

Setting the Standard for Automatio

#### **FERTILIZER MEET 2017 16<sup>TH</sup> DECEMBER 2017**

& Training

s & Exhibits

The International Society of Automation Delhi Section

rum

#### Online Process Mass Spectrometer for Ammonia Process Control

#### **Extrel CMS USA**



# **Quadrupole Mass Spectrometry (QMS)**

#### Founded in 1964

- Over 1300 Research Systems
- Over 1500 Laboratory Systems
- Over 1000 Industrial Process Systems
- **3 Nobel Prize Recipients** 
  - Dudley R. Herschbach & Yuan T. Lee jointly received Nobel prize for Chemistry in 1985
- "for their contributions concerning dynamics of chemical elementary processes"
  - Mario Molina received the Nobel Prize for Chemistry in 1995.
- "for his role in elucidating the threat to the Earth's ozone layer of chlorofluorocarbon gases"

### ndustrial Applications

#### Environmental

- Ambient Air Monitoring
- Flare Monitoring
- VOC is Cooling Water and Waste Water

#### Chemical

- Ammonia Process Control
- Methanol Process Control
- Propane Dehydrogenator

#### Petrochemicals

- Ethylene Cracker Effluent
- Ethylene Oxide Reactor
- PE/PP Reactor

#### Gas Production and Purity

- Hydrogen Production
- CO, CO2, N2, Ar, ...

#### **BTU And Sulfur**

- Natural Gas Analysis
- Synthesis Gas
- Fuel Gas

- Metals Production
  - Converter/BOP
  - VOD
  - Electric Arc Furnace
  - Blast Furnace
  - Gas Blending
- Food and Pharmaceutical
  - Fermentation
  - Dryers
  - Gas Mixtures
  - Solvent Recovery
- Evolved Gases
  - Thermal Decomposition
  - Degradation Temperatures
  - Reaction Monitoring
  - Monitor Solvents and Moisture
- Alternative Fuels
  - Corn to Ethanol
  - Gasification or Coal and Biomass
  - Fuel Cells

### Mass Spectrometry

#### Speed of Analysis

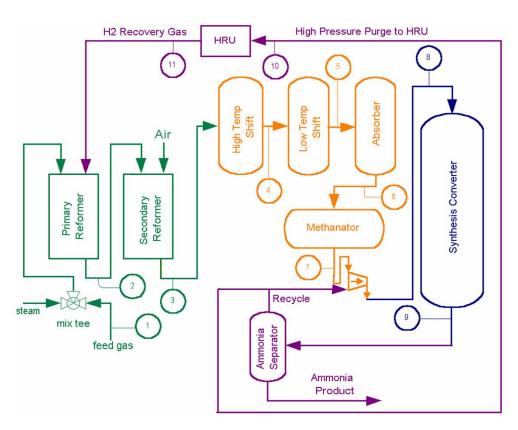
- 0.4 sec/constituent
- 10-20 sec/stream
- Advanced Process Control (APC)

#### Selectivity

• Mass/Charge Ratio (M/Z)

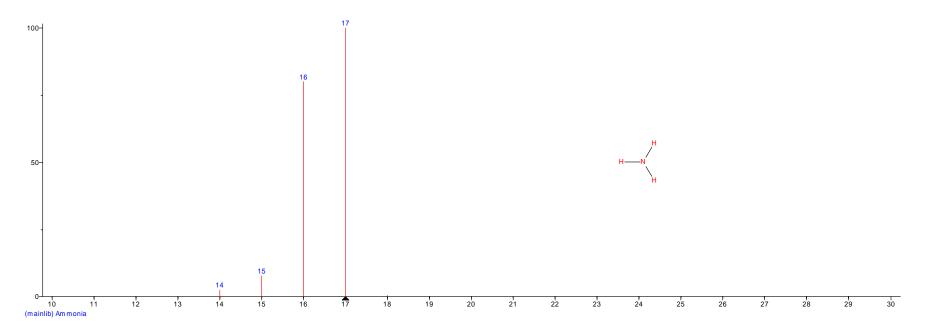
#### Multiple Stream

- 1-46 Process Streams
- Different Composition


- Dynamic Range
  - Linear Form ppb to 100%
- Accuracy
  - Equal to Calibration Standards
- Precision
  - Better than Primary Method
  - 0.0025 on 1% Ar
- Maintenance
  - Reduced Maintenance
  - Better Than 98% Uptime

#### Main use of Ammonia is for Fertilizers

- Fertilizers (~78%)
  - Anhydrous ammonia
  - Urea
  - Ammonium nitrates
  - Ammonium phosphates
  - Other Nitrogen compounds
- Plastics
- Synthetic Fibers and Resins
- Explosives

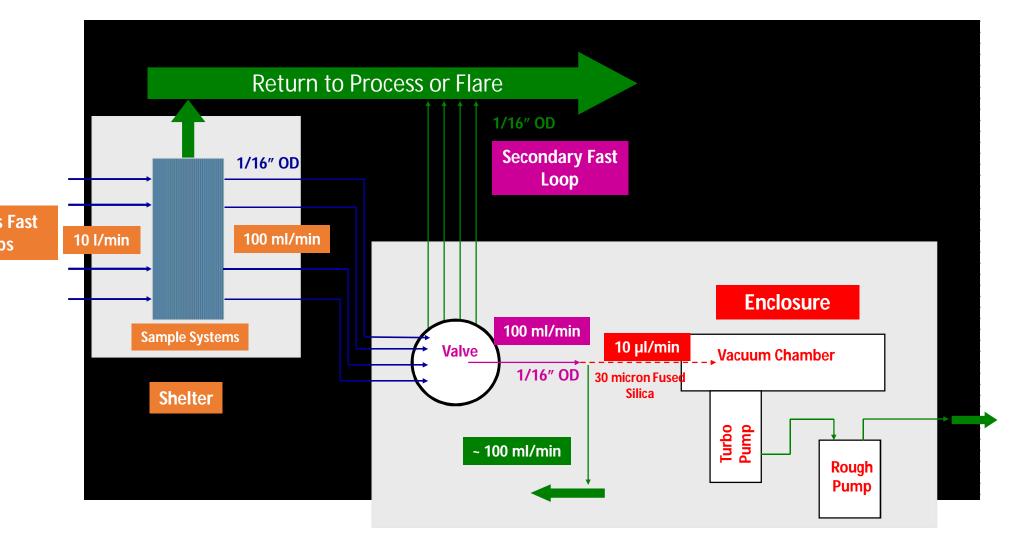

### Ammonia Process

Ammonia is made in a multistage process based on steam methane reforming of a natural gas feed



Some plants are designed to use alternative feed stocks such as petroleum feedstock

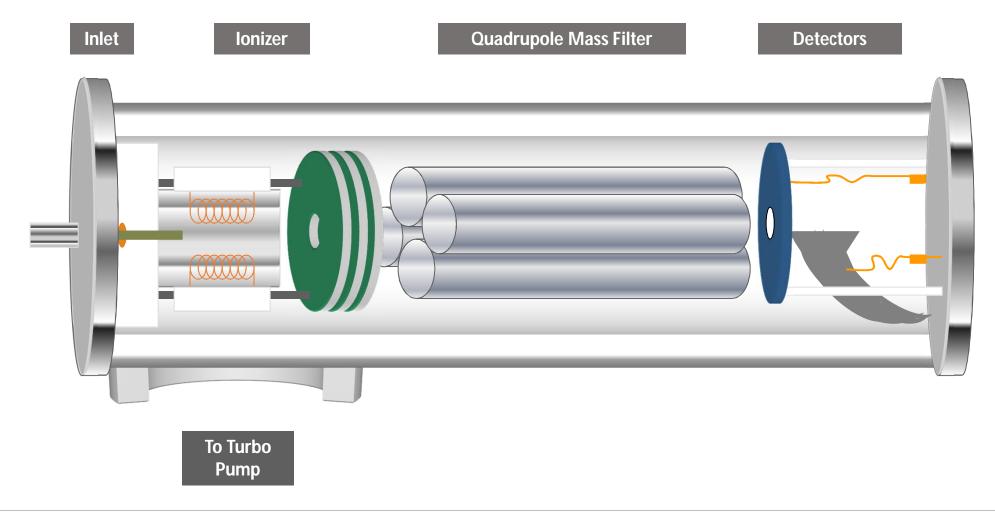
### How Does a Mass Spectrometer Work?



