
1

CAP 4630

Artificial Intelligence

Instructor: Sam Ganzfried

sganzfri@cis.fiu.edu
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• http://www.ultimateaiclass.com/

• https://moodle.cis.fiu.edu/

• HW1 out 9/5 today, due 9/28 (maybe 10/3)

– Remember that you have up to 4 late days to use throughout 

the semester.

– https://www.cs.cmu.edu/~sganzfri/HW1_AI.pdf

– http://ai.berkeley.edu/search.html

• Office hours

http://www.ultimateaiclass.com/
http://ai.berkeley.edu/search.html
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• https://www.cs.cmu.edu/~sganzfri/Calendar_AI.docx

• Midterm exam: on 10/19

• Final exam pushed back (likely on 12/12 instead of 12/5)

• Extra lecture on NLP on 11/16

• Will likely only cover 1-1.5 lectures on logic and on planning

• Only 4 homework assignments instead of 5

https://www.cs.cmu.edu/~sganzfri/Calendar_AI.docx
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Heuristic functions
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8-puzzle

• The object of the puzzle is to slide the tiles horizontally or 

vertically into the empty space until the configuration matches 

the goal configuration.

• The average solution cost for a randomly generated 8-puzzle 

instance is about 22 steps. The branching factor is about 3 (when 

the empty tile is in the middle, four moves are possible; when it 

is in a corner, two; and when it is along an edge, three). This 

means that an exhaustive tree search to depth 22 would look at 

about 3^22 = 3.1*10^10 states. A graph search would cut this 

down by a factor of about 170,000 because only 181,440 distinct 

states are reachable (homework exercise). This is a manageable 

number, but for a 15-puzzle, it would be 10^13, so we will need 

a good heuristic function. 
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8-puzzle

• If we want to find the shortest solutions by using A*, 

we need a heuristic function that never overestimates 

the number of steps to the goal. There is a long history 

of such heuristics for the 15-puzzle; here are two 

commonly used candidates:
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8-puzzle

• h1 = the number of misplaced tiles. For the 

example, all of the 8 tiles are out of position, so 

the start state would have h1 = 8. 

Is h1 admissible?
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8-puzzle heuristic functions

• Yes h1 is admissible, because it is clear that any tile 

that is out of place must be moved at least once.

• h2 = the sum of the distances of the tiles from their 

goal positions. Because tiles cannot move along 

diagonals, the distance we will count is the sum of the 

horizontal and vertical distances. This sometimes 

called the city block distance or Manhattan distance. 

Is h2 admissible?
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8-puzzle heuristic functions

• Yes h2 is also admissible, because all any move can do 

is move one tile one step closer to the goal. Tiles 1 to 8 

in the start state give a Manhattan distance of:

h2 = 3 + 1 + 2 + 2 + 2 + 3 + 3 + 2 = 18.

• As expected, neither of these overestimates the true 

solution cost, which is 26.
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Heuristic functions

• One way to characterize the quality of a heuristic is the effective 

branching factor b*. If the total number of nodes generated by 

A* for a particular problem is N and the solution depth is d, then 

b* is the branching factor that a uniform tree of depth d would 

have to have in order to contain N+1 nodes. Thus,

N+1 = 1 + b* + (b*)^2 + … + (b*)^d

• For example, if A* finds a solution at depth 5 using 52 nodes, 

then the effective branching factor is 1.92. The effective 

branching factor can vary across problem instances, but usually 

it is fairly constant for sufficiently hard problems. Therefore, 

experimental measurements of b* on a small set of problems can 

provide a good guide to the heuristic’s overall usefulness. A 

well-designed heuristic would have a value of b* close to 1, 

allowing fairly large problems to be solved at a reasonable cost.



11

Heuristic functions
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Heuristic functions

• To test the heuristic functions h1 and h2, we generated 

1200 random problems with solution lengths from 2 to 

24 (100 for each even number) and solved them with 

IDS and with A* tree search using both h1 and h2. 

• The results suggest that h2 is better than h1, and is far 

better than using IDS. Even for small problems with 

d=12, A* with h2 is 50,000 times more efficient than 

uninformed IDS.
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Heuristic functions

• One might ask whether h2 is always better than h1. 

The answer is “Essentially yes.” It is easy to see from 

the definitions of the two that, for any node n, h2(n) >= 

h1(n). We thus say that h2 dominates h1. Domination 

translates directly into efficiency: A* using h2 will 

never expand more nodes than A* using h1 (except 

possibly for some nodes with f(n) = C*). 

