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CAP 4630

Artificial Intelligence

Instructor: Sam Ganzfried

sganzfri@cis.fiu.edu
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• http://www.ultimateaiclass.com/

• https://moodle.cis.fiu.edu/

• HW1 out 9/5 today, due 9/28 

– Remember that you have up to 4 late days to use throughout 

the semester.

– https://www.cs.cmu.edu/~sganzfri/HW1_AI.pdf

– http://ai.berkeley.edu/search.html

• Office hours: ECS 254 today after lecture

http://www.ultimateaiclass.com/
http://ai.berkeley.edu/search.html
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• https://www.cs.cmu.edu/~sganzfri/Calendar_AI.docx

• Midterm exam: on 10/19

• Final exam pushed back (likely on 12/12 instead of 12/5)

• Extra lecture on NLP on 11/16

• Will likely only cover 1-1.5 lectures on logic and on planning

• Only 4 homework assignments instead of 5

https://www.cs.cmu.edu/~sganzfri/Calendar_AI.docx
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Local vs. classical search

• The search algorithms that we have seen so far are designed to 

explore search spaces systematically. This systematicity is 

achieved by keeping one or more paths in memory and by 

recording which alternatives have been explored at each point 

along the path. When a goal is found, the path to that goal also 

constitutes a solution to the problem. In many problems, 

however, the path to the goal is irrelevant. For example, in the 8-

queens problem, what matters is the final configuration of 

queens, not the order in which they are added. The same general 

property holds for many important applications such as 

integrated circuit design, factory-floor layout, job-shop 

scheduling, automatic programming, telecommunications 

network optimization, vehicle routing, and portfolio 

management.
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Local search

• If the path to the goal does not matter, we might 

consider a different class of algorithms, ones that do 

not worry about paths at all. Local search algorithms 

operate using a single current node (rather than 

multiple paths) and generally move only to neighbors 

of that node. Typically, the paths followed by the 

search are not retained. Although local search 

algorithms are not systematic, they have two key 

advantages:

– 1) They use very little memory—usually a constant amount

– And 2) they can often find reasonable solutions in large or 

infinite (continuous) state spaces for which systematic 

algorithms are unsuitable.
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Local search

• In addition to finding goals, local search algorithms are 

useful for solving pure optimization problems (more 

on this in upcoming lectures), in which the aim is to 

find the best state according to an objective function. 

Many optimization problems do not fit the “standard” 

search model introduced before. For example, nature 

provides an objective function—reproductive fitness—

that Darwinian evolution could be seen as attempting 

to optimize, but there is no “goal test” and no “path 

cost” for this problem.
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Local search
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Hill-climbing search

• The hill-climbing search algorithm (steepest-ascent

version) is simply a loop that continually moves in the 

direction of increasing value—that is, uphill. It 

terminates when it reaches a “peak” where no neighbor 

has a higher value. The algorithm does not maintain a 

search tree, so the data structure for the current node 

need only record the state and the value of the 

objective function. Hill climbing does not look ahead 

beyond the immediate neighbors of the current state. 

This resembles trying to find the top of Mount Everest 

in a thick fog while suffering from amnesia.
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8-queens
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Hill-climbing search



11

Hill-climbing search

• To illustrate hill climbing, we will use the 8-queens 

problem introduced earlier. Local search algorithms 

typically use a complete-state formulation, where 

each state has 8 queens on the board, one per column. 

The successors of a state are all possible states 

generated by moving a single queen to another square 

in the same column (so each state has 8x7=56 

successors) The heuristic cost function h is the number 

of pairs of queens that are attacking each other, either 

directly or indirectly. The global minimum of this 

function is zero, which occurs only at perfect solutions. 
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Hill climbing

• Hill climbing is sometimes called greedy local search

because it grabs a good neighbor state without thinking 

ahead about where to go next. Although greed is 

considered one of the seven deadly sins, it turns out 

that greedy algorithms often perform quite well. Hill 

climbing often makes rapid progress toward a solution 

because it is usually quite easy to improve a bad state. 