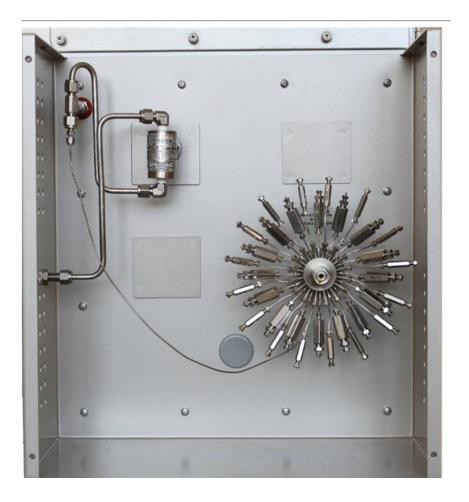

- Constant flow of gas enters the analyzers
- Sample gas is ionized and scanned electronically
  - Each scan produces a set of peaks specific to the composition of the ionized gas
  - All gas samples can be analyzed with a mass spectrometer

# Sampling Requirements

- Requirements are the same for any Gas Analyzer
  - Vapor Phase
    - non-condensing
  - Particulates
    - 5 micron filter
  - Pressure Range
    - 20PSI to 0.1PSI (1034 to 5 torr)
  - Flow
    - 100 cc/min
  - Temperature
    - Max. 250C

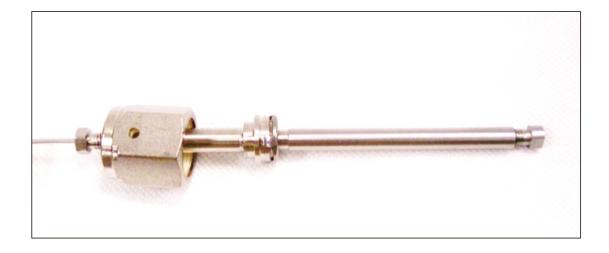

### **Typical Sample Flow for Rotary Valve**




# **Components of a Mass Spectrometer**

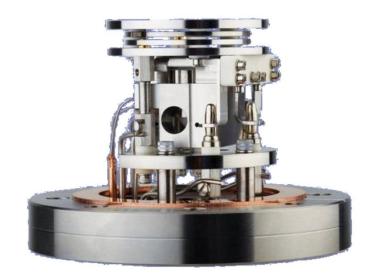
- Inlet
  - Stream Selection
  - Sample Introduction
  - Membrane Pre-Concentration
- Ionizer
  - Electron Impact (EI) Ionization
- Mass Filter
  - Quadrupole
- Detector
  - Faraday and Electron Multiplier
- Data System
  - Signal Acquisition, Processing and Display

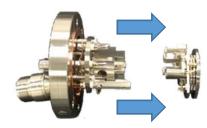
### taway" of Mass Spectrometer Vacuum Chamb




### Sample Selector - 16 Port Inlet



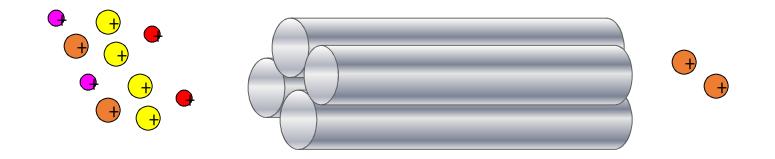

- 31 Port Valve
  - 2-16 Port Valves in Series
  - 1/16" Lines
  - Each Port is a fast-loop with a separate outlet
  - 1 common feed to analyzer
- Configuration
  - Sample Gases
  - Calibration gases (plugged)
  - Validation gases (plugged)


### **Fused Silica Capillary Inlet**



- Reduces the pressure and flow to manageable levels for the vacuum system
  - Flow ~ 10  $\mu l$  per min
- Easy replacement with innovative design

### **Disposable Ion Source and Dual Filament**






- Electron Impact (IE) Ionization
- One active and one spare filament
- Small ion volume for efficient ionization
- 3 lenses for focusing ions into mass filter
- Redesigned disposable ionizer eliminates cleaning and reduces downtime

### **Quadrupole Mass Filter**

19mm Quadrupole



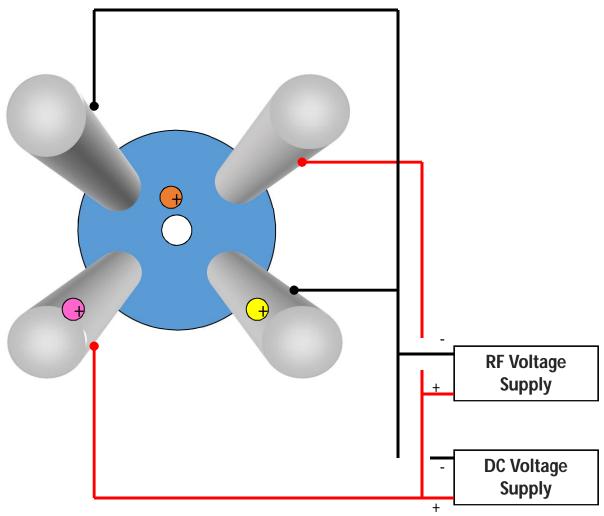
lons of many masses



lons of selected masses

### **Dual Faraday and Electron Multiplier Detector**

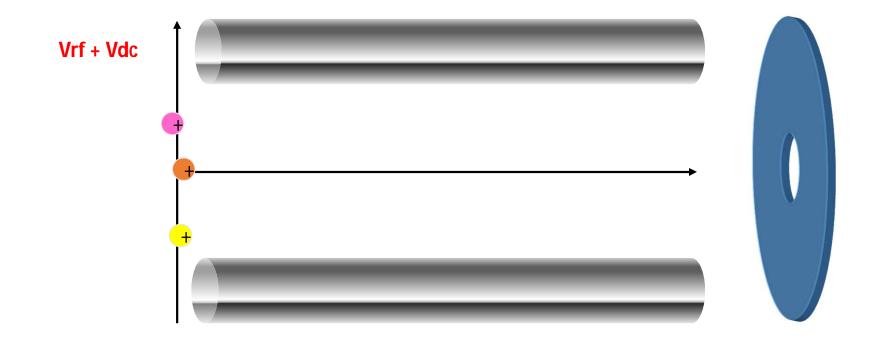



- Faraday Detector
  - 10 parts per million
- Dual Faraday/Electron Multiplier Detector (shown)
  - 10 parts per billion
- Smart Detector will automatically switch between detectors to optimize analysis

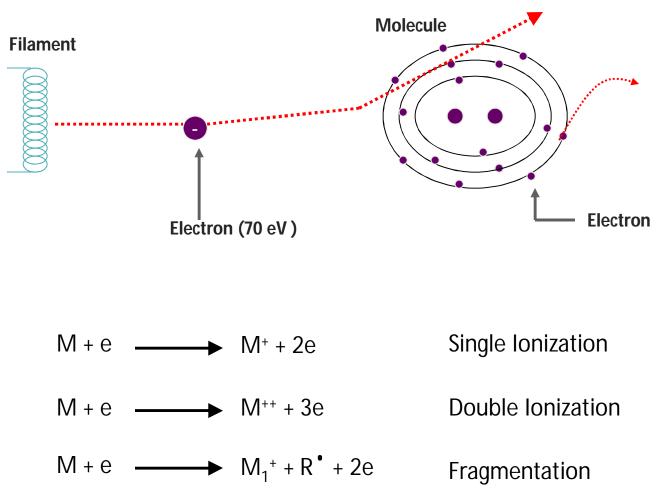
# the capillary leaks a small appaunt of sample into the ionizer ... ndrætrie typeare oksemmie gedeister ovrostage ... lonizer Lens Stack 30 micron Fused Silica Quad **Ionizer block heated to 180C**

the ions where pulled bound father ibby zeteant ob psot perhade into silie equation and bound silier.

