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Abstract: Sparse channels are typically encountered in 

many communication systems like underwater acoustic 

channels, communications in a hilly terrain etc. Conventional 

channel estimation techniques like the Least Squares approach 

and interpolation based methods do not work well in this case, 

because these techniques do not exploit the sparse structure of 

the channel. In this paper, we first present a comparative study 

of the existing sparse channel estimation techniques based on 

Matching Pursuit (MP), Orthogonal Matching Pursuit (OMP) 

and Basis Pursuit (BP) with respect to the mean squared error 

(MSE) and bit error rate (BER). Then we introduce the novel 

Compressive Sampling Matching Pursuit (CoSaMP) algorithm 
and demonstrate its superior performance with respect to the 

previously mentioned schemes. The channel estimation 

techniques are compared taking Cramer-Rao lower bound 

(CRLB) as the reference. Evaluation of the system 

performance is done in time domain because in frequency 

domain the system performance becomes dependent on the 

number of points over which the FFT operation is performed 

and therefore the interpretation can be misleading. 

Keywords: Sparse channels, Compressive Sensing, 

Matching Pursuit, Basis Pursuit, Cramer Rao Lower bound, 

MSE and BER. 

I.  INTRODUCTION 
If there is a wireless channel which exhibits a very large 

delay spread with only a few non-zero channel coefficients, 
then such a channel is regarded as a sparse channel. There are 
many communication systems which are regarded as sparse for 
e.g. terrestrial transmission channel of high definition 
television (HDTV) [1], a hilly terrain communication channel 
[2] and underwater acoustic channels [3] to name a few. An 
example of the sparse channel is shown in fig 1. The reason 
why these channels are sparse may be attributed as follows: In 
the underwater acoustic channels, few significant multi paths 
are relatively close to each other and have a delay spread of 
almost the same order as in conventional channels. But there 
may be one signal which is reflected from the sea bed. This 
signal will have a huge delay compared to the other signals, so 
overall delay spread of the system is now very high with the 
inclusion of this far away multipath. Therefore, when the 
receiver samples the received signal at baseband, all the 
channel coefficients after the closely spread significant multi 
paths will be zero, then finally the last channel coefficient (due 
to reflection from the sea bed) will be non-zero. This will result 
in a sparse channel. 

 
Fig. 1: A typical sparse channel with 5 non-zero multipaths 

If the conventional channel estimation techniques are 

applied for sparse channel estimation, then they do not take 

into account the sparsity of the channel. These techniques treat 

the channel as if it has all non-zero coefficients and will try to 

estimate the channel taps in all the positions. Needless to say, 

the mean squared error and bit error rate performance will be 

highly degraded under such a scheme. Moreover, in a sparse 

channel the multipath delays may not be at the sampling 

instants. Therefore, ordinary channel estimation schemes 
cannot capture this delay and thus channel estimation results 

are more erroneous. 

Sparse signal processing is in practice for quite a long time 

now. It was first reported in the literature for underwater 

acoustic channel measurements [3, 5]. Terrestrial broadcasting 

[1] for high definition (HD) television, communications near a 

hilly terrain [2] are also reported to be sparse. Besides this, 

sparse signal processing are predominant in many fields like 

spectral estimation, analysis of noisy images, coding of speech 

signals etc. A few application areas are listed in [1-5]. The 

sparse processing techniques does not merely represent a 

signal as a superposition of several sinusoidal signals, but 
makes use of available dictionaries. There is no unique way to 

construct a dictionary. There can be many different ways in 

which a dictionary can be constructed [6]. The central idea is 

to provide the sparsest representation of an object by choosing 

that column of the dictionary which will represent the signal 

by the least number of non-zero coefficients. Accordingly we 

have many different types of dictionaries like wavelet 

dictionaries, Gabor dictionaries, cosine packets etc. Mallat and 

Zhang [6] have proposed the matching pursuit (MP) algorithm 

in 1993 which was the first stepping stone in the field of 

compressive sensing. Although the algorithm gives a much 
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improved performance over the Least Squares, but the 