For example, from the 8-queens game state, it takes 

just five steps to reach the right state which has h=1 

and is very nearly a solution.
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Hill climbing can get stuck

• Unfortunately, hill climbing often gets stuck for the 

following reasons:

– Local maxima: a local maximum is a peak that is higher 

than each of its neighboring states but lower than the global 

maximum. Hill-climbing algorithms that reach the vicinity of 

a local maximum will be drawn upward toward the peak but 

will then be stuck with nowhere else to go. More concretely, 

the right figure for the 8-queens is a local maximum (i.e., a 

local minimum for the cost h); every move of a single queen 

makes the situation worse.



14

Local search
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Hill climbing can get stuck

• Unfortunately, hill climbing often gets stuck for the 

following reasons:

– Local maxima: a local maximum is a peak that is higher 

than each of its neighboring states but lower than the global 

maximum. Hill-climbing algorithms that reach the vicinity of 

a local maximum will be drawn upward toward the peak but 

will then be stuck with nowhere else to go. 

– Ridges: a ridge is shown in next figure. Ridges result in a 

sequence of local maxima that is very difficult for greedy 

algorithms to navigate.

– Plateaux: a plateau is a flat area of the state-space landscape. 

It can be a flat local maximum, from which no uphill exist 

exists, or a shoulder, from which progress is possible. A hill-

climbing search might get lost on the plateau.



16

Hill climbing ridge
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Hill climbing

• In each case, the algorithm reaches a point at which no 

progress is being made. Starting from a randomly 

generated 8-queens state, steepest-ascent hill climbing 

gets stuck 86% of the time, solving only 14% of 

problem instances. It works quickly, taking just 4 steps 

on average when it succeeds and 3 when it gets stuck—

not bad for a state space with 8^8 ~= 17 million states.



18

Hill climbing

• The algorithm halts if it reaches a plateau where 

the best successor has the same value as the 

current state. Might it not be a good idea to keep 

going—to allow a sideways move in the hope 

that the plateau is really a “shoulder?”
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Hill climbing

• The answer is usually yes, but we must take care. If we 

always allow sideways moves when there are no uphill 

moves, an infinite loop will occur whenever the 

algorithm reaches a flat local maximum that is not a 

shoulder. One common solution is to put a limit on the 

number of consecutive sideways moves allowed. For 

example, we could allow up to, say, 100 consecutive 

sideways moves in the 8-queens problem. This raises 

the percentage of problem instances solved by hill 

climbing from 14% to 94%. Success comes at a cost: 

the algorithm averages roughly 21 steps for each 

successful instance and 64 for each failure.
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Hill climbing

• Many variants of hill climbing have been invented. 

• Stochastic hill climbing chooses at random from 

among the uphill moves; the probability of selection 

can vary with the steepness of the uphill move. This 

usually converges more slowly than steepest ascent, 

but in some state landscapes, it finds better solutions.

• First-choice hill climbing implements stochastic hill 

climbing by generating successors randomly until one 

is generated that is better than the current state. This is 

a good strategy when a state has many (e.g., thousands) 

of successors).
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Hill climbing

• The hill-climbing algorithms described so far are 

incomplete—they often fail to find a goal when one 

exists because they can get stuck on local maximum. 

• Random-restart hill climbing adopts the well-known 

adage, “If at first you don’t succeed, try, try again.” It 

conducts a series of hill-climbing searches from 

randomly generated initial states, until a goal is found. 

It is trivially complete with probability approaching 1, 

because it will eventually generate a goal state as the 

initial state.
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Random-restart hill climbing

• If each hill-climbing search has a probability p of 

success, then the expected number of restarts required 

is 1/p. For 8-queens instances with no sideways moves 

allowed, p~=0.14, so we need roughly 7 iterations to 

find a goal (6 failures and 1 success). The expected 

number of steps is the cost of one successful iteration 

plus (1-p)/p times the cost of failure, or roughly 22 

steps in all. When we allow sideways moves, 1/0.94 ~= 

1.06 iterations are needed on average and 

(1x21)+(0.06/0.94)x64~=25 steps. For 8-queens, then, 

random-restart hill climbing is very effective indeed. 

