Calculus 3 - Vector Functions

We were introduced to vectors in Calc 2 . Simply put, a vector is a directed line segment. For example, consider the points $P(1,1)$ and $Q(2,3)$. The line connecting $P \rightarrow Q$ is the vector (see figure 1). Note we have an arrow to denote it has direction.

Figure 1: A vector

Symbolically

The vector in this case is $\vec{u}=\overrightarrow{P Q}=<2-1,3-1>=<1,2>$. The magnitude is

$$
\|\vec{u}\|=\sqrt{1^{2}+2^{2}}=\sqrt{5}
$$

Vector Functions

Now we extend the idea of vectors and allow the components to vary and in this case with respect to t. So we define a vector function as

$$
\vec{r}(t)=<f(t), g(t)>
$$

For example

$$
\begin{aligned}
\text { (i) } \vec{r}(t) & =<t, t+1> \\
\text { (ii) } \vec{r}(t) & =<t, \frac{1}{4} t^{2}+1> \\
\text { (iii) } \vec{r}(t) & =<2 \cos (t), 2 \sin (t)>
\end{aligned}
$$

As we did with functions, we can create a table of values. So in the first case

t	$\vec{r}(t)=<t, t+1>$
-2	$<-2,-1>$
-1	$<-1,0>$
0	$<0,1>$
1	$<1,2>$
2	$<2,3>$

and then we draw each one

Figure 2: Vector Function $\vec{r}(t)=\langle t, t+1\rangle$

Similarly, with (ii) and (iii) we see

Figure 3: Vector Function $\vec{r}(t)=\left\langle t, \frac{1}{4} t^{2}+1\right\rangle$

Figure 4: Vector Function $\vec{r}(t)=<2 \cos (t), 2 \sin (t)>$

As we sketch the vector function, we see a curve is traced out. In example
(i) we see that the curve is given by

$$
\begin{equation*}
x=t, \quad y=t+1 \tag{1}
\end{equation*}
$$

and eliminating t gives

$$
\begin{equation*}
y=x+1 \tag{2}
\end{equation*}
$$

Figure 5: Vector Function(i)

Similarly in (ii)

$$
\begin{equation*}
x=t, \quad y=\frac{1}{4} t^{2}+1, \quad \Rightarrow \quad y=\frac{1}{4} x^{2}+1 \tag{3}
\end{equation*}
$$

Figure 6: Vector Function (ii)
and (iii)

$$
\begin{equation*}
x=2 \cos (t), \quad y=2 \sin (t), \quad \Rightarrow \quad x^{2}+y^{2}=4 \tag{4}
\end{equation*}
$$

What's important to recognize is that as the vector varies, the space curve is drawn with direction.

In general, if the vector functions is

$$
\begin{equation*}
\vec{r}=<f(t), g(t)> \tag{5}
\end{equation*}
$$

Figure 7: Vector Function (iii)
the space curve is

$$
\begin{equation*}
x=f(t), \quad y=g(t) \tag{6}
\end{equation*}
$$

3D Vector Functions

This easily extends to $3 D$. So we have

$$
\begin{equation*}
\vec{r}=<f(t), g(t), h(t)> \tag{7}
\end{equation*}
$$

and the space curve

$$
\begin{equation*}
x=f(t), \quad y=g(t), \quad z=h(t) \tag{8}
\end{equation*}
$$

For example consider

$$
\begin{equation*}
\vec{r}=<\cos (t), \sin (t), t> \tag{9}
\end{equation*}
$$

The space curve here is

$$
\begin{equation*}
x=\cos (t), \quad y=\sin (t), \quad z=t \tag{10}
\end{equation*}
$$

Figure 8: 3D Vector Function

Calculus of Vector Functions

With the introduction of vector functions, we now explore the calculus of vector functions. So the ideas introduced in Calculus 1 such as limits, continuity, derivatives and integration also apply here.