algorithm is greedy, and tries to converge to a global maxima 

from a knowledge of the local maxima. Moreover the chances 

of reselection of a previously selected vector from the 

dictionary are also large. In [7], Cotter and Rao compared 

sparse channel estimation techniques by using Least 
Squares(LS), variants of LS and Matching Pursuit. The 

superior performance of MP exploiting the sparseness of the 

channel is subsequently demonstrated. It is also shown in [7] 

that MP has both a lower complexity and requires shorter 

training sequences than LS and all the variants of LS. A 

slightly improved version of LS which performs channel 

estimation by taking the channel sparsity into consideration 

has been proposed in the paper by M.R Raghavendra and K. 

Giridhar [8]. It uses a Generalized Akaike Information 

Criterion (GAIC) to estimate the channel taps as well as the 

channel positions.The performance of this scheme 

outperforms that of the ordinary LS estimator. Details of 
Akaike Information Criterion (AIC) has been reported in [9] 

where it is shown that Generalized Likelihood Ratio Test 

(GLRT) with a specified threshold is equivalent to AIC. The 

problem of reselection of basis vectors is avoided by 

employing the Orthogonal Matching Pursuit algorithm (OMP) 

[10, 11]. G. Karabulut and A. Yongacoglu[10] presented a 

comparison of sparse channel estimation with respect to MP 

and OMP algorithms. It is demonstrated that OMP 

outperforms the MP algorithm since there is no reselection of 

basis vectors in the former case. Both MP and OMP come 

under the category of greedy algorithms. To avoid the 
shortcomings of greedy algorithm, Chen and Donoho [12] had 

proposed the Basis Pursuit (BP) algorithm which is the true 

representation of L1 norm of a sparse signal. Suppose many 

solutions are possible by solving the linear set of equations  

            y = W.x            (1) 

Then, by following this method, we should choose that 

solution whose coefficients have minimum value of L1-norm 

[12]. This is done by a convex optimization approach 

 

                       min
                                  𝑥

|𝑦 − 𝑊.𝑥|2 +  𝜆. ‖𝑥‖1                                   (2) 

A relaxed basis pursuit is thus a minimization of a mixed 

norm criterion [13]. Under this family of minimization of a 

sparse problem which is convex, we have three important 

algorithms slightly different from each other. These are 

Dantzig Selector (DS), Basis Pursuit (BP) and LASSO. The 

performance of Dantzig selector has been categorically 
verified in [14] by Emmanuel Candes and Terence Tao for the 

case when the number of parameters p is much larger than the 

number of equations n as we see in functional MRI and 

tomographic applications. The Dantzig Selector (DS) has been 

voted among the top 10 algorithms of this century by SIAM 

because of its simplicity and powerful computational ability. 

A comprehensive comparison of LS, OMP and BP with 

respect to these parameters have been presented in [11] by 

Joel A. Tropp and Anna C. Gilbert. DeVore and Temlyakov 

[15] have given a pessimistic reasoning about greedy 

algorithms. But Joel A. Tropp et el [11] had suggested that 

results for MP and OMP are quite deceptive and can exhibit a 

wide variation depending on the number of measurements, the 

order of sparsity, and the random measurement matrix. The 

same result has been reestablished in [16]. The work by Kunis 

and Rauhut [16], have suggested the performance of OMP for 

signal recovery from random frequency measurements. Kunis 

and Rauhut also proved that the first iteration in OMP can 
locate all the dominant taps of the channel by use of pilot 

sequences. It is shown in their work that OMP produces signal 

approximations that are superior to BP. Their work also 

proved that OMP algorithm executes much faster compared to 

BP. The work by Needell and Vershynin [17] have showed 

that if Restricted Isometry Property (RIP) is followed, then 

with a high probability Regularized OMP(ROMP) can recover 

K-sparse signals from O(K ln d) random observations where d 

is the number of columns of the DFT matrix. This result is 

highly esteemed by researchers as a significant advancement 

of OMP algorithm. 

