today after lecture

http://www.ultimateaiclass.com/
http://ai.berkeley.edu/search.html

3

• https://www.cs.cmu.edu/~sganzfri/Calendar_AI.docx

• Midterm exam: on 10/19

• Final exam pushed back (likely on 12/12 instead of 12/5)

• Extra lecture on NLP on 11/16

• Will likely only cover 1-1.5 lectures on logic and on planning

• Only 4 homework assignments instead of 5

https://www.cs.cmu.edu/~sganzfri/Calendar_AI.docx

4

Local vs. classical search

• The search algorithms that we have seen so far are designed to

explore search spaces systematically. This systematicity is

achieved by keeping one or more paths in memory and by

recording which alternatives have been explored at each point

along the path. When a goal is found, the path to that goal also

constitutes a solution to the problem. In many problems,

however, the path to the goal is irrelevant. For example, in the 8-

queens problem, what matters is the final configuration of

queens, not the order in which they are added. The same general

property holds for many important applications such as

integrated circuit design, factory-floor layout, job-shop

scheduling, automatic programming, telecommunications

network optimization, vehicle routing, and portfolio

management.

5

Local search

• If the path to the goal does not matter, we might

consider a different class of algorithms, ones that do

not worry about paths at all. Local search algorithms

operate using a single current node (rather than

multiple paths) and generally move only to neighbors

of that node. Typically, the paths followed by the

search are not retained. Although local search

algorithms are not systematic, they have two key

advantages:

– 1) They use very little memory—usually a constant amount

– And 2) they can often find reasonable solutions in large or

infinite (continuous) state spaces for which systematic

algorithms are unsuitable.

6

Local search

• In addition to finding goals, local search algorithms are

useful for solving pure optimization problems (more

on this in upcoming lectures), in which the aim is to

find the best state according to an objective function.

Many optimization problems do not fit the “standard”

search model introduced before. For example, nature

provides an objective function—reproductive fitness—

that Darwinian evolution could be seen as attempting

to optimize, but there is no “goal test” and no “path

cost” for this problem.

7

Local search

8

Hill-climbing search

• The hill-climbing search algorithm (steepest-ascent

version) is simply a loop that continually moves in the

direction of increasing value—that is, uphill. It

terminates when it reaches a “peak” where no neighbor

has a higher value. The algorithm does not maintain a

search tree, so the data structure for the current node

need only record the state and the value of the

objective function. Hill climbing does not look ahead

beyond the immediate neighbors of the current state.

This resembles trying to find the top of Mount Everest

in a thick fog while suffering from amnesia.

9

8-queens

10

Hill-climbing search

11

Hill-climbing search

• To illustrate hill climbing, we will use the 8-queens

problem introduced earlier. Local search algorithms

typically use a complete-state formulation, where

each state has 8 queens on the board, one per column.

The successors of a state are all possible states

generated by moving a single queen to another square

in the same column (so each state has 8x7=56

successors) The heuristic cost function h is the number

of pairs of queens that are attacking each other, either

directly or indirectly. The global minimum of this

function is zero, which occurs only at perfect solutions.

12

Hill climbing

• Hill climbing is sometimes called greedy local search

because it grabs a good neighbor state without thinking

ahead about where to go next. Although greed is

considered one of the seven deadly sins, it turns out

that greedy algorithms often perform quite well. Hill

climbing often makes rapid progress toward a solution

because it is usually quite easy to improve a bad state.

For example, from the 8-queens game state, it takes

just five steps to reach the right state which has h=1

and is very nearly a solution.

13

Hill climbing can get stuck

• Unfortunately, hill climbing often gets stuck for the

following reasons:

– Local maxima: a local maximum is a peak that is higher

than each of its neighboring states but lower than the global

maximum. Hill-climbing algorithms that reach the vicinity of

a local maximum will be drawn upward toward the peak but

will then be stuck with nowhere else to go. More concretely,

the right figure for the 8-queens is a local maximum (i.e., a

local minimum for the cost h); every move of a single queen

makes the situation worse.

14

Local search

15

Hill climbing can get stuck

• Unfortunately, hill climbing often gets stuck for the

following reasons:

– Local maxima: a local maximum is a peak that is higher

than each of its neighboring states but lower than the global

maximum. Hill-climbing algorithms that reach the vicinity of

a local maximum will be drawn upward toward the peak but

will then be stuck with nowhere else to go.

– Ridges: a ridge is shown in next figure. Ridges result in a

sequence of local maxima that is very difficult for greedy

algorithms to navigate.