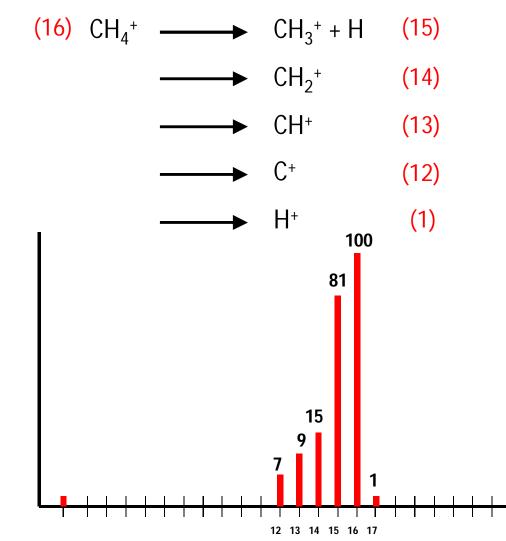
### **How does a mass filter work?**


Looking straight down the quad




- RF and DC voltage is appl opposite rods
- Only ions of the right mas make it all the way down quad
- Other masses are unstab will strike the quad and b neutralized and pumped

#### **How does a mass filter work?**


Looking horizontally along the quadrupole



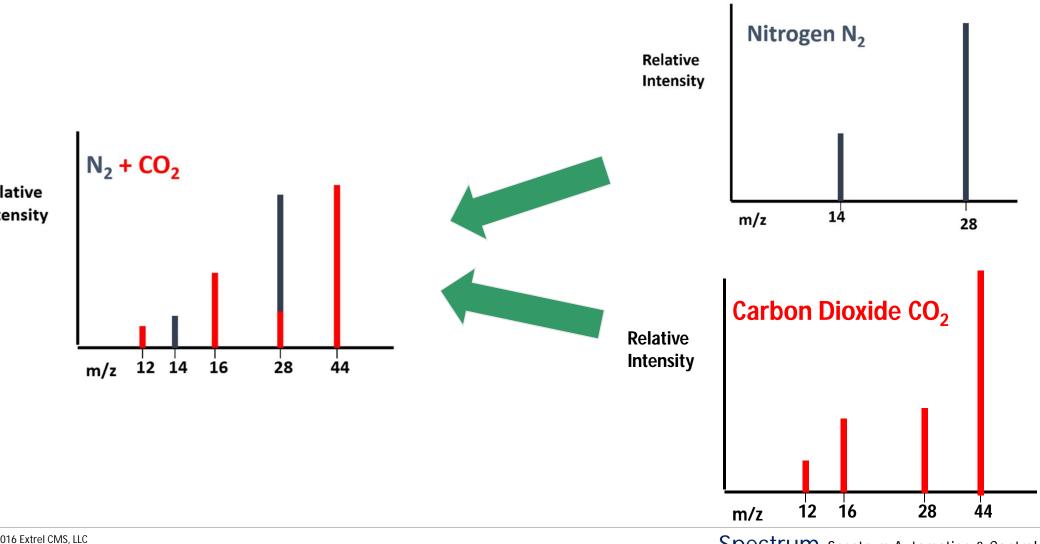
### **Mechanism of Electron Impact Ionization**



### Fragmentation of Methane



 Single Ionization occurs when electron impact (EI) causes CH<sub>4</sub> to lose an electron, becoming CH<sub>4</sub><sup>+</sup>

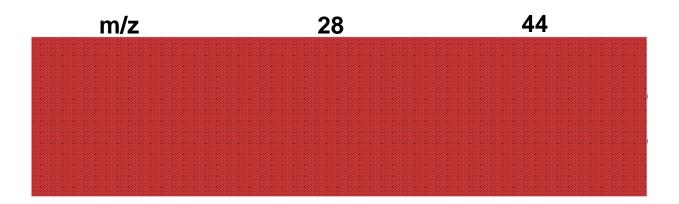

• Largest peak at mass 16

 Fragmentation occurs whe a bond breaks during ionization, CH<sub>3</sub><sup>+</sup> is produce when CH<sub>4</sub> loses a H

• Mass 15 peak

 Less frequently, additional fragmentation generates CH<sub>2</sub><sup>+</sup>,CH<sup>+</sup> and C<sup>+</sup> and H<sup>+</sup>

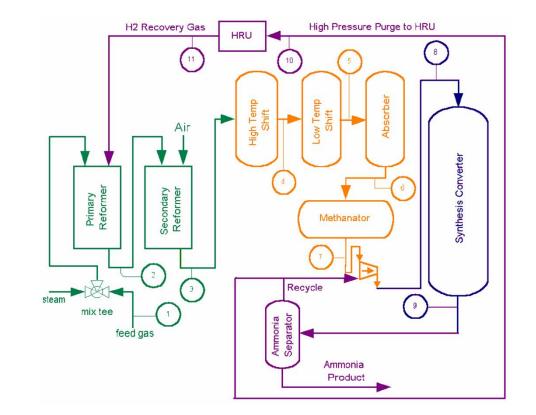
#### Fragmentation and Gas Mixtures




016 Extrel CMS, LLC

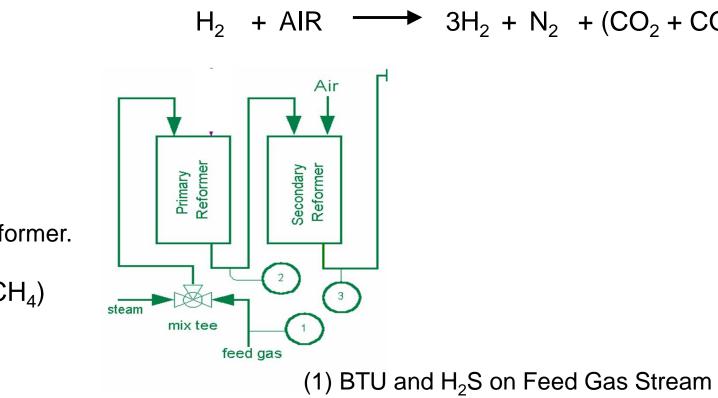
Spectrum, Spectrum Automation & Controls

### Simplified Fragmentation Matrix


Each component's actual fragmentation pattern is measured using a binary gas mixture.



