STOP WASTING MY MONEY!

STASMO June 27, 2014

Reducing Energy Costs of Schools

Brian C. Uhlrich, P.E. LEED AP BD+C, CxA

8626 Tesoro Drive, Suite 702, San Antonio, TX 78217 www.dbrinc.com 210.546.0200 v 210.546.0201 f

REDUCING ENERGY COSTS OF SCHOOLS

1. Designing Energy Efficient Schools 2. Commissioning 3. Owner Training 4. Operations & Maintenance 5. Managing Energy Costs 6. Common Energy Pitfalls 7. Low-Cost/No-Cost Energy Saving Strategies

1. Designing Energy-Efficient Schools

Site Orientation Efficient building envelope design Optimize daylight, minimize solar heat gain MEP design strategies

Standard Cost-Reducing Design Strategies

- ECM Motors on VAV Boxes
- Fan Static Pressure reset via EMS (required by ASHRAE 90.1)
- CO2 demand control ventilation for single zone AHU's
- VFD's on cooling tower
- VDF's on all 5 HP motors and larger
- Increase chilled water Delta T: 42-56
- Hybrid Boiler System

Standard Cost-Reducing Design Strategies

- Hot gas reheat on RTU's for humidity control
- Occupancy sensors
- Provide multi-level lighting
- Design to IES recommended FC level
- Use 2 lamp fixtures when possible
- Drinking fountains on relay panel
- High efficiency harmonic mitigating transformers

Recommended Cost-Reducing Design Strategies

Optional Cost-Reducing Design Strategies

Provide lower lighting level with task lighting

- Increase chilled water Delta T: 42-58
- Low temperature air distribution
- VDF's on chillers
- LED lights
 - Geothermal
 - VRF (Variable Refrigerant Flow)
- Solar Photovoltaic
- Solar Thermal
- Other renewable energy