II. SYSTEM MODEL 
The sparse channel is considered to be a frequency 

selective Rayleigh fading channel. It is described by the 

equation 

                                      ℎ(𝜏) =  ∑ 𝑐𝑝𝛿(𝜏 − 𝜏𝑝))

𝛼−1

𝑝=0

                   (3) 

where α is the number of non-zero channel coefficients 

(typical value is 5), cp's are the non-zero channel coefficients 

and τp's are the respective multipath delays associated with the 
channel coefficients cp's. The channel is assumed to be wide 

sense stationary [28] and it is quasi-static in nature i.e. it 

changes from one OFDM frame to another, but remains 

constant within the time interval of each OFDM frame. 

Considering a standard OFDM transmission and reception 

scheme [53], the receiver applies an N-point discrete Fourier 

transform on the received data symbols as 

            r[n] = H[n]. d[n] + w[n]   n = 0,1… . (N − 1)       (4)  
where r[n] is the received symbol for nth sub-carrier after 

DFT operation, H[n] is the frequency response of the channel 
for nth sub-carrier and d[n] is the nth transmitted symbol. w[n] 

is the AWGN component in the nth sub-carrier . N is the 

number of active OFDM subcarriers. 

The frequency response for nth sub-carrier can be written as 

 

𝐻[𝑛] =  ∑ 𝑐𝑝

𝛼−1

𝑝=0

𝑒𝑥𝑝(
−𝑗. 2. 𝜋. 𝑛.

𝜏𝑝

𝑇𝑠

𝑁
),    

                                                          𝑛 = 0,1,… (𝑁 − 1)              (5) 

where τp/Ts is an integer, because of the frequency 

selective nature of the channel and construction of the 

dictionary. Here Ts is the sampling time period. Writing 

equation (4) in vector form, we get 

r = Gs.H + w                                            (6) 

where r, d, H and w are column vectors containing the r[n], 

d[n], H[n] and w[n] for all n . Gs is a diagonal matrix with the 

elements of vector d on the main diagonal. We can rewrite the 

vector H as 
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                                          H =  

[
 
 
 
 

𝐻(0)

𝐻(1)
. .
. .

𝐻(𝑁 − 1)]
 
 
 
 

                                 (7) 

                                       =

  

[
 
 
 
 
 
 ∑ 𝑐𝑝

𝛼−1
𝑝=0 𝑒𝑥𝑝 (

−𝑗.2.𝜋.0.
𝜏𝑝

𝑇𝑠

𝑁
)

. .

. .

∑ 𝑐𝑝
𝛼−1
𝑝=0 𝑒𝑥𝑝 (

−𝑗.2.𝜋.(𝑁−1).
𝜏𝑝
𝑇𝑠

𝑁
)
]
 
 
 
 
 
 

 (8) 

 

                                          = ∑ 𝑐𝑝𝑊𝑝(𝑛)                                   (9)

  𝛼−1

𝑝=0

 

 

where the vector  

𝑊𝑝(𝑛) =  [1 𝑒−𝑗.2𝜋.1.𝜏𝑝/(𝑇𝑠.𝑁)  . .  . .  𝑒−𝑗.2𝜋(𝑁−1)𝜏𝑝/(𝑇𝑠.𝑁)]
𝑇
 

is nothing but the column vector of the partial discrete Fourier 

transform matrix. To mathematically express the compressed 

sensing problem, we should keep a large, but finite dictionary 

[20]. This is because it is well established that performance of 

any compressive sensing algorithm depends on the resolution 

of the dictionary computed beforehand. So we take the 

maximum possible delay Tmax and define the delay spread as 

the interval [0 Tmax]. We divide this interval into a set of 

uniformly spaced delays. The interval between any two delay 

elements are defined by a multiple of the baseband sampling 

time period Ts. Therefore the delay elements in the delay grid 

will be uniformly spaced by Ts and the delay grid can be now 
build as 

                        𝜏𝑔 = {0, 𝑇𝑠,  2. 𝑇𝑠, ……… (𝑁𝑡 − 1). 𝑇𝑠}            (10) 

