
IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019)          ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)  

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING 

 A UNIT OF I2OR  3496 | P a g e  

CONFORMAL METHOD TO ELIMINATE THE ADI-FDTD STAIR-CASING 

ERRORS 

N. Kuru Murthy1, Chandra Sekhar Paidimarry2 
1Research Scholar, Department of Electronics and Communication Engineering, University College of Engineering, 

Osmania University, Hyderabad-500007, Telangana, India.  murthy409@gmail.com  
2 Professor ,Department of Electronics and Communication Engineering, University College of Engineering, Osmania 

University, Hyderabad-500007, Telangana, India. sekharpaidimarry@gmail.com  

 

Abstract 

In this work, a novel ADI- CFDTD technique is presented. 

The proposed technique is a combination of ADI concept 

with CFDTD analysis method. The proposed method restores 

the second order accuracy with high stability than ADI-

CFTD.   ADI-CFDTD suits well to overcome the limitation 

of existed ADI-FDTD for analysis of curvilinear objects. By 

controlling wave propagation confining to the object 

boundary and avoids wave leakage performance will 

enhanced.  In this study, ADI-CFDTD applied on circular 

microstrip patch antenna to evaluate the performance. 

Obtained results are compared with CST Microwave CAD 

model results. Both the results are good in agreement. The 

proposed ADI-CFDTD method helps to reduce the 

computational complexity. 

 

I Introduction 

              In FDTD technique the time step ‘Δt’ plays an 

important role; however it is limited by the CFL stability 

condition. The FDTD method becomes unstable when the 

step size exceeds the CFL limits. In order to overcome this 

drawback, the Alternative Direction Implicit (ADI) FDTD 

method is introduced. The ADI FDTD method [1-2] is 

unconditionally stable for any time step size. The spatial 

discretization in FDTD method provides inaccurate outcomes 

for curved objects which is known as staircase error. This 

staircase error becomes larger in ADI FDTD for curved 

objects. This limitation of ADI FDTD has been addressed in 

many research articles.  In this chapter Conformal based ADI 

FDTD (ADI CFDTD) method is introduced. A circular patch 

antenna array is used to evaluate proposed conformal ADI 

FDTD.  The proposed method provides good results as 

compared with antenna CAD tools.  

In this work a novel ADI Conformal FDTD (ADI-

CFDTD) technique [3] is proposed for restoring the second 

order accuracy with high stability in the ADI-FDTD 

technique. Mainly, the CFDTD is applied as a local correction 

to the ADI-FDTD technique. This correction enhances the 

local finite difference approximation accuracy from the zero 

order to the first order, and the global accuracy from the first 

order to the second order because of the super-convergence. 

The proposed method can be used for many CEM 

applications where the curved objects are integrated in a 

system. The proposed technique is capable in reducing the 

spatial sample density and computational complexity of CEM 

applications.  

The ADI methods have been proposed n by the authors 

Peaceman and Rachford in the year 1955 [4]. These methods 

were mainly developed for getting the effective numerical 

outcomes of elliptic and parabolic partial differential 

equations.  

The heat equation can be represented as follows  

𝜕𝑢

𝜕𝑡
=

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
                                                                   (1) 

The best example of parabolic differential equation, over the 

mesh superimposed on the rectangular region 0 ≤ 𝑥 ≤ 𝑎, 0 ≤

𝑦 ≤ 𝑏. 

By utilising the space time notation  

𝑢𝑙−𝑗
𝑛 = 𝑢(𝑖∆𝑥, 𝑗∆𝑦, 𝑛∆𝑡)                                                       (2) 

The simple explicit finite-difference strategy for the solution 

is expressed as 

𝑢𝑙.𝑗
𝑛+1 − 𝑢𝑖.𝑗

𝑛

∆𝑡

=
𝑢𝑖+𝑙𝑗

𝑛 − 2𝑢𝑖,𝑗
𝑛 + 𝑢𝑖−𝑙,𝑗

𝑛

∆𝑥2

+
𝑢𝑖.𝑗

𝑛 − 2𝑢𝑖,𝑗
𝑛 + 𝑢𝑖,𝑗−𝑙

𝑛

∆𝑦2
                               (3) 

Even though the above explicit representation appears simple 

and straight forward for solutions, it is limited by the 

following CFL condition for stability i.e. 

1

∆𝑥2
+

1

∆𝑦2
≤

1

2∆𝑡
                                                           (4) 

The perfect time matching is achieved by selecting a very 

small ∆𝑡 value which results in accurate outcome. In the 

implicit technique, the iterations are necessary to be long for 

a solution to settle. This is major drawbacks in implicit 

technique.  