– Plateaux: a plateau is a flat area of the state-space landscape.

It can be a flat local maximum, from which no uphill exist

exists, or a shoulder, from which progress is possible. A hill-

climbing search might get lost on the plateau.

16

Hill climbing ridge

17

Hill climbing

• In each case, the algorithm reaches a point at which no

progress is being made. Starting from a randomly

generated 8-queens state, steepest-ascent hill climbing

gets stuck 86% of the time, solving only 14% of

problem instances. It works quickly, taking just 4 steps

on average when it succeeds and 3 when it gets stuck—

not bad for a state space with 8^8 ~= 17 million states.

18

Hill climbing

• The algorithm halts if it reaches a plateau where

the best successor has the same value as the

current state. Might it not be a good idea to keep

going—to allow a sideways move in the hope

that the plateau is really a “shoulder?”

19

Hill climbing

• The answer is usually yes, but we must take care. If we

always allow sideways moves when there are no uphill

moves, an infinite loop will occur whenever the

algorithm reaches a flat local maximum that is not a

shoulder. One common solution is to put a limit on the

number of consecutive sideways moves allowed. For

example, we could allow up to, say, 100 consecutive

sideways moves in the 8-queens problem. This raises

the percentage of problem instances solved by hill

climbing from 14% to 94%. Success comes at a cost:

the algorithm averages roughly 21 steps for each

successful instance and 64 for each failure.

20

Hill climbing

• Many variants of hill climbing have been invented.

• Stochastic hill climbing chooses at random from

among the uphill moves; the probability of selection

can vary with the steepness of the uphill move. This

usually converges more slowly than steepest ascent,

but in some state landscapes, it finds better solutions.

• First-choice hill climbing implements stochastic hill

climbing by generating successors randomly until one

is generated that is better than the current state. This is

a good strategy when a state has many (e.g., thousands)

of successors).

21

Hill climbing

• The hill-climbing algorithms described so far are

incomplete—they often fail to find a goal when one

exists because they can get stuck on local maximum.

• Random-restart hill climbing adopts the well-known

adage, “If at first you don’t succeed, try, try again.” It

conducts a series of hill-climbing searches from

randomly generated initial states, until a goal is found.

It is trivially complete with probability approaching 1,

because it will eventually generate a goal state as the

initial state.

22

Random-restart hill climbing

• If each hill-climbing search has a probability p of

success, then the expected number of restarts required

is 1/p. For 8-queens instances with no sideways moves

allowed, p~=0.14, so we need roughly 7 iterations to

find a goal (6 failures and 1 success). The expected

number of steps is the cost of one successful iteration

plus (1-p)/p times the cost of failure, or roughly 22

steps in all. When we allow sideways moves, 1/0.94 ~=

1.06 iterations are needed on average and

(1x21)+(0.06/0.94)x64~=25 steps. For 8-queens, then,

random-restart hill climbing is very effective indeed.

Even for three million queens, the approach can find

solutions in under a minute.

23

Simulated annealing

• A hill-climbing algorithm that never makes “downhill”

moves toward states with lower value (or higher cost)

is guaranteed to be incomplete, because it can get stuck

on a local maximum. In contrast, a purely random

walk—that is, moving to a successor chosen uniformly

at random from the set of successors—is complete but

extremely inefficient. Therefore, it seems reasonable to

try to combine hill climbing with a random walk in

some way that yields both efficiency and completeness.

24

Simulated annealing

• Simulated annealing is such an algorithm. In metallurgy,

annealing is the process used to temper or harden metals and

glass by heating them to a high temperature and then gradually

cooling them, thus allowing the material to reach a low-energy

crystalline state. To explain simulated annealing, we stich our

point of view from hill climbing to gradient descent

(minimizing cost) and imagine the task of getting a ping-pong

ball into the deepest crevice in a bumpy surface. If we just let

the ball roll, it will come to rest at a local minimum. If we shake

the surface, we can bounce the ball out of the local minimum.

The trick is to shake just hard enough to bounce the ball out of

the LM but not hard enough to dislodge it from the global

minimum. The SA solution is to start by shaking hard (i.e., high

temperature) and then gradually reduce the intensity.