where Nt = Tmax/Ts 

It is a reasonably good assumption that with this fine 
resolution delay grid at hand, any unknown multipath delay in 

the received signal will correspond to one of the delay 

elements from the delay grid. In fact, there will be α such 

delays for an α sparse channel. Our first job is to precisely 

estimate the number of multipath delays from the delay 

dictionary. With the delay grid (of dimension 1xNt) at hand, 

we next construct a partial DFT matrix as 

𝑊 = [𝑊0(𝑛) 𝑊1(𝑛)… . .𝑊(𝑁𝑡−1)(𝑛)],

𝑛 = 0,1, . . (𝑁 − 1)                                     (11)  
where W is of dimension NxNt and 

W0(n),W1(n),…….W(Nt-1)(n) each are the column vectors of 

size Nx1. The general term Wk(n) is defined by as 

 

               𝑊𝑘(𝑛) =  

[
 
 
 
 
 
 
 
 
 
 
 

𝑒𝑥𝑝 (
−𝑗. 2𝜋. 0.

𝜏𝑘

𝑇𝑠

𝑁
)

𝑒𝑥𝑝 (
−𝑗. 2𝜋. 1.

𝜏𝑘

𝑇𝑠

𝑁
)

. .

. .

𝑒𝑥𝑝 (
−𝑗. 2𝜋. (𝑁 − 1).

𝜏𝑘

𝑇𝑠

𝑁
)

]
 
 
 
 
 
 
 
 
 
 
 

                 (12) 

 

Substituting the equation (12) in equation (9) we get  

H = W.c                                  (13) 

where c impulse response of the channel with a span of Nt 

samples with Nt << N. Thus the standard compressive sensing 

problem may be finally formulated as : 
Given r = (GsW)c + w we are to find c. It is to be noted that 

GsW is the dictionary which we will be using for estimating the 
multipath delays and channel coefficients. It is obtained by 
multiplying the diagonal matrix Gs with the matrix W which is 
constructed according to equation (11). Since the channel is 
sparse, most components of the channel impulse response are 
zero. Using this helpful knowledge, a sparse solution to r ≈ 

(GsW).c at high SNR's is achieved by approximating r as a 
linear combination of a few columns of (GsW). 

III. ALGORITHM DESCRIPTION 

A.  Matching Pursuit algorithm 

For a detailed understanding of MP algorithm the reader is 

advised to read the famous paper by Mallat and Zhang [6]. 

The flowchart describing MP algorithm is outlined below: 

 
Fig. 2: Flowchart of Matching Pursuit algorithm 
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The non-zero channel coefficients cp's are computed as 

𝑐𝑝 = max
𝑙

|GsW(𝑙)𝐻  b𝑝−1| ∗ 𝑠𝑖𝑔𝑛{GsW(𝑙)𝐻  b𝑝−1}                   𝑝

= 1,2… 𝛼     𝑙 = 0,1,2,… (𝑁𝑡 − 1)          (14) 

where the sign of a complex number z is defined by 

                                         𝑠𝑖𝑔𝑛(𝑧) =  
𝑧

|𝑧|
                                    (15) 

The frequency response of the channel is determined by 

H = ∑ 𝑐𝑝 .W(𝑘𝑝)

𝛼

𝑝=1

 

 

                                       = W.c                                                     (16)     

B. Orthogonal Matching Pursuit algorithm 

In essence, OMP is quite similar in comparison to MP with 

certain subtle differences. A detailed understanding of OMP 
algorithm is outlined in [10]. However in OMP, the chance of 

reselection of a particular basis vector from a stored dictionary 

is eliminated based on the way orthogonal projection matrix P 

operates on the extracted columns of the dictionary [10,11]. 