In the ADI approach [5], each time step is partitioned into two 

sub-portions i.e., the nth and the [n+1/2]th steps. In the first 
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half step, the second derivative, 
𝜕2𝑢

𝜕𝑦2, is approximated at the nth 

iteration by the finite difference replacement. The first, 

second order derivative, 
𝜕2𝑢

𝜕𝑥2, is replaced by the [n+1/2]th 

iteration. A pair of simulation equations are implicit in the x-

direction. In the process of converting from the intermediate 

iteration, n+1/2 to n+1 iteration, the difference equation gets 

implicit in the y-direction and explicit in the x-direction. 

Especially, the two sub-computations are: 

𝑢
𝑖,𝑗

𝑛+
1
2 − 𝑢𝑖,𝑗

𝑛

∆𝑡
2⁄

=
𝑢

𝑖+1,𝑗

𝑛+
1
2 − 2𝑢

𝑖,𝑗

𝑛+
1
2 + 𝑢

𝑖−1,𝑗

𝑛+
1
2

∆𝑥2

+
𝑢𝑖,𝑗+1

𝑛 − 2𝑢𝑖,𝑗
𝑛 + 𝑢𝑖,𝑗−1

𝑛

∆𝑦2
                        (5) 

𝑢𝑖,𝑗
𝑛+1 − 𝑢

𝑖,𝑗

𝑛+
1
2

∆𝑡
2⁄

=
𝑢

𝑖+1,𝑗

𝑛+
1
2 − 2𝑢

𝑖,𝑗

𝑛+
1
2 + 𝑢

𝑖−1,𝑗

𝑛+
1
2

∆𝑥2

+
𝑢𝑖,𝑗+1

𝑛+1 − 2𝑢𝑖,𝑗
𝑛+1 + 𝑢𝑖,𝑗−1

𝑛+1

∆𝑦2
                     (6) 

The above equation is chosen as unconditionally stable and 

realization can be similar to that which has been utilized by 

the O’Brien, Hyman, and Kaplan [6]. 

II Conventional ADI- FDTD Algorithm: 

The CFL condition for FDTD results in upper bound value of 

the time step. To eliminating the CFL condition, the above 

mentioned ADI principle is integrated with FDTD method 

which leads to an unconditionally stable FDTD strategy, 

called ADI-FDTD technique.  

2.1  Derivation of ADI-FDTD Scheme 

As specified in the previous sections, in an isotropic medium 

with medium permittivity 𝜀 and medium permeability𝜇, the 

curl vector equation of Maxwell’s equations can be expressed 

in six scalar partial differential equations in the Cartesian 

coordinates as specified in the previous equation. The initial 

equations are as follows:  

𝜕𝐸𝑥

𝜕𝑡

=
1

𝜀
(
𝜕𝐻𝑧

𝜕𝑦
−

𝜕𝐻𝑦

𝜕𝑧
)                                                                (7𝑎) 

𝜕𝐸𝑦

𝜕𝑡

=
1

𝜀
(
𝜕𝐻𝑥

𝜕𝑧
−

𝜕𝐻𝑧

𝜕𝑥
)                                                                (7𝑏) 

𝜕𝐸𝑧

𝜕𝑡

=
1

𝜀
(
𝜕𝐻𝑦

𝜕𝑥
−

𝜕𝐻𝑥

𝜕𝑦
)                                                               (7𝑐) 

𝜕𝐻𝑥

𝜕𝑡

=
1

𝜇
(
𝜕𝐸𝑦

𝜕𝑧
−

𝜕𝐸𝑧

𝜕𝑦
)                                                             (7𝑑) 

𝜕𝐻𝑦

𝜕𝑡

=
1

𝜇
(
𝜕𝐸𝑧

𝜕𝑥
−

𝜕𝐸𝑥

𝜕𝑧
)                                                              (7𝑒) 

𝜕𝐻𝑧

𝜕𝑡

=
1

𝜇
(
𝜕𝐸𝑥

𝜕𝑦
−

𝜕𝐸𝑦

𝜕𝑥
)                                                             (7𝑓) 

After applying ADI method to the equation 5.7a the time step 

of FDTD n to n+1 is segregated into two sub- step 

calculations which is nth to n+1/2 and n+1/2 to n+1 time step. 