25

Simulated annealing

26

Simulated annealing

• The innermost loop of the SA algorithm is quite similar to hill

climbing. Instead of picking the best move, however, it picks a

random move. If the move improves the situation, it is always

accepted. Otherwise, the algorithm accepts the move with some

probability less than 1. The probability decreases exponentially

with the “badness” of the move—the amount DE by which the

evaluation is worsened. The probability also decreases as the

“temperature” T goes down: “bad” moves are more likely to be

allowed a the start when T is high, and they become more

unlikely as T decreases. If the schedule lowers T slowly enough,

the algorithm will find a global optimum with probability

approaching 1.

27

Simulated annealing

• Simulated annealing was first used extensively to solve

VLSI layout problems (creating integrated circuit by

combining thousands of transistors into a single chip)

in the early 1980s. It has been applied widely to factory

scheduling and other large-scale optimization tasks.

• Homework exercise (for HW2): compare performance

of simulated annealing to that of random-restart hill

climbing on the 8-queens puzzle.

28

Local beam search

• Keeping just one node in memory might seem to be an

extreme reaction to the problem of memory limitations.

The local beam search algorithm keeps track of k

states rather than just 1. It begins with k randomly

generated states. At each step, all successors of all k

states are generated. If any one is a goal, the algorithm

halts. Otherwise, it selects the k best successors from

the complete list and repeats.

29

Local beam search

• At first sight, a local beam search with k states might seem to be

nothing more than running k random restarts in parallel instead

of in sequence. In fact, the two algorithms are quite different. In

a random-restart search, each search process runs independently

of the others. In a local beam search, useful information is

passed among the parallel search threads. In effect, the states

that generate the best successors say to the others, “Come over

here, the grass is greener!” The algorithm quickly abandons

unfruitful searches and moves its resources to where toe most

progress is being made.

30

Local beam search

• In its simplest form, local beam search can suffer from a lack of

diversity among the k states—they can quickly become

concentrated in a small region of the state space, making the

search little more than an expensive version of hill climbing. A

variant called stochastic beam search, analogous to stochastic

hill climbing, helps alleviate this problem. Instead of choosing

the best k from the pool of candidate successors, SBS chooses k

successors at random, with the probability of choosing a given

successor being an increasing function of its value. SBS bears

some resemblance to the problem of natural selection, whereby

the “successors” (offspring) of a “state” (organism) populate the

next generation according to its “value” (fitness).

31

Genetic algorithms

• A genetic algorithm (GA) is a variant of stochastic beam

search in which successor states are generated by combining two

parent states rather than by modifying a single state.

• Like beam searches, GAs begin with a set of k randomly

generated states, called the population. Each state, or

individual, is represented a s a string over a finite alphabet—

most commonly, a string of 0s and 1s. For example, an 8-queens

state must specify the positions of 8 queens, each in a column of

8 squares, and so requires 8 x log(8) = 24 bits. Alternatively, the

state could be represented as 8 digits, each in the range from 1 to

8. The figure shows a population of four 8-digit strings

representing 8-queens states.

32

Genetic algorithms

• The production of the next generation of states is

shown in Figure 4.6b-e. In (b), each state is rated by

the objective function, or (in GA terminology) the

fitness function. A fitness function should return

higher values for better states, so, for the 8-queens

problem we use the number of nonattacking pairs of

queens, which has a value of 28 for a solution. The

values of the four states are 24, 23, 20, and 11. In this

particular variant of the genetic algorithm, the

probability of being chosen for reproducing is directly

proportional to the fitness score, and the percentages

are shown next to the raw scores.

33

Genetic algorithms

• In (c), two pairs are selected at random for reproduction, in

accordance with the probabilities in (b). Notice that one

individual is selected twice and one not at all. For each pair to be

mated, a crossover point is chosen randomly from the positions

in the string. In the figure, the crossover points are after the third

digit in the first pair and after the fifth digit in the second pair.

• In (d), the offspring themselves are created by crossing over the

parent strings at the crossover point. For example, the first child

of the first pair gets the first three digits from the first parent and

the remaining digits from the second parent, whereas the second

child gets the first three digits from the second parent and the

rest from the first parent. The 8-queens states involved in the

reproduction step are shown in Figure 4.7.

34

Genetic algorithms

35

Genetic algorithms

• The example shows that when two parent states are

quite different, the crossover operation can produce a

state that is a long way from either parent state. It is

often the case that the population is quite diverse early

on in the process, so crossover (like simulated

annealing) frequently takes large steps in the state

space early in the search process and smaller steps later

on when most individuals are quite similar.

36

Genetic algorithms

• Finally, in (e), each location is subject to random

mutation with small independent probability. One

digit was mutated in the first, third, and fourth

offspring. In the 8-queens problem, this corresponds to

choosing a queen at random and moving it to a random

square in its column.

