Vesicular	This texture is a combination of gas holes or vesicles which contain and are often filled by other crystals. These secondary crystals are often white quartz or	Formed when lava is extruded onto the surface in a volcanic environment and solidifies almost instantaneously producing no crystals.	
Aphanaitic (fine grained)	This is a shiny texture, often transparent or maybe translucent with no observable crystals. Obsidian is a good example	Formed when magma cools at great depth. It cools very slowly, crystallisation is slow to give large interlocking texture. Commonly found	
Phaneritic (coarse grained)	This texture has small crystals which may not be seen by the naked eye, and may need a hand lens or microscope to be observed. The crystals may give an interlocking texture of equal sized grains called Equigranular.	Formed when a vesicular rock is saturated by a fluid in which a secondary mineral is dissolved. The secondary mineral crystallises in the voids	
Amygdaloid al	This texture is very fine grained but includes holes or voids. The holes or voids are often oval in shape. Pumice is a good example.	Formed when magma cools and crystallised in two different environments (two stages of crystallisation). Initially this occurs at depth slowly producing large crystals. Later the rest of the magma crystallised on the surface to a	

Porphyritic	This texture has large crystals and is coarse grained. The crystals can easily be seen with the naked eye and may give an interlocking texture of equal sized grains called Equigranular. Granite is a good example forming	Formed when magma cools on the surface. It cools very quickly, crystallisation is fast to give very small interlocking texture. Commonly found in lava flows.	
Glassy	This has large phenocrysts, often rectangular is shape and often made of feldspar in a matrix or groundmass of very small fined – grained crystals	Formed when magma reaches the surface as lava. The lower pressure allows dissolved gases vaporise. Rapid cooling and crystallisation traps the gases in	