2. Commissioning

Verify proper installation of energy-related systems
Test to confirm operation

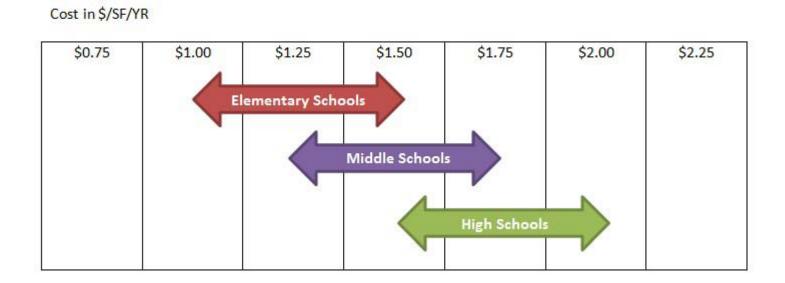
Prepare a record to assist M&O

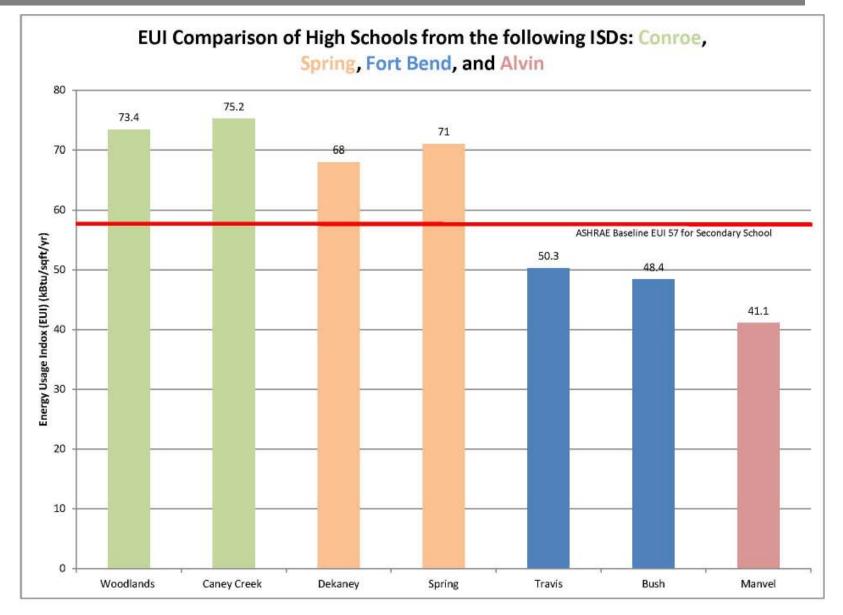
3. Owner Training

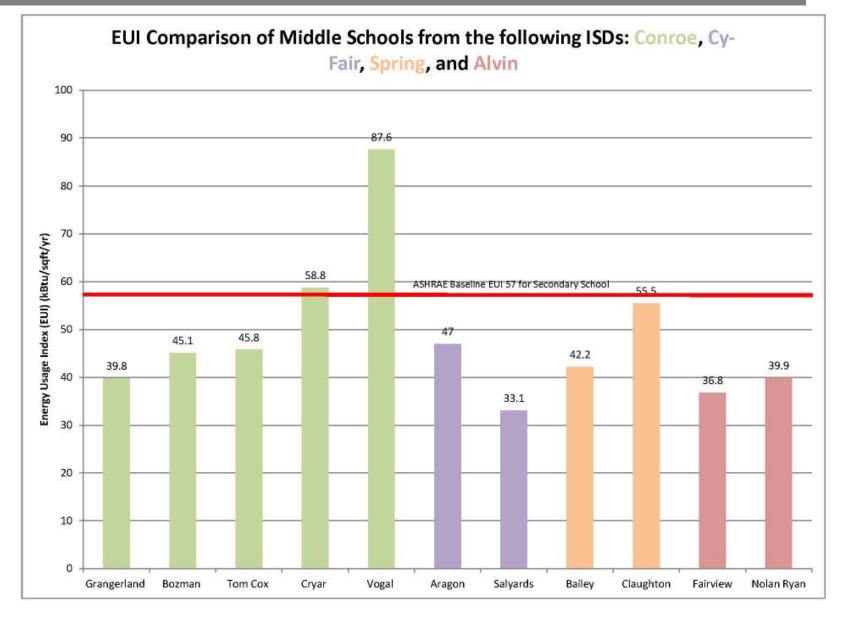
O&M "Kick-off" Meeting

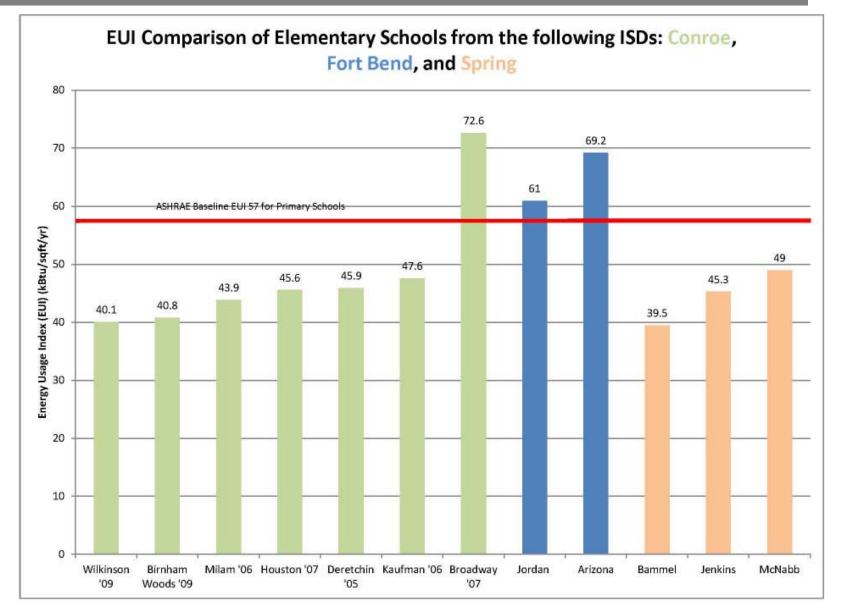
- Convey design intent, code requirements, important
- energy-conservation strategies
- Document training to facilitate re-training
- Schedule training at intervals of 3, 6, 9 months
- Offer tune-ups
- Provide resources for future reference