• Hence, it is generally better to use a heuristic function 

with higher values, provided it is consistent and that 

the computation time for the heuristic is not too long.
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Search wrap-up

• Search-problem definition: Initial state, actions, transition 

model, path cost, state space, path, solution.

• General TREE-SEARCH and GRAPH-SEARCH algorithm. 

Tree-search considers all possible paths to find a solution, while 

graph-search avoids consideration of redundant paths.

• “Big 4” criteria: completeness, optimality, time complexity, 

space complexity. Often depends on branching factor b and d, 

depth of the shallowest solution.

• Uninformed search algorithms have access only to the problem 

definition: BFS, UCS, DFS, DLS, IDS, BDS.

• Informed search may have access to a heuristic function h(n) 

that estimates the cost of a solution from n: generic best-first 

search, greedy best-first search, A* search, RBFS, SMA*
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Upcoming search paradigms

• Next time: quick introduction to alternative search 

methodologies.

• Local search: evaluates and modifies one or more current states, 

rather than systematically exploring paths from an initial state. 

– Global vs. local minimum/maximum, hill-climbing, simulated annealing, 

local beam search, genetic algorithms

• Adversarial search: search with multiple agents, where our 

optimal action depends on the cost/“utilities” of other agents and 

not just our own. 

– E.g., robot soccer, computer chess, etc.

– Zero-sum games, perfect vs. imperfect information, minimax search, 

alpha-beta  pruning

• Constraint satisfaction: assign a value to each variable that 

satisfies certain constraints. E.g., map coloring.
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Local vs. classical search

• The search algorithms that we have seen so far are designed to 

explore search spaces systematically. This systematicity is 

achieved by keeping one or more paths in memory and by 

recording which alternatives have been explored at each point 

along the path. When a goal is found, the path to that goal also 

constitutes a solution to the problem. In many problems, 

however, the path to the goal is irrelevant. For example, in the 8-

queens problem, what matters is the final configuration of 

queens, not the order in which they are added. The same general 

property holds for many important applications such as 

integrated circuit design, factory-floor layout, job-shop 

scheduling, automatic programming, telecommunications 

network optimization, vehicle routing, and portfolio 

management.
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Local search

• If the path to the goal does not matter, we might 

consider a different class of algorithms, ones that do 

not worry about paths at all. Local search algorithms 

operate using a single current node (rather than 

multiple paths) and generally move only to neighbors 

of that node. Typically, the paths followed by the 

search are not retained. Although local search 

algorithms are not systematic, they have two key 

advantages:

– 1) They use very little memory—usually a constant amount

– And 2) they can often find reasonable solutions in large or 

infinite (continuous) state spaces for which systematic 

algorithms are unsuitable.
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Local search

• In addition to finding goals, local search algorithms are 

useful for solving pure optimization problems (more 

on this in upcoming lectures), in which the aim is to 

find the best state according to an objective function. 

Many optimization problems do not fit the “standard” 

search model introduced before. For example, nature 

provides an objective function—reproductive fitness—

that Darwinian evolution could be seen as attempting 

to optimize, but there is no “goal test” and no “path 

cost” for this problem.
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Local search
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Local search

• To understand local search, we find it useful to 

consider the state-space landscape. A landscape has 

both “location” (defined by the state) and “elevation” 

(defined by the value of the heuristic cost function or 

objective function). If elevation corresponds to cost, 

then the aim is to find the lowest valley—a global 

minimum; if elevation corresponds to an objective 

function, then the aim is to find the highest peak—a 

global maximum. (You can convert between them by 

inserting a minus sign). Local search algorithms 

explore this landscape. A complete local search 

algorithm always finds a goal if one exists; an optimal

algorithm always finds a global minimum/maximum
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Hill-climbing search

• The hill-climbing search algorithm (steepest-ascent

version) is simply a loop that continually moves in the 

direction of increasing value—that is, uphill. It 

terminates when it reaches a “peak” where no neighbor 

has a higher value. The algorithm does not maintain a 

search tree, so the data structure for the current node 

need only record the state and the value of the 

objective function. Hill climbing does not look ahead 

beyond the immediate neighbors of the current state. 

This resembles trying to find the top of Mount Everest 

in a thick fog while suffering from amnesia.
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8-queens
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Hill-climbing search
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Hill-climbing search

• To illustrate hill climbing, we will use the 8-queens

problem introduced earlier. Local search algorithms 

typically use a complete-state formulation, where 

each state has 8 queens on the board, one per column. 