#### **Ammonia Application Information**

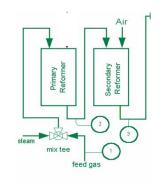

#### Analysis of streams to increase efficiency, reduce waste and extend equipment life

- 1. Feed Gas
- 2. Primary Reformer
- 3. Secondary Reformer
- 4. High Temperature Shift
- 5. Low Temperature Shift
- 6. Absorber Outlet
- 7. Methanator Outlet
- 8. Converter Inlet
- 9. Converter Outlet
- 10. Purge Gas
- 11. H<sub>2</sub> Recovery Gas



### First Stage: Hydrogen from Feedstock

(3) Air is added at the secondary reformer to convert the remainder of the feedstock.




eam is added at the Primary Reformer.

$$+ H_2O \longrightarrow CO + 3H_2 + (CH_4)$$

# 1) Feed Gas Stream: Typical

| Component      | Concentration |
|----------------|---------------|
| trogen         | 2.00%         |
| rbon Dioxide   | 50.00%        |
| ethane         | 95.00%        |
| hane           | 3.00%         |
| opane          | 1.00%         |
| itanes         | 0.50%         |
| ntanes         | 0.50%         |
| exane          | 1.00%         |
| drogen Sulfide | 3ppm          |



- Steam to Carbon ratio
  - Save energy and fuel by tightly controlling the to within 0.02%BTU values
- Protect the catalyst from being poisoned and deactivated
  - Monitor the feed gas for the presence of hydrogen sulfides

### 1) Feed Gas Stream: Results

| mponent      | Concentration | Sensitivity | Detection<br>Mass | Relative<br>Interference<br>Factor (RIF) | Relative<br>Standard<br>Deviation (F) | Relative<br>Standard<br>Deviation (M) | Standard<br>Deviation<br>ppm |
|--------------|---------------|-------------|-------------------|------------------------------------------|---------------------------------------|---------------------------------------|------------------------------|
| gen          | 2.00%         | 1.00000     | 28                | 2.0890                                   | 0.37%                                 |                                       | 75                           |
| on Dioxide   | 50.00%        | 1.86000     | 44                | 0.3957                                   | 0.37%                                 |                                       | 1838                         |
| ane          | 95.00%        | 0.60000     | 16                | <0.01                                    | 0.04%                                 |                                       | 350                          |
| ne           | 3.00%         | 1.00000     | 30                | 0.0493                                   | 0.37%                                 |                                       | 111                          |
| ane          | 1.00%         | 1.00000     | 29                | 1.7160                                   | 0.49%                                 |                                       | 49                           |
| nes          | 0.50%         | 2.00000     | 43                | 1.3800                                   | 0.46%                                 |                                       | 23                           |
| ines         | 0.50%         | 2.00000     | 72                | <0.01                                    | 1.05%                                 |                                       | 52                           |
| ne           | 1.00%         | 2.00000     | 86                | <0.01                                    | 1.23%                                 |                                       | 123                          |
| ogen Sulfide | 3ppm          | 1.00000     | 34                | <0.01                                    |                                       | 2.31%                                 | 0.07                         |

### Reformer Streams: Typical

#### 2. Primary Reformer Stream

| Component       | Concentration |
|-----------------|---------------|
| Hydrogen        | 67.00%        |
| Nitrogen        | 1.50%         |
| Carbon Monoxide | 8.00%         |
| Carbon Dioxide  | 11.50%        |
| Argon           | 0.10%         |
| Methane         | 12.00%        |
| Methane         | 12.00%        |

#### 3. Secondary Reformer Stream

| Component       | Concentration |
|-----------------|---------------|
| Hydrogen        | 57.50%        |
| Nitrogen        | 22.50%        |
| Carbon Monoxide | 12.00%        |
| Carbon Dioxide  | 8.50%         |
| Argon           | 0.30%         |
| Methane         | 0.40%         |

- Methane Slippage
  - Amount of unreacted Methane is an indication of reformer efficiency
  - Wide dynamic range for methane analysis is required
    - > 90% in Feed
    - 10% in Primary Reformer
    - <0.5% in Secondary Reformer
    - Control the methane slippage with +/ 50ppm accuracy
- Accurate H<sub>2</sub> analysis is required in order to control Air injection rate for a 3:1 H<sub>2</sub>:N<sub>2</sub> ratio at the exit



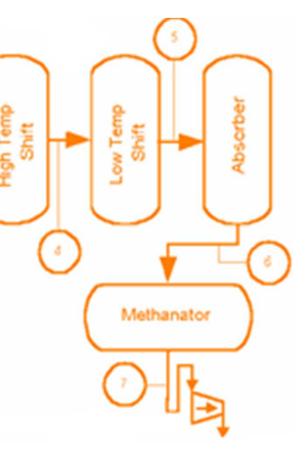
016 Extrel CMS, LLC

### Reformer Streams: Results

#### Primary Reformer Stream

| Component   | Concentration | Sensitivity | Detection<br>Mass | Relative Interference<br>Factor (RIF) | Relative Standard<br>Deviation (F) | Standard<br>Deviation ppm |
|-------------|---------------|-------------|-------------------|---------------------------------------|------------------------------------|---------------------------|
| rogen       | 67.00%        | 0.2500      | 2                 | <0.01                                 | 0.07%                              | 492                       |
| ogen        | 1.50%         | 1.0000      | 14                | 17.59                                 | 4.72%                              | 708                       |
| on Monoxide | 8.00%         | 1.0000      | 28                | 0.4826                                | 0.13%                              | 103                       |
| on Dioxide  | 11.50%        | 1.8600      | 44                | <0.01                                 | 0.07%                              | 75                        |
| on          | 0.10%         | 1.5000      | 40                | <0.01                                 | 0.78%                              | 8                         |
| hane        | 12.00%        | 0.6980      | 15                | <0.01                                 | 0.12%                              | 138                       |

#### Secondary Reformer


| component   | Concentration | Sensitivity | Detection<br>Mass | Relative Interference<br>Factor (RIF) | Relative Standard<br>Deviation (F) | Standard<br>Deviation ppm |
|-------------|---------------|-------------|-------------------|---------------------------------------|------------------------------------|---------------------------|
| rogen       | 57.50%        | 0.2500      | 2                 | <0.01                                 | 0.09%                              | 449                       |
| ogen        | 22.50%        | 1.0000      | 14                | 0.1215                                | 0.30%                              | 674                       |
| on Monoxide | 12.00%        | 1.0000      | 28                | 2.02                                  | 0.15%                              | 181                       |
| on Dioxide  | 8.50%         | 1.8600      | 44                | <0.01                                 | 0.08%                              | 64                        |
| n           | 0.30%         | 1.5000      | 40                | <0.01                                 | 0.45%                              | 13                        |
| hane        | 0.40%         | 0.6980      | 15                | 0.01989                               | 0.64%                              | 25                        |

016 Extrel CMS, LLC

Spectrum, Spectrum Automation & Controls



# econd Stage: Streams are "cleaned up" and he production of H<sub>2</sub> is maximized



(4) High Temperature and (5) Low Temperature shifts remove the CO to increase the production of  $H_2$ .

 $CO + H_2O \longrightarrow CO_2 + H_2$ 

(6) Absorber removes the  $CO_2$  to levels less than 100ppm. (7) Methanator converts the remainder of the CO and  $CO_2$ , which are poisons, to Methane.

$$CO + 3H_2 \longrightarrow CH_4 + H_2O$$
$$CO_2 + 4H_2 \longrightarrow CH_4 + 2H_2O$$

# Temperature Shift: Typical

#### I. High Temperature Shift

| <b>U</b> 1      |               |
|-----------------|---------------|
| Component       | Concentration |
| Hydrogen        | 52.70%        |
| Nitrogen        | 27.27%        |
| Carbon Monoxide | 3.60%         |
| Carbon Dioxide  | 14.53%        |
| Argon           | 0.35%         |
| Nethane         | 1.55%         |
|                 |               |

5. Low Temperature Shift

| Concentration |
|---------------|
| 54.20%        |
| 26.42%        |
| 0.40%         |
| 17.19%        |
| 0.35%         |
| 1.50%         |
|               |

Analysis of CO,  $CO_2$  and  $H_2$  is desired to calculate the amount of additional steam required to convert CO to  $CO_2$  and  $H_2$ 