Even for three million queens, the approach can find 

solutions in under a minute.
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Simulated annealing

• A hill-climbing algorithm that never makes “downhill” 

moves toward states with lower value (or higher cost) 

is guaranteed to be incomplete, because it can get stuck 

on a local maximum. In contrast, a purely random 

walk—that is, moving to a successor chosen uniformly 

at random from the set of successors—is complete but 

extremely inefficient. Therefore, it seems reasonable to 

try to combine hill climbing with a random walk in 

some way that yields both efficiency and completeness.



24

Simulated annealing

• Simulated annealing is such an algorithm. In metallurgy, 

annealing is the process used to temper or harden metals and 

glass by heating them to a high temperature and then gradually 

cooling them, thus allowing the material to reach a low-energy 

crystalline state. To explain simulated annealing, we stich our 

point of view from hill climbing to gradient descent

(minimizing cost) and imagine the task of getting a ping-pong 

ball into the deepest crevice in a bumpy surface. If we just let 

the ball roll, it will come to rest at a local minimum. If we shake 

the surface, we can bounce the ball out of the local minimum. 

The trick is to shake just hard enough to bounce the ball out of 

the LM but not hard enough to dislodge it from the global 

minimum. The SA solution is to start by shaking hard (i.e., high 

temperature) and then gradually reduce the intensity.



25

Simulated annealing
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Simulated annealing

• The innermost loop of the SA algorithm is quite similar to hill 

climbing. Instead of picking the best move, however, it picks a 

random move. If the move improves the situation, it is always 

accepted. Otherwise, the algorithm accepts the move with some 

probability less than 1. The probability decreases exponentially 

with the “badness” of the move—the amount DE by which the 

evaluation is worsened. The probability also decreases as the 

“temperature” T goes down: “bad” moves are more likely to be 

allowed a the start when T is high, and they become more 

unlikely as T decreases. If the schedule lowers T slowly enough, 

the algorithm will find a global optimum with probability 

approaching 1.
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Simulated annealing

• Simulated annealing was first used extensively to solve 

VLSI layout problems (creating integrated circuit by 

combining thousands of transistors into a single chip) 

in the early 1980s. It has been applied widely to factory 

scheduling and other large-scale optimization tasks. 

• Homework exercise (for HW2): compare performance 

of simulated annealing to that of random-restart hill 

climbing on the 8-queens puzzle.
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Local beam search

• Keeping just one node in memory might seem to be an 

extreme reaction to the problem of memory limitations. 

The local beam search algorithm keeps track of k 

states rather than just 1. It begins with k randomly 

generated states. At each step, all successors of all k 

states are generated. If any one is a goal, the algorithm 

halts. Otherwise, it selects the k best successors from 

the complete list and repeats.
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Local beam search

• At first sight, a local beam search with k states might seem to be 

nothing more than running k random restarts in parallel instead 

of in sequence. In fact, the two algorithms are quite different. In 

a random-restart search, each search process runs independently 

of the others. In a local beam search, useful information is 

passed among the parallel search threads. In effect, the states 

that generate the best successors say to the others, “Come over 

here, the grass is greener!” The algorithm quickly abandons 

unfruitful searches and moves its resources to where toe most 

progress is being made.
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Local beam search

• In its simplest form, local beam search can suffer from a lack of 

diversity among the k states—they can quickly become 

concentrated in a small region of the state space, making the 

search little more than an expensive version of hill climbing. A 

variant called stochastic beam search, analogous to stochastic 

hill climbing, helps alleviate this problem. Instead of choosing 

the best k from the pool of candidate successors, SBS chooses k 

successors at random, with the probability of choosing a given 

successor being an increasing function of its value. SBS bears 

some resemblance to the problem of natural selection, whereby 

the “successors” (offspring) of a “state” (organism) populate the 

next generation according to its “value” (fitness).
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Genetic algorithms

• A genetic algorithm (GA) is a variant of stochastic beam 

search in which successor states are generated by combining two

parent states rather than by modifying a single state. 