4. Maintenance & Operations

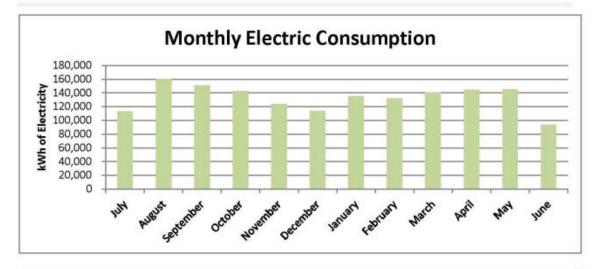

FDC

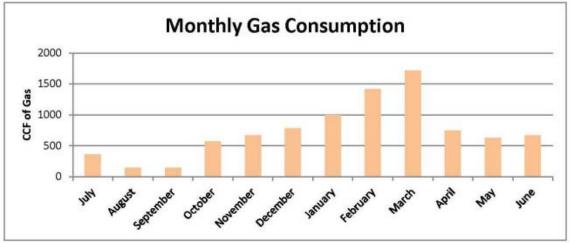

Single most important factor in energy performance of any building
Scheduling, set points
Preventative maintenance


Track utility bills using a standard format
Identify anomalies


- Include anomalies
 Investigate weeklaws
- Investigate problems & re-commission
- Establish incentives for conservation
- Standardize thermostat set points

Average cost of electric and gas utilities in Texas school buildings is \$1.00 to \$2.00 per SF per year.

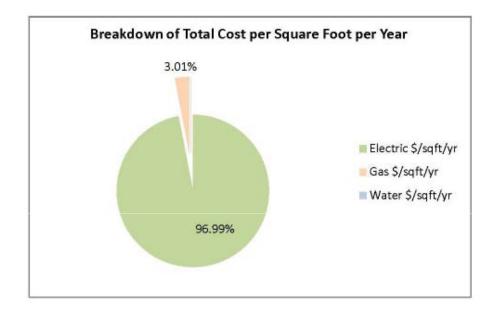




RAW DATA GIVEN BY UTILITY BILLS

		Fairview Mid	dle School 20)10-2011	
July 2010 -	Electric		Gas		Water
June 2011	Use		Use		Use
	Use (kWh)	112,979	Use (ccf)	360	Use (gal)
July	Cost (\$)	14,088.00	Cost (\$)	239	Cost (\$)
	Use (kWh)	160,528	Use (ccf)	150	Use (gal)
August	Cost (\$)	17,792.00	Cost (\$)	108	Cost (\$)
	Use (kWh)	151,256	Use (ccf)	150	Use (gal)
September	Cost (\$)	16,408.00	Cost (\$)	114	Cost (\$)
	Use (kWh)	142,840	Use (ccf)	570	Use (gal)
October	Cost (\$)	15,715.00	Cost (\$)	388	Cost (\$)
	Use (kWh)	124,214	Use (ccf)	670	Use (gal)
November	Cost (\$)	14,392.00	Cost (\$)	454	Cost (\$)
	Use (kWh)	113,810	Use (ccf)	780	Use (gal)
December	Cost (\$)	14,177.00	Cost (\$)	524	Cost (\$)
	Use (kWh)	135,006	Use (ccf)	1000	Use (gal)
January	Cost (\$)	15,170.00	Cost (\$)	625	Cost (\$)
	Use (kWh)	132,136	Use (ccf)	1420	Use (gal)
February	Cost (\$)	14,734.00	Cost (\$)	877	Cost (\$)
	Use (kWh)	141,236	Use (ccf)	1720	Use (gal)
March	Cost (\$)	15,698.00	Cost (\$)	1062	Cost (\$)
	Use (kWh)	144,908	Use (ccf)	750	Use (gal)
April	Cost (\$)	16,094.00	Cost (\$)	477	Cost (\$)
	Use (kWh)	145,320	Use (ccf)	630	Use (gal)
May	Cost (\$)	16,639.00	Cost (\$)	404	Cost (\$)
	Use (kWh)	93,996	Use (ccf)	670	Use (gal)
June	Cost (\$)	12,794.00	Cost (\$)	428	Cost (\$)
	Use (kWh)	1,598,229	Use (ccf)	8,870	Use (gal)
Total	Cost (\$)	183,701	Cost (\$)	5,700	Cost (\$)