37

Genetic algorithms

38

Genetic algorithms

• Like stochastic beam search, genetic algorithms combine uphill

tendency with random exploration and exchange of information

among parallel search threads. The primary advantage, if any, of

genetic algorithms comes from the crossover operation. Yet it

can be shown mathematically that, if the positions of the genetic

code are permuted initially in a random order, crossover conveys

no advantage. Intuitively, the advantage comes from the ability

of crossover to combine large blocks of letters that have evolved

independently to perform useful functions, thus raising the level

of granularity at which the search operates. For example, it could

be that putting the first three queens in positions 2, 4, and 6

(where they do not attack each other) constitutes a useful block

that can be combined with other blocks to construct a solution.

39

Genetic algorithms

• In practice, genetic algorithms have had a widespread

impact on optimization problems, such as circuit layout

and job-shop scheduling. At present, it is not clear

whether the appeal of genetic algorithms arises from

their performance or from their aesthetically pleasing

origins in the theory of evolution. Much work remains

to be done to identify the conditions under which

genetic algorithms perform well.

40

Local search for continuous spaces

• Earlier we explained the distinction between discrete and

continuous environments, pointing out that most real-world

environments are continuous. Yet none of the algorithms we

have described (except for first-choice hill climbing and

simulated annealing) can handle continuous state and action

spaces, because they have infinite branching factors. There exist

other local search techniques for finding optimal solutions in

continuous spaces. Many of the basic techniques originated in

the 17th century after the development of calculus by Newton

and Leibniz. We find use for these techniques at several places,

including for learning, vision, and robotics.

41

Local search

42

Local search for continuous spaces

• Suppose we want to place three new airports anywhere

in Romania, such that the sum of squared distances

form each city on the map to its nearest airport is

minimized. The state space is then defined by the

coordinates of the airports: (x1,y1), (x2,y2), and

(x3,y3). This is a six-dimensional space; we also say

that the states are defined by six variables. Moving

around in this space corresponds to moving one or

more of the airports on the map. The objective

function f(x1,y1,x2,y2,x3,y3) is relatively easy to

compute for any particular state once we compute the

closest cities.

43

Local search for continuous spaces
• Let Ci be the set of cities whose closest airport (in the current

state) is airport i. Then, in the neighborhood of the current state,

where the Ci’s remain constant, we have

• f(x1,y1,x2,y2,x3,y3) = sum3
i=1 sumc in Ci (xi-xc)2 + (yi-yc)2

• This expression is correct locally, but not globally because the

sets Ci are (discontinuous) functions of the state.

• One way to avoid continuous problems is simply to discretize the

neighborhood of each state. For example, we can move only one

airport at a time in either the x or y direction by a fixed amount +-

K. With 6 variables, this gives 12 possible successors for each

state. We can then apply any of the local search algorithms

described previously. We could also apply stochastic hill

climbing and simulated annealing directly, without discretizing

the space. These algorithms choose successors randomly, which

can be done by generating random vectors of length K.

44

Local search for continuous spaces

• Many methods attempt to use the gradient of the landscape to find

a maximum. The gradient of the objective function is a vector Df

that gives the magnitude and direction of the steepest slope (vector

of the derivatives of the objective with respect to each variable).

• In some cases we can find a maximum by solving the equation Df =

0 (this could be done, for example, if we were placing just one

airport; the solution is the arithmetic mean of all the cities’

coordinates). In many cases, however, this equation cannot be

solved in closed form. For example, with three airports, the

expression for the gradient depends on what cities are closest to

each airport in the current state. This means we can compute the

gradient locally (but not globally). Given a locally correct

expression for the gradient, we can perform steepest-ascent hill

climbing by updating the current state according to x x + a Df(x).

45

Local search extensions

• More advanced approaches for continuous spaces:

empirical gradient, line search, Newton-Raphson

method, Hessian matrix, etc. We will see some of these

in the optimization module of the class.

• Can also apply local search for nondeterministic

actions (And-Or search trees), for partial observation

(belief-state search), and for online search in real-time

for unknown environments (all of the algorithms we

have seen produce agents for offline search).

46

Local search wrap-up

• Local search methods such as hill climbing operate on

complete-state formulations, keeping only a small number of

nodes in memory. Several stochastic algorithms have been

developed, including simulated annealing, which returns

optimal solutions when given an appropriate cooling schedule.