The two sub-step calculations are elaborated as follows  

 For the first sub-step (𝑖. 𝑒. 𝑎𝑡𝑡ℎ𝑒(𝑛 + 1/

2)𝑡ℎ𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝), 𝑡ℎ𝑒first patial derivation on the right-hand 

side of 5.7a, i.e 
𝜕𝐻𝑧

𝜕𝑦
, is replaced with an implicit difference 

approximation of its unknown pivotal values at the [n+1/2]th 

time step, while the second derivatives on the right-hand side, 

i.e 
𝜕𝐻𝑦

𝜕𝑧
, is replaced with an explicit finite difference 

approximation in its known values at the previous n-th time 

step. In the other words, equation 5.7a becomes 

𝐸𝑥
𝑖+

1
2
,𝑗,𝑘

𝑛−
1
2 −𝐸𝑥

𝑖+
1
2
,𝑗,𝑘

𝑛

∆𝑡
2⁄

   = 
1

𝜀
[

𝐻𝑍
𝑖+

1
2
,𝑗+

1
2
,𝑘

𝑛−
1
2 −𝐻𝑍

𝑖+
1
2
,𝑗−

1
2
,𝑘

𝑛−
1
2

∆𝑦
−

𝐻𝑦
𝑖+

1
2
,𝑗,𝑘+

1
2

𝑛−
1
2 −𝐻𝑍

𝑖+
1
2
,𝑗,𝑘−

1
2

𝑛−
1
2

∆𝑧
]                   (8) 

For the second sub-step (i.e at (n+1)-the time step), the second 

term on the right-hand side, 
𝑑𝐻𝑦

𝑑𝑧⁄ , is replaced by an 

implicit finite-difference approximation of its unknown 

pivotal values at (n+1)-th time step; while the first term, 

𝑑𝐻𝑧
𝑑𝑦⁄ , is replaced with an explicit finite-difference 

approximation in its known values at the previous (n+1/2)-th 

time step. 

Similarly, equation (5.7a) evolves to 

𝐸𝑥
𝑖+

1
2
,𝑗,𝑘

𝑛+
1
2 −𝐸𝑥

𝑖+
1
2
,𝑗,𝑘

𝑛+1/2

∆𝑡
2⁄

   = 
1

𝜀
[

𝐻𝑍
𝑖+

1
2
,𝑗+

1
2
,𝑘

𝑛+
1
2 −𝐻𝑍

𝑖+
1
2
,𝑗−

1
2
,𝑘

𝑛+
1
2

∆𝑦
−

𝐻𝑦
𝑖+

1
2
,𝑗,𝑘+

1
2

𝑛+1 −𝐻𝑦
𝑖+

1
2
,𝑗,𝑘−

1
2

𝑛+1

∆𝑧
]                       (9) 
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Note that the above two sub-steps represents the alternations 

in the FDTD recursive computation directions in the sequence 

of the terms, the first and the second terms. They result in the 

implicit formulations as the right-hand sides of the equations 

contain the field values which are unknown and need to be 

updated. The method is then termed “the Alternating 

Direction Implicit (ADI)” method. 

By applying the same process to all the remaining scalar 

differential equations as mentioned in 5.13 and 5.14, one can 

acquire the entire set of the implicit unconditionally stable 

FDTD equations. 

For converting the nth time step equation to the [n+1/2]th time 

step: 

𝐸𝑥
𝑖+

1
2
,𝑗,𝑘

𝑛+
1
2 −𝐸𝑥

𝑖+
1
2
,𝑗,𝑘

𝑛

∆𝑡
2⁄

   = 
1

𝜀
[

𝐻𝑍
𝑖−

1
2
,𝑗+

1
2
,𝑘

𝑛+
1
2 −𝐻𝑍

𝑖+
1
2
,𝑗−

1
2
,𝑘

𝑛+
1
2

∆𝑦
−

𝐻𝑦
𝑖+

1
2
,𝑗,𝑘+

1
2

𝑛−
1
2 −𝐻𝑦

𝑖+
1
2
,𝑗,𝑘−

1
2

𝑛

∆𝑧
]                     (10𝑎) 

 

𝐸𝑦
𝑖,
1
2
+𝑗,𝑘+

1
2

𝑛+
1
2 −𝐸𝑦

𝑖,
1
2
+𝑗,𝑘

𝑛

∆𝑡
2⁄

   = 
1

𝜀
[

𝐻𝑥
𝑖,𝑗+

1
2
,𝑘+

1
2

𝑛+
1
2 −𝐻𝑥

𝑖,𝑗+
1
2
,𝑘−

1
2

𝑛+
1
2

∆𝑧
−

𝐻𝑧
𝑖+

1
2
,𝑗+

1
2
,𝑘

𝑛 −𝐻𝑧
𝑖−

1
2
,𝑗+

1
2
,𝑘

𝑛

∆𝑥
]                      (10𝑏) 