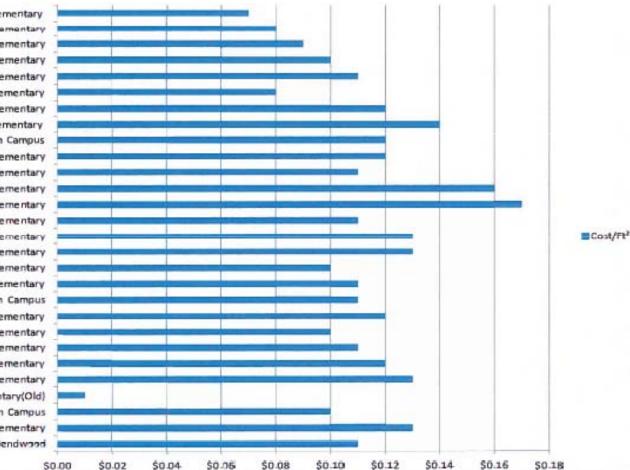
MONTHLY CONSUMPTION GRAPHS Fairview Middle School – Alvin ISD – 10/11

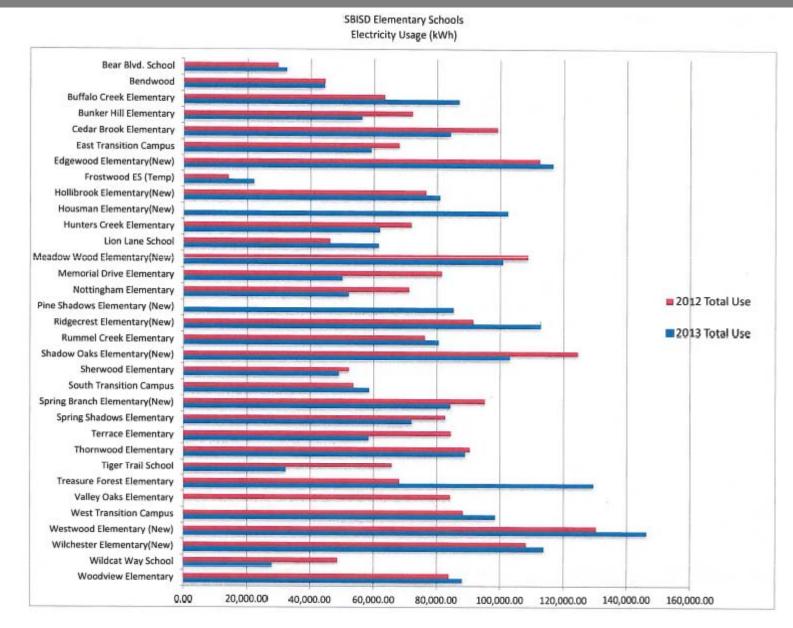

Fairview	Middle School - 2010-2011
EN	ERGY USE INDEX (EUI)