The successors of a state are all possible states 

generated by moving a single queen to another square 

in the same column (so each state has 8x7=56 

successors) The heuristic cost function h is the number 

of pairs of queens that are attacking each other, either 

directly or indirectly. The global minimum of this 

function is zero, which occurs only at perfect solutions. 
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Hill climbing

• The figure shows a state with h = 17. The figure also 

shows the values of all its successors, with the best 

figure also shows the values of all its successors, with 

the best successors having h = 12. Hill-climbing 

algorithms typically choose randomly among the set of 

best successors if there is more than one.
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Hill climbing

• Hill climbing is sometimes called greedy local search

because it grabs a good neighbor state without thinking 

ahead about where to go next. Although greed is 

considered one of the seven deadly sins, it turns out 

that greedy algorithms often perform quite well. Hill 

climbing often makes rapid progress toward a solution 

because it is usually quite easy to improve a bad state. 

For example, from the 8-queens game state, it takes 

just five steps to reach the right state which has h=1 

and is very nearly a solution.



27

Hill climbing can get stuck

• Unfortunately, hill climbing often gets stuck for the 

following reasons:

– Local maxima: a local maximum is a peak that is higher 

than each of its neighboring states but lower than the global 

maximum. Hill-climbing algorithms that reach the vicinity of 

a local maximum will be drawn upward toward the peak but 

will then be stuck with nowhere else to go. More concretely, 

the right figure for the 8-queens is a local maximum (i.e., a 

local minimum for the cost h); every move of a single queen 

makes the situation worse.
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Local search
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Hill climbing can get stuck

• Unfortunately, hill climbing often gets stuck for the 

following reasons:

– Local maxima: a local maximum is a peak that is higher 

than each of its neighboring states but lower than the global 

maximum. Hill-climbing algorithms that reach the vicinity of 

a local maximum will be drawn upward toward the peak but 

will then be stuck with nowhere else to go. 

– Ridges: a ridge is shown in next figure. Ridges result in a 

sequence of local maxima that is very difficult for greedy 

algorithms to navigate.

– Plateaux: a plateau is a flat area of the state-space landscape. 

It can be a flat local maximum, from which no uphill exist 

exists, or a shoulder, from which progress is possible. A hill-

climbing search might get lost on the plateau.
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Hill climbing ridge
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Hill climbing

• In each case, the algorithm reaches a point at which no 

progress is being made. Starting from a randomly 

generated 8-queens state, steepest-ascent hill climbing 

gets stuck 86% of the time, solving only 14% of 

problem instances. It works quickly, taking just 4 steps 

on average when it succeeds and 3 when it gets stuck—

not bad for a state space with 8^8 ~= 17 million states.
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Hill climbing

• The algorithm halts if it reaches a plateau where 

the best successor has the same value as the 

current state. Might it not be a good idea to keep 

going—to allow a sideways move in the hope 

that the plateau is really a “shoulder?”
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Hill climbing

• The answer is usually yes, but we must take care. If we 

always allow sideways moves when there are no uphill 

moves, an infinite loop will occur whenever the 

algorithm reaches a flat local maximum that is not a 

shoulder. One common solution is to put a limit on the 

number of consecutive sideways moves allowed. For 

example, we could allow up to, say, 100 consecutive 

sideways moves in the 8-queens problem. This raises 

the percentage of problem instances solved by hill 

climbing from 14% to 94%. Success comes at a cost: 

the algorithm averages roughly 21 steps for each 

successful instance and 64 for each failure.
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Hill climbing

• Many variants of hill climbing have been invented. 

• Stochastic hill climbing chooses at random from 

among the uphill moves; the probability of selection 

can vary with the steepness of the uphill move. This 

usually converges more slowly than steepest ascent, 

but in some state landscapes, it finds better solutions.

• First-choice hill climbing implements stochastic hill 

climbing by generating successors randomly until one 

is generated that is better than the current state. This is 

a good strategy when a state has many (e.g., thousands) 

of successors).
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Hill climbing

• The hill-climbing algorithms described so far are 

incomplete—they often fail to find a goal when one 

exists because they can get stuck on local maximum. 

• Random-restart hill climbing adopts the well-known 

adage, “If at first you don’t succeed, try, try again.” It 

conducts a series of hill-climbing searches from 

randomly generated initial states, until a goal is found. 