# Temperature Shift: Results

#### 4. High Temperature Shift

| Component       | Concentration | Sensitivity | Detection<br>Mass | Relative Interference<br>Factor (RIF) | Relative Standard<br>Deviation (F) | Standard Deviation ppm |
|-----------------|---------------|-------------|-------------------|---------------------------------------|------------------------------------|------------------------|
| lydrogen        | 52.70%        | 0.2500      | 2                 | <0.01                                 | 0.08%                              | 436                    |
| Nitrogen        | 27.27%        | 1.0000      | 14                | 0.1399                                | 0.27%                              | 748                    |
| Carbon Monoxide | 3.60%         | 1.0000      | 28                | 8.401                                 | 0.49%                              | 175                    |
| Carbon Dioxide  | 14.53%        | 1.8600      | 44                | <0.01                                 | 0.06%                              | 84                     |
| Argon           | 0.35%         | 1.5000      | 40                | <0.01                                 | 0.41%                              | 14                     |
| Vethane         | 1.55%         | 0.6980      | 15                | <0.01                                 | 0.32%                              | 50                     |

#### 5. Low Temperature Shift

| Component       | Concentration | Sensitivity | Detection<br>Mass | Relative Interference<br>Factor (RIF) | Relative Standard<br>Deviation (F) | Standard<br>Deviation ppm |
|-----------------|---------------|-------------|-------------------|---------------------------------------|------------------------------------|---------------------------|
| Hydrogen        | 54.20%        | 0.2500      | 2                 | <0.01                                 | 0.08%                              | 442                       |
| Nitrogen        | 26.42%        | 1.0000      | 14                | 0.1212                                | 0.28%                              | 730                       |
| Carbon Monoxide | 0.40%         | 1.0000      | 28                | 74.84                                 | 4.13%                              | 165                       |
| Carbon Dioxide  | 17.19%        | 1.8600      | 44                | <0.01                                 | 0.05%                              | 91                        |
| Argon           | 0.35%         | 1.5000      | 40                | < 0.01                                | 0.41%                              | 14                        |
| Methane         | 1.50%         | 0.6980      | 15                | <0.01                                 | 0.33%                              | 49                        |

016 Extrel CMS, LLC

Spectrum, Spectrum Automation & Controls

# **Dutlets:** Typical

#### 6. Absorber Outlet

| Component      | Concentration |
|----------------|---------------|
| lydrogen       | 65.22%        |
| litrogen       | 31.80%        |
| arbon Monoxide | 0.48%         |
| arbon Dioxide  | 0.80%         |
| rgon           | 0.41%         |
| lethane        | 1.81%         |
|                |               |

#### 7. Methanator Outlet

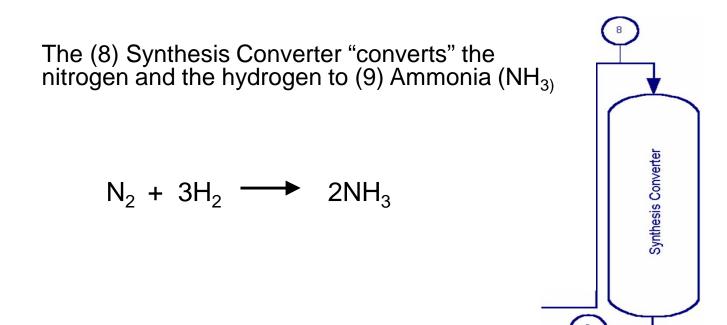
| Component      | Concentration |
|----------------|---------------|
|                |               |
| lydrogen       | 69.80%        |
| litrogen       | 28.00%        |
| arbon Monoxide | < 5ppm        |
| arbon Dioxide  | < 5ppm        |
| rgon           | 0.30%         |
| lethane        | 1.70%         |
|                |               |

The analysis of the oxides, CO and CO2 are important to prevent poisoning of catalysts in converter

016 Extrel CMS, LLC

### **Dutlet: Results**

#### 6. Absorber Outlet


| Component       | Concentration | Sensitivity | Detection<br>Mass | Relative Interference<br>Factor (RIF) | Relative Stand<br>Deviation ( |                                                     |
|-----------------|---------------|-------------|-------------------|---------------------------------------|-------------------------------|-----------------------------------------------------|
| Hydrogen        | 65.22%        | 0.2500      | 2                 | <0.01                                 | 0.07%                         |                                                     |
| Nitrogen        | 31.80%        | 1.0000      | 14                | 0.1216                                | 0.25%                         | CO at 5ppm can not be mean in the presence of $N_2$ |
| Carbon Monoxide | 0.48%         | 1.0000      | 28                | 66.29                                 | 3.55%                         | In the presence of N <sub>2</sub>                   |
| Carbon Dioxide  | 0.80%         | 1.8600      | 44                | <0.01                                 | 0.08%                         | CO <sub>2</sub> will require addition of            |
| Argon           | 0.41%         | 1.5000      | 40                | <0.01                                 | 0.38%                         | Electron Multiplier Detector                        |
| Methane         | 1.81%         | 0.6980      | 15                | <0.01                                 | 0.30%                         |                                                     |

#### 7. Methanator Outlet

| Component       | Concentration | Sensitivity | Detection | <b>Relative Interference</b> | Relative Standard | Relative Stardard | d Stand  |
|-----------------|---------------|-------------|-----------|------------------------------|-------------------|-------------------|----------|
|                 |               |             | Mass      | Factor (RIF)                 | Deviation (F)     | Deviation (M)     | Deviatic |
| Hydrogen        | 69.80%        | 0.2500      | 2         | <0.01                        | 0.07%             |                   | 50       |
| Nitrogen        | 28.00%        | 1.0000      | 14        | 0.1271                       | 0.27%             |                   | 75       |
| Carbon Monoxide | < 5ppm        | 1.0000      | 28        | 100                          |                   | 423.00%           | 21       |
| Carbon Dioxide  | < 5ppm        | 1.8600      | 44        | <0.01                        |                   | 1.34%             | 7        |
| Argon           | 0.30%         | 1.5000      | 40        | <0.01                        | 0.45%             |                   | 1:       |
| Methane         | 1.70%         | 0.6980      | 15        | <0.01                        | 0.31%             |                   | 5:       |
|                 |               |             |           |                              |                   |                   |          |

.....

### Third stage: Converter Produces Ammonia



# Converter: Typical

### 8. Converter Inlet

| Component | Concentration |
|-----------|---------------|
| Hydrogen  | 65.00%        |
| Nitrogen  | 22.50%        |
| Argon     | 2.50%         |
| Helium    | 0.50%         |
| Methane   | 7.00%         |
| Ammonia   | 2.00%         |

### 9. Converter Outlet

| Concentration |
|---------------|
| 54.00%        |
| 19.50%        |
| 3.50%         |
| 0.50%         |
| 7.50%         |
| 15.00%        |
|               |

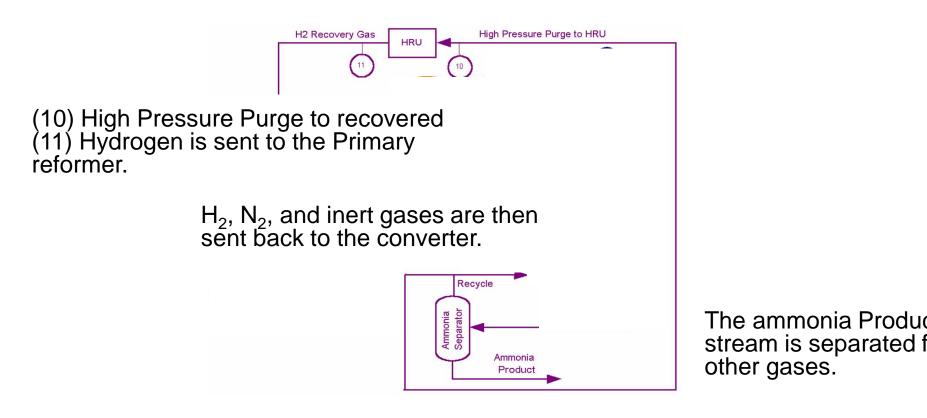
Efficient production of ammonia through the control of the Feed to Air  $(H_2:N_2)$  ratio within +- 0.01%