• Like beam searches, GAs begin with a set of k randomly 

generated states, called the population. Each state, or 

individual, is represented a s a string over a finite alphabet—

most commonly, a string of 0s and 1s. For example, an 8-queens 

state must specify the positions of 8 queens, each in a column of 

8 squares, and so requires 8 x log(8) = 24 bits. Alternatively, the 

state could be represented as 8 digits, each in the range from 1 to 

8. The figure shows a population of four 8-digit strings 

representing 8-queens states.
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Genetic algorithms

• The production of the next generation of states is 

shown in Figure 4.6b-e. In (b), each state is rated by 

the objective function, or (in GA terminology) the 

fitness function. A fitness function should return 

higher values for better states, so, for the 8-queens 

problem we use the number of nonattacking pairs of 

queens, which has a value of 28 for a solution. The 

values of the four states are 24, 23, 20, and 11. In this 

particular variant of the genetic algorithm, the 

probability of being chosen for reproducing is directly 

proportional to the fitness score, and the percentages 

are shown next to the raw scores.
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Genetic algorithms

• In (c), two pairs are selected at random for reproduction, in 

accordance with the probabilities in (b). Notice that one 

individual is selected twice and one not at all. For each pair to be 

mated, a crossover point is chosen randomly from the positions 

in the string. In the figure, the crossover points are after the third 

digit in the first pair and after the fifth digit in the second pair.

• In (d), the offspring themselves are created by crossing over the 

parent strings at the crossover point. For example, the first child 

of the first pair gets the first three digits from the first parent and 

the remaining digits from the second parent, whereas the second 

child gets the first three digits from the second parent and the 

rest from the first parent. The 8-queens states involved in the 

reproduction step are shown in Figure 4.7.
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Genetic algorithms
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Genetic algorithms

• The example shows that when two parent states are 

quite different, the crossover operation can produce a 

state that is a long way from either parent state. It is 

often the case that the population is quite diverse early 

on in the process, so crossover (like simulated 

annealing) frequently takes large steps in the state 

space early in the search process and smaller steps later 

on when most individuals are quite similar.
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Genetic algorithms

• Finally, in (e), each location is subject to random 

mutation with small independent probability. One 

digit was mutated in the first, third, and fourth 

offspring. In the 8-queens problem, this corresponds to 

choosing a queen at random and moving it to a random 

square in its column. 
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Genetic algorithms
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Genetic algorithms

• Like stochastic beam search, genetic algorithms combine uphill 

tendency with random exploration and exchange of information 

among parallel search threads. The primary advantage, if any, of 

genetic algorithms comes from the crossover operation. Yet it 

can be shown mathematically that, if the positions of the genetic 

code are permuted initially in a random order, crossover conveys 

no advantage. Intuitively, the advantage comes from the ability 

of crossover to combine large blocks of letters that have evolved 

independently to perform useful functions, thus raising the level 

of granularity at which the search operates. For example, it could 

be that putting the first three queens in positions 2, 4, and 6 

(where they do not attack each other) constitutes a useful block 

that can be combined with other blocks to construct a solution.
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Genetic algorithms

• In practice, genetic algorithms have had a widespread 

impact on optimization problems, such as circuit layout 

and job-shop scheduling. At present, it is not clear 

whether the appeal of genetic algorithms arises from 

their performance or from their aesthetically pleasing 

origins in the theory of evolution. Much work remains 

to be done to identify the conditions under which 

genetic algorithms perform well.
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Local search for continuous spaces