It is trivially complete with probability approaching 1, 

because it will eventually generate a goal state as the 

initial state.
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Random-restart hill climbing

• If each hill-climbing search has a probability p of 

success, then the expected number of restarts required 

is 1/p. For 8-queens instances with no sideways moves 

allowed, p~=0.14, so we need roughly 7 iterations to 

find a goal (6 failures and 1 success). The expected 

number of steps is the cost of one successful iteration 

plus (1-p)/p times the cost of failure, or roughly 22 

steps in all. When we allow sideways moves, 1/0.94 ~= 

1.06 iterations are needed on average and 

(1x21)+(0.06/0.94)x64~=25 steps. For 8-queens, then, 

random-restart hill climbing is very effective indeed. 

Even for three million queens, the approach can find 

solutions in under a minute.



37

Random-restart hill climbing

• The success of hill climbing depends very much on the 

shape of the state-space landscape: if there are few 

local maxima and plateau, random-restart hill climbing 

will find a good solution very quickly. On the other 

hand, many real problems have a landscape that looks 

more like a widely scattered family of balding 

porcupines on a flat floor, with miniature porcupines 

living on the tip of each porcupine needle, ad infinitum. 

NP-hard problems typically have an exponential 

number of local maxima to get stuck on. Despite this, a 

reasonably good local maximum can often be found 

after a small number of restarts.
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Simulated annealing

• A hill-climbing algorithm that never makes “downhill” 

moves toward states with lower value (or higher cost) 

is guaranteed to be incomplete, because it can get stuck 

on a local maximum. In contrast, a purely random 

walk—that is, moving to a successor chosen uniformly 

at random from the set of successors—is complete but 

extremely inefficient. Therefore, it seems reasonable to 

try to combine hill climbing with a random walk in 

some way that yields both efficiency and completeness.
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Simulated annealing

• Simulated annealing is such an algorithm. In metallurgy, 

annealing is the process used to temper or harden metals and 

glass by heating them to a high temperature and then gradually 

cooling them, thus allowing the material to reach a low-energy 

crystalline state. To explain simulated annealing, we stich our 

point of view from hill climbing to gradient descent

(minimizing cost) and imagine the task of getting a ping-pong 

ball into the deepest crevice in a bumpy surface. If we just let 

the ball roll, it will come to rest at a local minimum. If we shake 

the surface, we can bounce the ball out of the local minimum. 

The trick is to shake just hard enough to bounce the ball out of 

the LM but not hard enough to dislodge it from the global 

minimum. The SA solution is to start by shaking hard (i.e., high 

temperature) and then gradually reduce the intensity.
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Simulated annealing
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Simulated annealing

• The innermost loop of the SA algorithm is quite similar to hill 

climbing. Instead of picking the best move, however, it picks a 

random move. If the move improves the situation, it is always 

accepted. Otherwise, the algorithm accepts the move with some 

probability less than 1. The probability decreases exponentially 

with the “badness” of the move—the amount DE by which the 

evaluation is worsened. The probability also decreases as the 

“temperature” T goes down: “bad” moves are more likely to be 

allowed a the start when T is high, and they become more 

unlikely as T decreases. If the schedule lowers T slowly enough, 

the algorithm will find a global optimum with probability 

approaching 1.
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Simulated annealing

• Simulated annealing was first used extensively to solve 

VLSI layout problems (creating integrated circuit by 

combining thousands of transistors into a single chip) 

in the early 1980s. It has been applied widely to factory 

scheduling and other large-scale optimization tasks. 

• Homework exercise (for HW2): compare performance 

of simulated annealing to that of random-restart hill 

climbing on the 8-queens puzzle.
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Local beam search

• Keeping just one node in memory might seem to be an 

extreme reaction to the problem of memory limitations. 

The local beam search algorithm keeps track of k 

states rather than just 1. It begins with k randomly 

generated states. At each step, all successors of all k 

states are generated. If any one is a goal, the algorithm 

halts. Otherwise, it selects the k best successors from 

the complete list and repeats.



44

Stochastic beam search

• Improves on normal beam search, analogously to 

stochastic hill climbing. Instead of choosing best k 

from the pool of candidate successors, SBS chooses k 

successors at random, with the probability of choosing 

a given successor being an increasing function of its 

value. SBS bears some resemblance to the problem of 

natural selection, whereby the “successors” (offspring) 

of a “state” (organism) populate the next generation 

according to its “value” (fitness).
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Genetic algorithms

• Variant of stochastic beam search in which successor 

states are generated by combining two parent states 

rather than by modifying a single state. The analogy to 

natural selection is the same as in stochastic beam 

search, except that now we are dealing with sexual 

rather than asexual reproduction.
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Genetic algorithms



47

Genetic algorithms
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Homework for next class

• Chapter 7 from Russell-Norvig textbook.

• HW1: out 9/5 due 9/28