Otherwise, the computation of the steps of this algorithm and 

matching pursuit algorithm are exactly identical as far as 

sparse channel estimation is concerned. The frequency 

response of the channel may be computed as in equation (16) 

C. Basis Pursuit algorithm 

The standard compressive sensing equation is restated as : 

 r = (GsW).c + w               (17) 
 

The Basis Pursuit formulated [12,14] based on the above 

equation is given by  

 

                       min
                               c

|r − (Gs.W). c|2  +  𝜆. ‖𝑐‖1                       (18) 

 

Here, the L1 norm of a vector x is defined by the equation  

 

                                           ‖x‖1 = ∑|𝑥𝑖|                                 (19)

𝑛

𝑖=1

 

 

Since, in our case the channel coefficients are complex, so 

the L1 norm of c is defined as 

                        ‖c‖1 = ∑ √|𝑅(𝑐𝑝)
2
| + |𝐼(𝑐𝑝)

2
|

𝑁𝑡−1

𝑝=0

                (20) 

 

In the above equation the parameter λ depends on the noise 

variance. Typical value of λ for signal to noise ratio of 5 dB is 

0.3162. we have used the CVX routine of MATLAB to solve 

this optimization problem. 

D. Compressive Sensing Matching Pursuit algorithm 

CoSaMP algorithm is the latest development in the field of 

compressive sensing. It offers the advantages of both the 

greedy algorithm and the convex program [18,19]. The 
flowchart describing the sequence of operations in the 

CoSaMP algorithm is described below. 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Flowchart of Compressive Sampling  

Matching Pursuit algorithm 

IV. SIMULATION RESULTS 
The following parameters have been fixed for Simulations: 

Simulation parameters of 

OFDM 

Values with respective units 

Number of OFDM Subcarriers 1024 

Sampling time period 0.1 µs 

Length of Cyclic Prefix 128 

Modulation Type 4 QAM 

Physical Channel Length 128 

Range of SNR 5 to 25 dB in steps of 4 

PDF of the Channel Uniform 

 
Table 1: Parameters used for Sparse Channel Simulation 

 
Fig. 4:   A sparse channel with 4 Multi paths 

 

Identify 2α dominant taps by projection method and α 

dominant taps by the LS method 

Merge the dominant 2α taps with the dominant α taps 

Perform channel estimation on all the merged taps 

Sort the channel estimation output and select α taps of 

highest magnitude 

Output is the final impulse response vector 
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Fig. 5: MSE vs SNR for pilot interval = 4 

 
Fig. 6:   BER vs SNR for pilot interval = 4 

 

We have the following observations: 

 Performance of all the estimators are uniformly better than 
the Least Square channel estimate, which does not take into 

account the sparsity of the channel. 

 The novel CoSaMP algorithm outperforms all other 

algorithms in terms of time domain MSE and is closest to the 

Cramer-Rao lower bound which is the minimum lower bound 

on variance of these estimators. 

 The basis pursuit (BP) based on minimization of the L1 

norm is found to exhibit an inferior performance compared to 

MP or OMP. The reason is that convex program is based on an 

optimized solution and an optimized solution is not 

necessarily the best solution. 

 The performance of MP and OMP are exactly same in this 

case, since there is no question of reselection of the previously 

selected basis vector from dictionary. This is because the 

sparse channel coefficients generated are unique and the 

dictionary is constructed with fine resolution so that even 

small changes in multipath delays can be adequately captured 

by the dictionary. 

 

 
Fig.7:  MSE vs SNR for pilot interval = 8 

 
 

Fig.8:   BER vs SNR for pilot interval = 8 

 

We have the following observations: 

 When the number of pilots reduces by a factor of 2, then 

also the compressive sensing schemes give an acceptable level 

of MSE and BER performance.  