016 Extrel CMS, LLC

## Converter: Results

### 8. Converter Inlet

| Component | Concentration | Sensitivity | Detection<br>Mass | Relative Interference<br>Factor (RIF) | Relative Standard<br>Deviation (F) | Standard<br>Deviation ppm |
|-----------|---------------|-------------|-------------------|---------------------------------------|------------------------------------|---------------------------|
| Hydrogen  | 65.00%        | 0.2500      | 2                 | <0.01                                 | 0.07%                              | 484                       |
| Nitrogen  | 22.50%        | 1.0000      | 28                | <0.01                                 | 0.06%                              | 140                       |
| Argon     | 2.50%         | 1.5000      | 40                | <0.01                                 | 0.15%                              | 39                        |
| Helium    | 0.50%         | 0.0020      | 4                 | <0.01                                 | 0.95%                              | 47                        |
| Methane   | 7.00%         | 0.0070      | 15                | 0.04156                               | 0.15%                              | 108                       |
| Ammonia   | 2.00%         | 1.0000      | 17                | 0.02443                               | 0.21%                              | 43                        |


### 9. Converter Outlet

| Component | Concentration | Sensitivity | Detection<br>Mass | Relative Interference<br>Factor (RIF) | Relative Standard<br>Deviation (F) | Standard<br>Deviation ppm |
|-----------|---------------|-------------|-------------------|---------------------------------------|------------------------------------|---------------------------|
| Hydrogen  | 54.00%        | 0.2500      | 2                 | <0.01                                 | 0.08%                              | 441                       |
| Nitrogen  | 19.50%        | 1.0000      | 28                | <0.01                                 | 0.07%                              | 132                       |
| Argon     | 3.50%         | 1.5000      | 40                | <0.01                                 | 0.13%                              | 46                        |
| Helium    | 0.50%         | 0.0020      | 4                 | <0.01                                 | 0.95%                              | 47                        |
| Methane   | 7.50%         | 0.0070      | 15                | 0.2839                                | 0.17%                              | 124                       |
| Ammonia   | 15.00%        | 1.0000      | 17                | <0.01                                 | 0.08%                              | 116                       |

.....

5

## Final Stage: Collects Ammonia Product, Recycles Inert Gases and Hydrogen Recovery



# Hydrogen Recovery: Typical

### 10. Purge Gas

| Component          | Concentration |
|--------------------|---------------|
| Hydrogen           | 62.00%        |
| Nitrogen           | 22.50%        |
| Argon              | 3.50%         |
| Helium             | 0.50%         |
| Methane            | 11.00%        |
| Ammonia            | 2.00%         |
| 11 II Decovery Cor |               |

### 11. H<sub>2</sub> Recovery Gas

| Component | Concentration |
|-----------|---------------|
| Hydrogen  | 50.00%        |
| Nitrogen  | 10.00%        |
| Argon     | 1.75%         |
| Helium    | 60.00%        |
| Methane   | 37.50%        |

- Much of the converter inlet is made up of recycled gases
- Control of the inert gases helps maintain the control for feed gases

016 Extrel CMS, LLC

High Pressure Purge to

H2 Recovery Gas

11

HRU

# Hydrogen Recovery: Results

### 10. Purge Gas

| Component | Concentration | Sensitivity | Detection<br>Mass | Relative Interference<br>Factor (RIF) | Relative Standard<br>Deviation (F) | Standard<br>Deviation ppm |
|-----------|---------------|-------------|-------------------|---------------------------------------|------------------------------------|---------------------------|
| lydrogen  | 62.00%        | 0.2500      | 2                 | <0.01                                 | 0.08%                              | 473                       |
| litrogen  | 22.50%        | 1.0000      | 28                | <0.01                                 | 0.06%                              | 142                       |
| rgon      | 3.50%         | 1.5000      | 40                | <0.01                                 | 0.13%                              | 46                        |
| lelium    | 0.50%         | 0.0020      | 4                 | <0.01                                 | 0.95%                              | 47                        |
| /lethane  | 11.00%        | 0.0070      | 15                | 0.02645                               | 0.12%                              | 134                       |
| mmonia    | 2.00%         | 1.0000      | 17                | 0.03839                               | 0.22%                              | 43                        |

### 11. H<sub>2</sub> Recovery Gas

| Component | Concentration | Sensitivity | Detection<br>Mass | Relative Interference<br>Factor (RIF) |       | Standard<br>Deviation ppm |
|-----------|---------------|-------------|-------------------|---------------------------------------|-------|---------------------------|
| ydrogen   | 50.00%        | 0.2500      | 2                 | 0.01047                               | 0.09% | 427                       |
| itrogen   | 10.00%        | 1.0000      | 28                | <0.01                                 | 0.09% | 95                        |
| rgon      | 1.75%         | 1.5000      | 40                | <0.01                                 | 0.19% | 32                        |
| elium     | 60.00%        | 0.0020      | 4                 | <0.01                                 | 0.87% | 5196                      |
| lethane   | 37.50%        | 0.0070      | 15                | <0.01                                 | 0.07% | 244                       |

High Pressure Purge to HRU

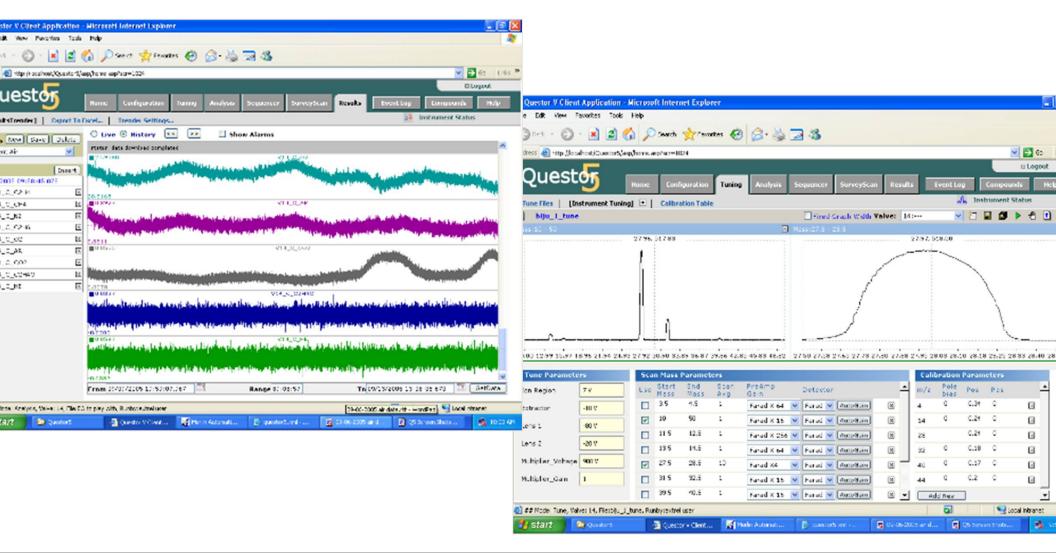
H2 Recovery Gas

HRU

## **Customer Feedback**

| Comment                                    | Estimate                                                               |
|--------------------------------------------|------------------------------------------------------------------------|
| Optimizing Purge Gas Recovery              | \$100,000 to \$120,000/year                                            |
| Energy saving equal to 0.6 GJ per ton NH3  | \$1,500 per day                                                        |
| Plants run smoothly and stable             | Daily production variations were +/- 25 tons/day, now +/- 1-2 tons/day |
| H/N ratio                                  | With GC's 3.1+/- 0.1. With MS 3.1 +/- 0.007                            |
| Stable steam-to-carbon ratio and H/N ratio | 1 million \$ per plant in 3 years                                      |
| Yield and Catalyst                         | Increased yield over time and increased catalyst life                  |
| Startup                                    | It takes only hours to reach set point instead of days                 |