• Many local search methods apply also to problems in continuous

spaces. Linear programming and convex optimization

problems obey certain restrictions on the shape of the state space

and the nature of the objective function, and admit polynomial-

time algorithms that are often extremely efficient in practice.

• A genetic algorithm is a stochastic hill-climbing search in

which a large population of states is maintained. New states are

generated by mutation and crossover, which combines pairs of

states from the population.

47

Adversarial search

• We first consider games with two players, whom we

call MAX and MIN. MAX moves first, and then they

take turns moving until the game is over. At the end of

the game, points are awarded to the winning player,

and penalties given to the loser. A game can be

formally defined as a kind of search problem with the

following elements:

48

Search problem definition

• States

• Initial state

• Actions

• Transition model

• Goal test

• Path cost

49

Definition for 8-queens problem

• States: Any arrangement of 0 to 8 queens on the

board is a state.

• Initial state: No queens on the board.

• Actions: Add a queen to any empty square.

• Transition model: Returns the board with a

queen added to the specified square

• Goal test: 8 queens are on the board, none

attacked

• Path cost: (Not applicable)

50

Game definition

• S0: the initial state, which specifies how the game starts

• PLAYER(s): defines which player has the move in a state

• ACTIONS(s): Returns the set of legal moves in a state

• RESULT(s,a): The transition model, which defines the result of

a move.

• TERMINAL-TEST(s): A terminal test, which is true when the

game is over and false otherwise. States where the game has

ended are called terminal states.

• UTILITY(s,p): A utility function (also called an objective

function or payoff function), defines the final numeric value for a

game that ends in terminal state s for a player p. In chess, the

outcome is a win, loss, or draw, with values +1, 0, or ½. Some

games have a wider variety of possible outcomes; the payoffs in

backgammon range from 0 to +192.

51

Zero-sum games

• A zero-sum game is (confusingly) defined as

one where the total payoff to all players is the

same for every instance of the game.

• Is chess zero-sum?

• Checkers?

• Poker?

52

Zero-sum games

• Chess is zero-sum because every game has payoff of

either 0 +1, 1+0, or ½ + ½

• “Constant-sum” would have been a better term, but

zero-sum is traditional and makes sense if you imagine

that each player is charged an entry fee of ½.

53

Game tree

• The initial state, ACTIONS function, and RESULT function

define the game tree for the game—a tree where the nodes are

game states and the edges are moves. The figure shows part of

the game tree for tic-tac-toe. From the initial state, MAX has

nine possible moves. Play alternates between MAX’s placing an

X and MIN’s placing an O until we reach leaf nodes

corresponding to terminal states such that one player has three in

a row or all the squares are filled. The number on each leaf node

indicates the utility value of the terminal state from the point of

view of MAX; high values are assumed to be good for MAX

and bad for MIN (which is how the players get their names).

54

Game trees

55

Game trees

• For tic-tac-toe the game tree is relatively small—fewer

than 9! = 362,880 terminal nodes. But for chess there

are over 10^40 nodes, so the game tree is best thought

of as a theoretical construct that we cannot realize in

the physical world. But regardless of the game tree, it

is MAX’s job to search for a good move. We use the

term search tree for a tree that is superimposed on the

full game tree, and examines enough nodes to allow a

player to determine what move to make.

56

Optimal decisions in games

• In a normal search problem, the optimal solution would

be a sequence of actions leading to a goal state—a

terminal state that is a win. In adversarial search, MIN

has something to say about it. MAX therefore must

find a contingent strategy, which specifies MAX’s

move in the initial state, then MAX’s moves in the

states resulting from every possible response by MIN,

then MAX’s moves in the states resulting by every

possible response by MIN to those moves, and so on.

Roughly speaking, an optimal strategy leads to

outcomes at least as good as any other strategy when

one is playing an infallible opponent.

57

58

Alternative search paradigms

• Local search: evaluates and modifies one or more current states,

rather than systematically exploring paths from an initial state.

– Global vs. local minimum/maximum, hill-climbing, simulated annealing,

local beam search, genetic algorithms

• Adversarial search: search with multiple agents, where our

optimal action depends on the cost/“utilities” of other agents and

not just our own.

– E.g., robot soccer, computer chess, etc.

– Zero-sum games, perfect vs. imperfect information, minimax search,

alpha-beta pruning

• Constraint satisfaction: assign a value to each variable that

satisfies certain constraints. E.g., map coloring.

59

Constraint satisfaction

60

Homework for next class

• Chapter 8 from Russell-Norvig textbook.

• HW1: out 9/5 due 9/28