 This scheme of pilot arrangement can therefore be 

regarded as optimal. With a slightly wider pilot separation, the 

system performance becomes unacceptable w.r.t MSE and 
BER 

 

Fig. 9:   Generation of a 3 tap sparse channel 
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Fig. 10:  MSE vs SNR for variable number of pilots      

 
Fig. 11:  BER vs SNR for variable number of pilots 

 

The plot of mean squared error(MSE) and bit error 

rate(BER) with respect to variable number of pilots shows a 

sharp performance degradation when the number of pilots fall 

below a certain number (pilot interval 8 in this case). This 

number is fixed for a particular set of active OFDM 

subcarriers. This is in conformity with the restricted isometric 
property (RIP) [21] which is the fundamental backbone of 

compressive sensing. For our special case where 1024 OFDM 

subcarriers are employed in a 10 MHz bandwidth, the optimal 

number of pilots is found to be 128 which calls for a comb 

type pilot fashion separated at an interval of 1024/128 = 8 

locations and interleaved with the data symbols. 
 

 
Fig. 12:  MSE vs physical multipaths 

 

We have the following observations: 

 As the number of non-zero distinct multi paths increase, the 

performance of all the above mentioned algorithms 

deteriorates. This is as expected and in accordance with the 

theory. This is due to larger error involved in the minimization 

of L1 norm in case of basis pursuit(BP) and CoSaMP while the 

residual is of higher magnitude for more number of multipaths 

in case of greedy algorithms. This explains their degradation 

performance. 

V. CONCLUSION 

   In this paper, we have shown that BP algorithm based on 

the convex program that solves a linear programming problem 
has a higher stability than OMP algorithm. This is its inherent 

advantage over the greedy counterpart. However the BP 

method is computationally extremely complex and not at all 

suitable to be implemented in hardware. On the other hand, 

since OMP is much faster and easier to implement in 

hardware, therefore it is the choice for real time applications. 

As regards to performance, it cannot be said whether BP or 

OMP algorithm is uniformly superior to the other. The 

performance depends on many factors as enlisted in section I. 

The proposed sparse channel estimation algorithm using 

Compressive Sampling Matching Pursuit (CoSaMP) has the 
advantages of greedy algorithm and convex program. It is 

much more stable compared to MP or OMP and at the same 

time computationally much less challenging compared to 

Basis Pursuit. So, it is the preferred choice of sparse channel 

estimation technique for wireless channels whose 

characteristics change rapidly from one OFDM frame to 

another.  

VI. ACKNOWLEDGEMENT 

This work is supported by Electronics and Radar 

Development Establishment (LRDE), Defence Research and 

Development Organization (DRDO), India. We are thankful to 

our organization for providing us with all the facilities and 
seniors for their valuable guidance and motivation. 

 



IJRECE VOL. 5 ISSUE 4 OCT.-DEC. 2017                    ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE) 

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING 
 A UNIT OF I2OR  56 | P a g e  

 

VII. REFERENCES 

[1]. W.F. Schreiber, “Advanced television systems for terrestirial 
bradcasting: Some problems and some proposed solutions", in 
Proc. IEEE, June 1995, vol. 83, pp 958-981 

[2]. S. Ariyavisitakul, N.R. Sollenberger and L.J. Greenstein, “Tap 
selectable decision-feedback equalization", IEEE Tran. on 
Commun., vol. 45, pp. 1497-1500, Dec 1997. 

[3]. M. Kocic et al., “Sparse equalization for real-time digital 
underwater acoustic communications", in Proc. OCEANS'95, 

San Diego, CA, Oct 1995, pp. 1417-1500. 
[4]. W.U.Bajwa, J.Haupt, G.Raz and R.Nowak “Compressed 

channel sensing", Proc. Conf. Inf. Sci. Syst., pp.5 -10 2008 
[5]. R. Gribonval, E. Bacry, S. Mallat, P. Depalle and X. Rodet 

"Analysis of sound signals with high resolution matching 
pursuit", Proc. Int. Symp. Time-Frequency Time-Scale Anal., 
pp.125-128 1996 

[6]. S.G.Mallat and Z.Zhang, “Matching pursuits with time-

frequency dictionaries", IEEE Tran. on ASSP, vol. 41, no. 12, 
pp. 3397-3415, Dec 1993. 