## **New Ammonia Plants**

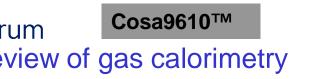

- **Redundant Mass Spectrometers** 
  - Provides analysis of half the streams for faster data update
  - Eliminates downtime
  - Switchover cab be automatic by DCS or Manual

## **Communication Options**

- **OPC Server Interface**
- Modbus Master & Slave Interface
  - RS422 4 Wire
  - RS485 2 Wire
  - RS485 4 Wire
  - TCP/IP
- **DCS Control Option** 
  - Includes 12 x 4-20 mA Outputs
  - 128 Different Input Coms
  - OPC
  - Modbus TCP/IP

- Fiber Optics Option
- 16 Relay Option
  - Expandable 2 at a Time
- 4-20 mA Output Option
  - Base 8 Outputs
  - Expandable 2 at a Time

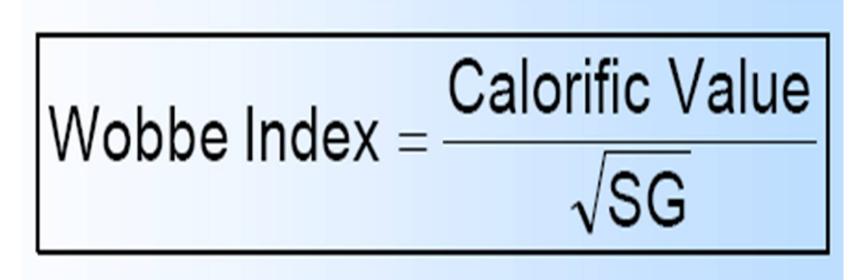
## Easy to Use Web Page Format

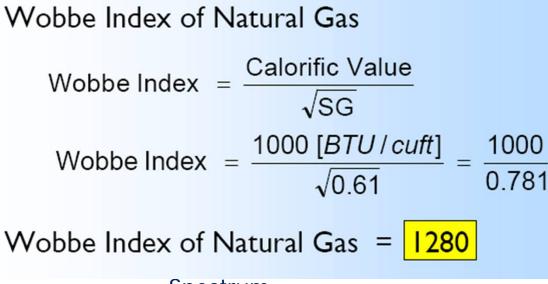



- Extrel Mass Spectrometer find installations in majority Ammonia plants around the worl Installations in Ammonia plants in India include:
- Tata Chemicals Babrala, India Commissioned in 1997
- Rashtriya Chemicals & Fertilisers, Mumbai– Commissioned in 2001
- Chambal Fertilisers & Chemicals Ltd Commissioned in 2013
- Zuari Agro Chemicals Ltd., Goa, Commissioned in 2013
- Indo Gulf Fertilisers Commissioned in 2014
- IFFCO Kalol Commissioned in 2017
- Chambal Fertilisers & Chemicals Ltd, Gadepan 3 Under execution
- Several Global references

## **WOBBE INDEX ANALYSER**

### COSA XENTAUR CORP USA

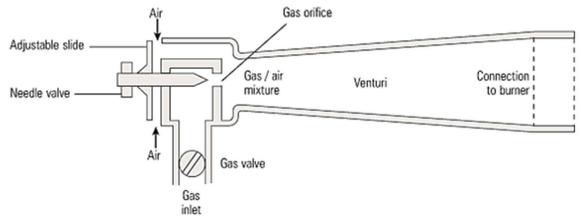

Spectrum, Spectrum Automation & Controls




- **<u>Gross Heating Value</u>**: The heating value (Btu) produced by combustion at constant pressure with the following conditions:
  - (a) a volume of one cubic foot.
  - (b) 60° Fahrenheit.
  - (c) reference base pressure.
  - (d) with air and gas having the same temperature and pressure.
  - (e) recovered heat from the water vapor formed by combustion.
- <u>Net Heating Value</u>: The heating value produced under conditions similar to gross heating value conditions excepting the amount of heat potentially recovered from the water vapor produced at combustion. Net heating value is always less than gross heating values. It is sometimes referred to as the inferior heating value



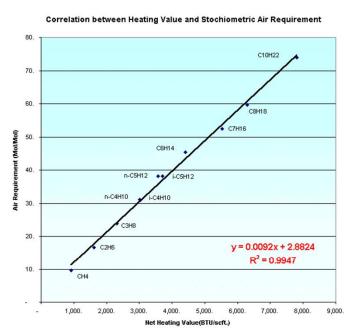
- **Relative Density:** The ratio of the density a gas to the density of dry air under the same pressure and temperature conditions, (it sometimes referred to as specific gravity).
- **<u>Mobbe Index</u>**: The ratio of the gross heating value of a gas to the square root of the relative density of the gas, (WI = Hv / $\sqrt{RD}$ ).



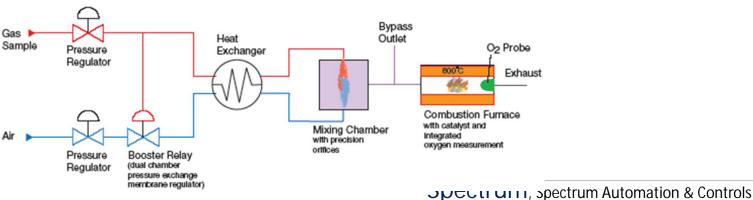



Spectrum, Spectrum Automation & Controls

### Cosa9610™


rum



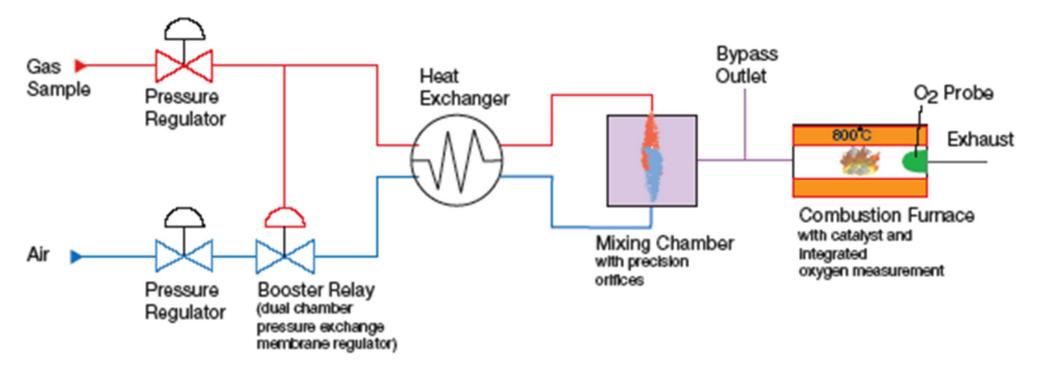

- Wobbe index is a measure of the amount of energy delivered to a burner via an injector (orifice). The energy input is a linear function of Wobbe index.
- Two gases differing in composition but having the same Wobbe index will deliver the same amount of energy for any given injector/orifice under the same injector pressure.
- Wobbe is calculated by ratio of the gross or net heating value of a gas by the square root of the relative density of the gas, (WI = Hv  $\sqrt{\rm RD}$ ).