Limits

Recall the definition of a limit

$$
\begin{equation*}
\lim _{x \rightarrow a} f(x)=L \tag{11}
\end{equation*}
$$

which simply means as x gets close to a, then $f(x)$ gets close to L. The following example illustrates

$$
\begin{equation*}
\lim _{x \rightarrow 1} 2 x+1=3 \tag{12}
\end{equation*}
$$

So what about

$$
\begin{equation*}
\left.\lim _{t \rightarrow 1}<t, t+1\right\rangle=? \tag{13}
\end{equation*}
$$

Well, it still means getting close but now the vector function is approaching a particular vector (here, it's $<1,2>$).

So mathematically

$$
\begin{equation*}
\lim _{t \rightarrow 1}\langle t, t+1\rangle=\left\langle\lim _{t \rightarrow 1} t, \lim _{t \rightarrow 1} t+1\right\rangle=\langle 1,2\rangle . \tag{14}
\end{equation*}
$$

In general

$$
\begin{equation*}
\left.\lim _{t \rightarrow a}<f(t), g(t)\right\rangle=\left\langle\lim _{t \rightarrow a} f(t), \lim _{t \rightarrow a} g(t)\right\rangle \tag{15}
\end{equation*}
$$

or

$$
\begin{equation*}
\lim _{t \rightarrow a}<f(t), g(t), h(t)>=\left\langle\lim _{t \rightarrow a} f(t), \lim _{t \rightarrow a} g(t), \lim _{t \rightarrow a} h(t)\right\rangle \tag{16}
\end{equation*}
$$

depending on whether we have 2D or 3D vector functions. So all the rules that apply from Calc 1 now apply to vector functions.

Example 1
Find

$$
\begin{equation*}
\lim _{t \rightarrow 0}\langle\cos t, \sin t>. \tag{17}
\end{equation*}
$$

In this example, it's a simple substitution

$$
\begin{equation*}
\left.\left.\lim _{t \rightarrow 0}<\cos t, \sin t>=<\cos 0, \sin 0\right\rangle=<1,0\right\rangle \tag{18}
\end{equation*}
$$

Example 2

Find

$$
\begin{equation*}
\lim _{t \rightarrow 1}\left\langle\frac{t^{2}-1}{t-1}, \frac{2 t}{t^{2}-1}\right\rangle . \tag{19}
\end{equation*}
$$

The first limit is defined since

$$
\begin{equation*}
\lim _{t \rightarrow 1} \frac{t^{2}-1}{t-1}=\lim _{t \rightarrow 1} \frac{(t+1)(t-1)}{t-1}=2 \tag{20}
\end{equation*}
$$

However, the second limit is undefined since

$$
\begin{equation*}
\lim _{t \rightarrow 1} \frac{2 t}{t^{2}-1}= \pm \infty \tag{21}
\end{equation*}
$$

and so in this example

$$
\begin{equation*}
\lim _{t \rightarrow 1}\left\langle\frac{t^{2}-1}{t-1}, \frac{2 t}{t^{2}-1}\right\rangle=D N E \tag{22}
\end{equation*}
$$

Continuity

From Calculus 1, we define continuity as

$$
\begin{align*}
& \text { (i) } \lim _{x \rightarrow a} f(x) \text { exists } \\
& \text { (ii) } f(a) \text { exists } \tag{23}\\
& \text { (iii) } \lim _{x \rightarrow a} f(x)=f(a)
\end{align*}
$$

As similar definition applies for vector functions

$$
\begin{align*}
& \text { (i) } \lim _{t \rightarrow a} \vec{r}(t) \text { exists } \\
& \text { (ii) } \vec{r}(a) \text { exists } \tag{24}\\
& \text { (iii) } \\
& \lim _{t \rightarrow a} \vec{r}(t)=\vec{r}(a)
\end{align*}
$$

Example 3

Is

$$
\begin{equation*}
\vec{r}(t)=\langle\cos t, \sin t, t\rangle \tag{25}
\end{equation*}
$$

continuous at $t=0$? We see

> (i) $\lim _{t \rightarrow 0} \vec{r}(t)=<1,0,0>$ exists
> (ii) $\vec{r}(0)=<1,0,0>$ exists
> (iii) $\lim _{t \rightarrow 0} \vec{r}(t)=\vec{r}(0)$ yes
so the vector function is continuous at $t=0$.