[7]. Shane F. Cotter and Bhaskar D. Rao, “Sparse channel estimation 
via matching pursuit with application to equalization", IEEE 
Tran. on Communications, vol. 50, no. 3, pp. 374-377, 2002. 

[8]. M. R. Raghavendra and K. Giridhar “Improving channel 
estimation in OFDM systems for sparse multipath channels", 
IEEE Signal Processing Letters, vol. 12, pp.52 -55 2005 

[9]. Peter Stoica, Yngve Selen and Jian Li, “On information criteria 

and the generalized likelihood ratio test of model order 
selection", IEEE Signal Processing Letters, vol. 11, no. 10, Oct 
2004. 

[10]. G. Karabulut and A. Yongacoglu “Sparse channel estimation 
using orthogonal matching pursuit algorithm", Proc. IEEE Veh. 
Technol. Conf. (VTC), vol. 6, pp.3880 -3884 2004 

[11]. J. A. Tropp and A. C. Gilbert, “Signal recovery from random 
measurements via orthogonal matching pursuit", IEEE 

Transaction on Information Theory, vol. 53(12), pp. 4655-4666, 
2007. 

[12]. Scott Shaobing Chen, David L. Donoho and Michael A. 
Saunders, “Atomic decomposition by basis pursuit", SIAM 
Journal on Scientific Computing, vol. 20, no. 1, pp. 33-61, 1999. 

[13]. W.U.Bajwa, J.Haupt, G.Raz and R.Nowak “Compressed 
channel sensing : A New Approach to estimating Spase 
Multipath Channels", Proceedings of the IEEE Vol. 98, No. 6, 

June 2010 
[14]. E. Candes and T. Tao, “The Dantzig selector: Statistical 

estimation when p is much larger than n", Annals of Statistics, 
vol. 35, pp. 2392-2404, 2006. 

[15].  R. DeVore and V. N. Temlyakov, “Some remarks on greedy 
algorithms", Adv. Comput. Math., vol. 5, pp. 173-187, 1996. 

[16].  S. Kunis and H. Rauhut, “Random sampling of sparse 
trigonometric polynomials II - orthogonal matching pursuit 

versus basis pursuit", Found. Comput. Math., vol. 8, pp. 737-
763, Dec. 2008. 

[17]. D. Needell and R. Vershynin, “Uniform uncertainty principle 
and signal recovery via Regularized Orthogonal Matching 
Pursuit", Jul. 2007. 

[18]. D. Needell and J. A. Tropp, “CoSaMP: Iterative signal recovery 
from incomplete and inaccurate samples", Applied and 
Computational Harmonic Analysis, vol. 26(3), pp. 301-321, 
2008. 

[19]. Guan Gui, QunWan et el. “Sparse multipath channel estimation 
using compressive sampling matching pursuit algorithm", IEEE 
APWCS 2010 

[20]. Christian R. Berger, Shengli Zhou, Weian Chen and Peter 
Willett, “Sparse channel estimation for OFDM : Over-complete 
dictionaries and super-resolution", Signal Processing Advances 
in Wireless Communications, 2009: 196-200. 

 

 

Abhinandan Sarkar obtained his B.E 

from BESU in 2005 and M. Tech in 

Signal Processing & Communication in 
2014 from IIT Kanpur. He joined 

LRDE in 2007 and is currently working 

in Signal Processing Group. His 

interests include Radar Signal 

Processing, Wireless Communication, 

Game Theory and FPGA based signal processing. He is a 

member of many professional societies like IETE, ISRS, ISSE 

and Indian Science Congress. 

 

 

 

 
 

 

 

 

 
 
 
 
 
 

 

 

 