(Source ASTM D 1945, American Gas Association Bulletin No. 36, GTI)

### rum Cosa9610™ eview of gas calorimetry

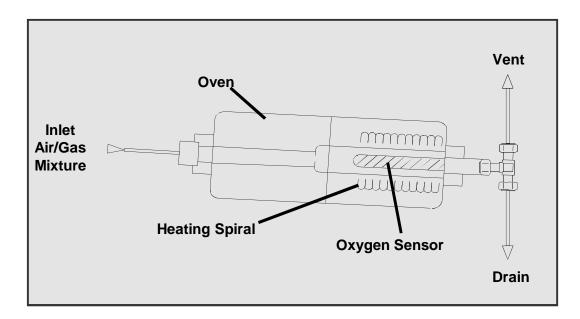


- The direct method utilizes principles of Residual Oxygen Measurement.
- When a particular air/gas mixture is combusted a proportional CARI index in created.
- CARI Index correlates to WOBBE from which Btu can be accurately calculated.




### Cosa9610™

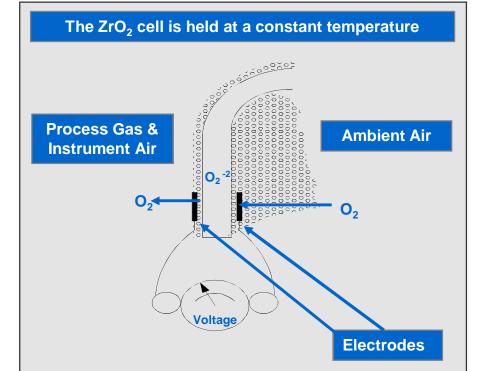



- Based on Residual Oxygen Measurement Method
  - Provides direct measurement of Combustion Air Requirement Index (CARI) of a gas
  - Integrated specific gravity cell for Heating Value calculations
  - Fast response time
    - T90 < 5 seconds
    - Ideal for process control applications such as gas blending, fuel air optimization, turbine control and flare stack monitoring and control
- High accuracy
  - 0.4% of reading makes it the tool of choice for turbine control
- Flameless combustion
  - No flame out conditions
  - Ability to analyze low BTU gases without make up gas
- Insensitive to ambient temperature changes
  - Negligible drift over ambient temperature range -40°F to +140°F
- Auto-calibration and validation
- Minimal maintenance
  - Rugged, corrosion resistant design with few moving parts
- User friendly, menu driven software

### rum **Cosa9610™**

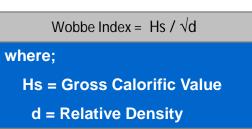


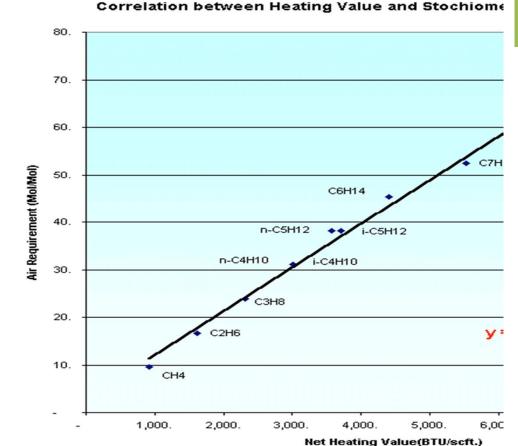
- combustion air and fuel gas are mixed over critical orifices
- ir flow is constant and the orifice is sized so that always excess air for combustion is added
- uel gas flow through the gas orifice varies with  $1/\sqrt{(SG)}$
- he mixture is burnt continuously in a heated furnace
- this furnace the oxygen content in the flue gas is measured using a reliable ZrO2 cell
- he oxygen content is proportional with the Wobbe Index!


A Zirconia Oxide cell is used to determine the residual oxygen concentration in the combusted sample

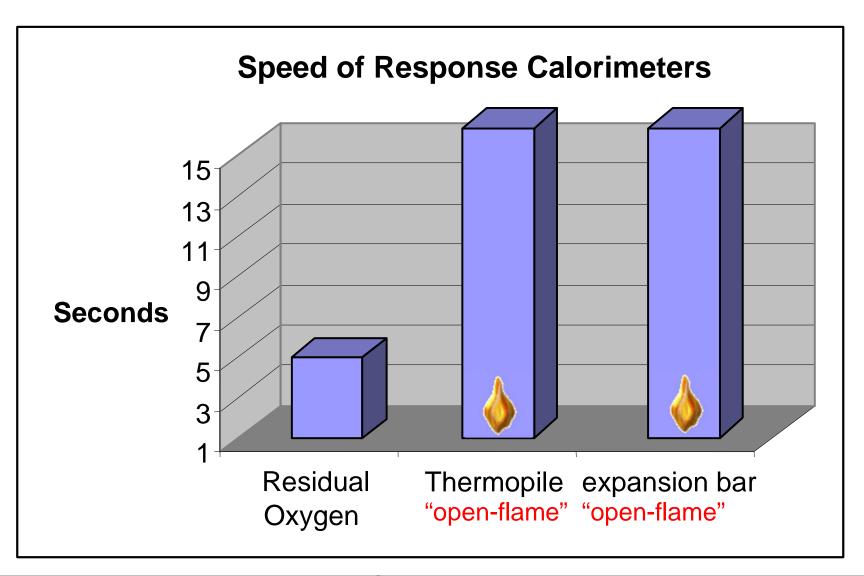





#### Cosa9610™


- The zirconium oxide cell is mounted such that one side is in contact with the outside air and the other side with the sample gas
- Porous Platinum electrodes are mounted at both sides of the ceramic channel
- At high temperatures (>600C) O<sub>2</sub> ions become mobile
- O<sub>2</sub> gas molecules take two electrons from one of the Pt electrodes and diffuse through and enter the ceramic (ZRO<sub>2</sub>)
- The O2 <sup>-2</sup> lons pass through to the other electrode, where they release the two electrons and are converted back into gaseous O<sub>2</sub>




• A voltage potential corresponding to the partial pressure is generated as the oxygen moves from one electrode to the other

Cosa9610™





- CARI is the preferred measurement for fuel/air ratio control applications
- CARI correlates accurately to the Wobbe Index for those applications where the amount of energy to the burner is to be controlled
- Differences between the two measurements can be cancelled out by the use of suitable calibration gases
  - For natural gas, the maximum error due to the Residual Oxygen Measurement Method is less than 0.1% of reading
- An integrated specific gravity cell is used to calculate heating value of the sample gas



Spectrum, Spectrum Automation & Controls

### Cosa9610™



Z-Purge - optional Class1, Division2, Grp B,C,D

> Calibration Gases Hi & Lo cal gas bottles



SHELTER – customer provides 3-sided



### Calorimeter: Cosa WIM 9600 & 9610

•Calculates heating Value based on residual oxygen and gas density.

•Fast – Response time < 5 seconds

•Accurate - +/- .4 % of reading for Natural Gas; +/- 2% of reading for refinery gas.

•Wide Range; 0 – 3000 Btu at operating temperatures up to 150 C

Applications:

•Turbine Control

•Flare Stack Control

•Fuel Optimization

### **Other products = Moisture measurement / Dew point measurement**

|                      | 1) Standard Transmitters (4-wire)<br><i>XDT Series</i> |
|----------------------|--------------------------------------------------------|
| VENTALS THE PARTY IN | 2) Loop-powered Transmitters (2-wire)<br>LPDT, HDT     |
|                      | 3) Process Analyzers<br>ESS-SCVP                       |
|                      | 4) Custom Sample Systems<br>ESS-xx-xx-xxxx             |
|                      | 5) Portable Instrument<br>XPDM                         |

### Thank you for your attention

Any Questions?

Spectrum, Spectrum Automation & Controls