• Earlier we explained the distinction between discrete and 

continuous environments, pointing out that most real-world 

environments are continuous. Yet none of the algorithms we 

have described (except for first-choice hill climbing and 

simulated annealing) can handle continuous state and action 

spaces, because they have infinite branching factors. There exist 

other local search techniques for finding optimal solutions in 

continuous spaces. Many of the basic techniques originated in 

the 17th century after the development of calculus by Newton 

and Leibniz. We find use for these techniques at several places, 

including for learning, vision, and robotics.
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Local search
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Local search for continuous spaces 

• Suppose we want to place three new airports anywhere 

in Romania, such that the sum of squared distances 

form each city on the map to its nearest airport is 

minimized. The state space is then defined by the 

coordinates of the airports: (x1,y1), (x2,y2), and 

(x3,y3). This is a six-dimensional space; we also say 

that the states are defined by six variables. Moving 

around in this space corresponds to moving one or 

more of the airports on the map.  The objective 

function f(x1,y1,x2,y2,x3,y3) is relatively easy to 

compute for any particular state once we compute the 

closest cities. 
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Local search for continuous spaces
• Let Ci be the set of cities whose closest airport (in the current 

state) is airport i. Then, in the neighborhood of the current state, 

where the Ci’s remain constant, we have

• f(x1,y1,x2,y2,x3,y3) = sum3
i=1 sumc in Ci (xi-xc)2 + (yi-yc)2

• This expression is correct locally, but not globally because the 

sets Ci are (discontinuous) functions of the state.

• One way to avoid continuous problems is simply to discretize the 

neighborhood of each state. For example, we can move only one 

airport at a time in either the x or y direction by a fixed amount +-

K. With 6 variables, this gives 12 possible successors for each 

state. We can then apply any of the local search algorithms 

described previously. We could also apply stochastic hill 

climbing and simulated annealing directly, without discretizing 

the space. These algorithms choose successors randomly, which 

can be done by generating random vectors of length K.
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Local search for continuous spaces

• Many methods attempt to use the gradient of the landscape to find 

a maximum. The gradient of the objective function is a vector Df

that gives the magnitude and direction of the steepest slope (vector 

of the derivatives of the objective with respect to each variable). 

• In some cases we can find a maximum by solving the equation Df = 

0 (this could be done, for example, if we were placing just one 

airport; the solution is the arithmetic mean of all the cities’ 

coordinates). In many cases, however, this equation cannot be 

solved in closed form. For example, with three airports, the 

expression for the gradient depends on what cities are closest to 

each airport in the current state. This means we can compute the 

gradient locally (but not globally). Given a locally correct 

expression for the gradient, we can perform steepest-ascent hill 

climbing by updating the current state according to x  x + a Df(x).
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Local search extensions

• More advanced approaches for continuous spaces: 

empirical gradient, line search, Newton-Raphson 

method, Hessian matrix, etc. We will see some of these 

in the optimization module of the class.

• Can also apply local search for nondeterministic 

actions (And-Or search trees), for partial observation 

(belief-state search), and for online search in real-time 

for unknown environments (all of the algorithms we 

have seen produce agents for offline search). 
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Local search wrap-up

• Local search methods such as hill climbing operate on 

complete-state formulations, keeping only a small number of 

nodes in memory. Several stochastic algorithms have been 

developed, including simulated annealing, which returns 

optimal solutions when given an appropriate cooling schedule.

• Many local search methods apply also to problems in continuous 

spaces. Linear programming and convex optimization

problems obey certain restrictions on the shape of the state space 

and the nature of the objective function, and admit polynomial-

time algorithms that are often extremely efficient in practice.

• A genetic algorithm is a stochastic hill-climbing search in 

which a large population of states is maintained. New states are 

generated by mutation and crossover, which combines pairs of 

states from the population.
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Adversarial search

• We first consider games with two players, whom we 

call MAX and MIN. MAX moves first, and then they 

take turns moving until the game is over. At the end of 

the game, points are awarded to the winning player, 

and penalties given to the loser. A game can be 

formally defined as a kind of search problem with the 

following elements:
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Search problem definition

• States

• Initial state

• Actions

• Transition model

• Goal test

• Path cost
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Definition for 8-queens problem

• States: Any arrangement of 0 to 8 queens on the 

board is a state.