Combined kBtu	6362332.35	Combined Electricity and Natural Gas
kBtu Site	909175	
100 kBtu/Therm	100	Therms x 100 = kBtu
Therms	9091.75	
Therms/CCF	1.025	CCF x 1.025 = Therms
Meter Reading (CCF)	8870	
Natural Gas		
kBtu Site	5453157.35	
kBtu/kWh	3.412	
Electricity kWh	1,598,229	kWh x 3.412 = kBtu
Electricity		

	e Energy Star average an EUI	-6100
EUI (source)	110.883587	
site sqft	172843	
Combines kBtu Source	19165451.8	
Natural Gas kBtu Source	951906.225	
kBtu Source/kBtu Site	1.047	Multiplier Given by Energy Sta
Natural Gas kBtu Site	909175	
Electricity kBtu Source	18213545.5	
kBtu Source/kBtu Site	3.34	Multiplier Given by Energy Sta
Electricity kBtu Site	5453157.35	
	ENERY STAR RATING	

Fairview Middle School 2010-2011 Utility Cost Index (UCI)


Total Electric Use (kWh) Total Cost of Electricity (\$)	1,598,229 183,701	Electric \$/sqft/yr Gas \$/sqft/yr	1.063
Total Square Footage	172843	Water \$/sqft/yr	0.000
Total Gas Use (ccf)	8870	TOTAL \$/sqft/yr	1.096
Total Cost of Gas (\$)	5700		
Total Square Footage	172843		
Total Square Footage			
Total Water Use (gal)	0		
Total Cost of Water (\$)	0		
Water Use Index	0.00		



Energy Use Index Elementary

Cost/Ft²

Pine Shadows Elementary Wilchester Elementary Shadow Oaks Elementary **Ridgecrest Elementary** Meadow Wood Elementary Hollibrook Elementary Edgewood Elementary Westwood Elementary South Transition Campus **Buffalo Creek Elementary Treasure Forest Elementary** Cedar Brook Elementary Thornwood Elementary Terrace Elementary Nottingham Elementary Spring Shadows Elementary Sherwood Elementary Woodview Elementary West Transition Campus Valley Oaks Elementary Spring Branch Elementary **Rummel Creek Elementary** Memorial Drive Elementary Hunters Creek Elementary Frostwood Elementary(Old) East Transition Campus Bunker Hill Elementary Bendwood

6. Common Energy Pitfalls

 HVAC Schedules • Exhaust fans run 24 hrs. Outside air dampers not controlled Lack of setback, cool-down Excessive Outside Air Adds unnecessary load Overcooling due to high humidity Lack of lighting control

Top 10 No-Cost Ways To Lower Your School's Utility Bills

- 1. Establish and communicate a policy
- 2. Benchmark your school
- 3. Assign responsibility for common areas
- 4. Establish a recognition program
- 5. Control classroom thermostats
- 6. Use building automation systems (BAS)
- 7. Turn off outside lighting
- 8. Establish a plug load plan
- 9. Keep doors and windows closed
- 10. Control exhaust fans

1. Establish and Communicate a Policy

- Connection to business plan
- Roles and responsibilities
- Temperature set points
- Use of computers/equipment (school & personal)
- Vacation shutdown guidance
- Benchmarking
- Awareness and training
- Sustainable Energy Efficiency committee

2. Benchmark Your School Four Easy Steps

- 1. Go to <u>www.energystar.gov</u> and register for a Portfolio Manager account.
- 2. Add a "property" (your school).
- 3. Add a "space" (your school space attributes).
- 4. Enter at least 12 months of energy use data.

You will receive a rating (from 1 to 100) that compares your school with a national average (50).

3. Assign Responsibility for Common Areas

Common Areas

- Hallways
- Multipurpose rooms
- Cafeterias
- Auditoriums
- Restrooms
- Gymnasiums
- Locker rooms
- Conference/meeting rooms
- Stage
- Storage areas

Bright Elementary School Common Areas Check List

Space:	Cafeteria
Monitor:	Ms. Jones
X	Lights
X	Doors/Windows
N/A	Computers
Х	Temperature Settings
N/A	Water Fixtures
N/A	Exhaust Fans
Notes:	

4. Establish a Recognition Program

- Appreciation for a job well done.
- Award ceremonies give visibility to the program.
- Recognize energy saving behaviors at staff and faculty meetings.
- Encouraged to help and see it as a priority.

	Awards & Incentive Program
The En	ergy Savers Award
	FIRST PLACE
The people who care!	is presented to:
	conted to:
outstanding efforts to	ward reducing energy waste and its n green house gas emissions

5. Control Classroom Thermostats

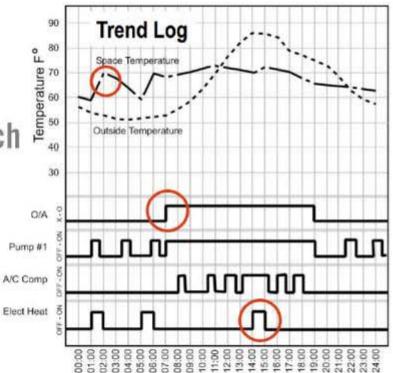
Manual

- Set for comfort during class time
- Establish range (e.g. 72 to 78 F)
- Set back at night and weekends (by 8 to 10 F)

	9,76	
	10	
	-	
	0	

Programmable

- Establish range
- Periodically inspect settings
- Over-rides

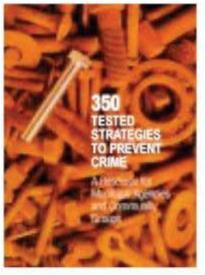

1 Degree = 1% Energy Cost

6. Use Building Automation Systems (BAS)

Control System Capabilities

- Program settings
- Assess trouble prior to dispatch
- Optimize system settings*
- *Requires a technician

7. Turn Off Outside Lighting (Midnight to 6 AM)


Purpose of outside lighting

- Staff safety
- Crime prevention
- Extra-curricular activities

National Crime Prevention Council 350 Tested Strategies to Prevent Crime

- A dark campus seems to deter vandals
- Dark or lit does not seem to make a difference for larcenies

8. Establish a Plug Load Plan

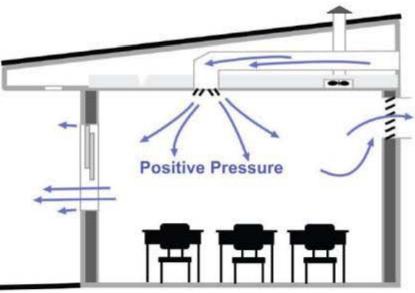
Plug Load Management Plan

- 1. PC power settings
- 2. PC security patch management
- 3. Vending machine power control
- 4. Standby power
 - Use of power strips
 - Unplug when not in use
 - Office equipment
 - ENERGY STAR rated
- 5. Seasonal shut down
- 6. Refrigerators
- 7. Kitchen equipment
- 8. Water heaters

8. Establish a Plug Load Plan

Plug loads can account for as much as 20% of the power load in schools.

9. Keep Doors and Windows Closed

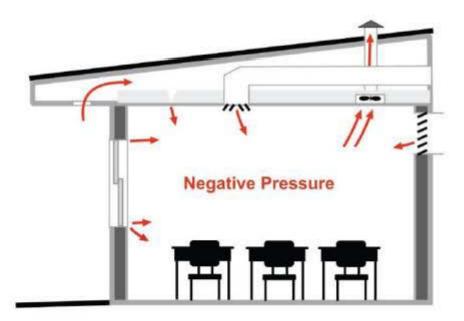

Penetrations in the building envelope can increase the cooling and heating load of mechanical equipment.

1. Positive Pressure

Most schools are designed for positive pressure. Open windows (or improperly sealed) cause conditioned air to vent to the outside.

2. Inspect O/A Dampers

Outside air dampers can be stuck in the open position.



10. Control Exhaust Fans

When the building's ventilation system is off, exhaust fans can create a negative pressure.

Negative Pressure

Outside air can enter through numerous cracks and holes in the building envelope – bringing in unwanted temperatures and humidity levels.