• Initial state: No queens on the board.

• Actions: Add a queen to any empty square.

• Transition model: Returns the board with a 

queen added to the specified square

• Goal test: 8 queens are on the board, none 

attacked

• Path cost: (Not applicable)
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Game definition

• S0: the initial state, which specifies how the game starts

• PLAYER(s): defines which player has the move in a state

• ACTIONS(s): Returns the set of legal moves in a state

• RESULT(s,a): The transition model, which defines the result of 

a move.

• TERMINAL-TEST(s): A terminal test, which is true when the 

game is over and false otherwise. States where the game has 

ended are called terminal states.

• UTILITY(s,p): A utility function (also called an objective 

function or payoff function), defines the final numeric value for a 

game that ends in terminal state s for a player p. In chess, the 

outcome is a win, loss, or draw, with values +1, 0, or ½. Some 

games have a wider variety of possible outcomes; the payoffs in 

backgammon range from 0 to +192.
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Zero-sum games

• A zero-sum game is (confusingly) defined as 

one where the total payoff to all players is the 

same for every instance of the game. 

• Is chess zero-sum?

• Checkers?

• Poker?
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Zero-sum games

• Chess is zero-sum because every game has payoff of 

either 0 +1, 1+0, or ½ + ½ 

• “Constant-sum” would have been a better term, but 

zero-sum is traditional and makes sense if you imagine 

that each player is charged an entry fee of ½.
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Game tree

• The initial state, ACTIONS function, and RESULT function 

define the game tree for the game—a tree where the nodes are 

game states and the edges are moves. The figure shows part of 

the game tree for tic-tac-toe. From the initial state, MAX has 

nine possible moves. Play alternates between MAX’s placing an 

X and MIN’s placing an O until we reach leaf nodes 

corresponding to terminal states such that one player has three in 

a row or all the squares are filled. The number on each leaf node 

indicates the utility value of the terminal state from the point of 

view of MAX; high values are assumed to be good for MAX 

and bad for MIN (which is how the players get their names).
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Game trees
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Game trees

• For tic-tac-toe the game tree is relatively small—fewer 

than 9! = 362,880 terminal nodes. But for chess there 

are over 10^40 nodes, so the game tree is best thought 

of as a theoretical construct that we cannot realize in 

the physical world. But regardless of the game tree, it 

is MAX’s job to search for a good move. We use the 

term search tree for a tree that is superimposed on the 

full game tree, and examines enough nodes to allow a 

player to determine what move to make.
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Optimal decisions in games

• In a normal search problem, the optimal solution would 

be a sequence of actions leading to a goal state—a 

terminal state that is a win. In adversarial search, MIN 

has something to say about it. MAX therefore must 

find a contingent strategy, which specifies MAX’s 

move in the initial state, then MAX’s moves in the 

states resulting from every possible response by MIN, 

then MAX’s moves in the states resulting by every 

possible response by MIN to those moves, and so on. 

Roughly speaking, an optimal strategy leads to 

outcomes at least as good as any other strategy when 

one is playing an infallible opponent. 
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Alternative search paradigms

• Local search: evaluates and modifies one or more current states, 

rather than systematically exploring paths from an initial state. 

– Global vs. local minimum/maximum, hill-climbing, simulated annealing, 

local beam search, genetic algorithms

• Adversarial search: search with multiple agents, where our 

optimal action depends on the cost/“utilities” of other agents and 

not just our own. 

– E.g., robot soccer, computer chess, etc.

– Zero-sum games, perfect vs. imperfect information, minimax search, 

alpha-beta  pruning

• Constraint satisfaction: assign a value to each variable that 

satisfies certain constraints. E.g., map coloring.
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Constraint satisfaction
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Homework for next class

• Chapter 8 from Russell-Norvig textbook.

• HW1: out 9/5 due 9/28