𝐸𝑧
𝑖,𝑗,𝑘+

1
2

𝑛+
1
2 −𝐸𝑧

𝑖,𝑗,𝑘+
1
2

𝑛

∆𝑡
2⁄

   = 
1

𝜀
[

𝐻𝑦
𝑖+

1
2
,𝑗,𝑘+

1
2

𝑛+
1
2 −𝐻𝑦

𝑖−
1
2
,𝑗,𝑘+

1
2

𝑛+
1
2

∆𝑥
−

𝐻𝑥
𝑖,𝑗+

1
2
,𝑘+

1
2

𝑛 −𝐻𝑥
𝑖,𝑗−

1
2
,𝑘+

1
2

𝑛

∆𝑦
]                      (10𝑐) 

𝐻𝑥
𝑖,𝑗+

1
2
,𝑘+

1
2

𝑛+
1
2 −𝐻𝑥

𝑖,𝑗+
1
2
,𝑘+

1
2

𝑛

∆𝑡
2⁄

   = 
1

𝜇
[

𝐸𝑦
𝑖,𝑗+

1
2
,𝑘+1

𝑛+
1
2 −𝐸𝑦

𝑖,𝑗+
1
2
,𝑘

𝑛+
1
2

∆𝑧
−

𝐸𝑧
𝑖,𝑗+1,𝑘+

1
2

𝑛 −𝐸𝑧
𝑖,𝑗,𝑘+

1
2

𝑛

∆𝑦
]                            (10𝑑) 

𝐻𝑦
𝑖+

1
2
,𝑗,𝑘+

1
2

𝑛+
1
2 −𝐻𝑦

𝑖+
1
2
,𝑗,𝑘+

1
2

𝑛

∆𝑡
2⁄

   = 
1

𝜇
[

𝐸𝑧
𝑖+1,𝑗,𝑘+

1
2

𝑛+
1
2 −𝐸𝑧

𝑖,𝑗,𝑘+
1
2

𝑛+
1
2

∆𝑥
−

𝐸𝑥
𝑖+

1
2
,𝑗,𝑘+1

𝑛 −𝐸𝑥
𝑖+

1
2
,𝑗,𝑘

𝑛

∆𝑧
]                          (10𝑒) 

𝐻𝑧
𝑖+

1
2
,𝑗+

1
2
,𝑘

𝑛+
1
2 −𝐻𝑧

𝑖+
1
2
,𝑗+

1
2
,𝑘

𝑛

∆𝑡
2⁄

   = 
1

𝜇
[

𝐸𝑥
𝑖+

1
2
,𝑗+1,𝑘

𝑛+
1
2 −𝐸𝑥

𝑖+
1
2
,𝑗,𝑘

𝑛+
1
2

∆𝑦
−

𝐸𝑦
𝑖+1,𝑗+

1
2
,𝑘

𝑛 −𝐸𝑦
𝑖,𝑗+

1
2
,𝑘

𝑛

∆𝑥
]                        (10𝑓) 

Conversion of [n+1/2]th to the [n+1]th time step 

𝐸𝑥
𝑖+

1
2
,𝑗,𝑘

𝑛+1 −𝐸𝑥
𝑖+

1
2
,𝑗,𝑘

𝑛+
1
2

∆𝑡
2⁄

   = 
1

𝜀
[

𝐻𝑍
𝑖+

1
2
,𝑗+

1
2
,𝑘

𝑛+
1
2 −𝐻𝑍

𝑖+
1
2
,𝑗−

1
2
,𝑘

𝑛+
1
2

∆𝑦
−

𝐻𝑦
𝑖+

1
2
,𝑗,𝑘+

1
2

𝑛+1 −𝐻𝑦
𝑖+

1
2
,𝑗,𝑘−

1
2

𝑛+1

∆𝑧
]                  (11𝑎) 

𝐸𝑦
𝑖,
1
2
+𝑗,𝑘

𝑛+1 −𝐸𝑦
𝑖,
1
2
+𝑗,𝑘

𝑛+
1
2

∆𝑡
2⁄

   = 
1

𝜀
[

𝐻𝑥
𝑖,𝑗+

1
2
,𝑘+

1
2

𝑛+
1
2 −𝐻𝑥

𝑖,𝑗+
1
2
,𝑘−

1
2

𝑛+
1
2

∆𝑧
−

𝐻𝑧
𝑖+

1
2
,𝑗+

1
2
,𝑘

𝑛+1 −𝐻𝑧
𝑖−

1
2
,𝑗+

1
2
,𝑘

𝑛+1

∆𝑥
]                  (11𝑏) 

𝐸𝑧
𝑖,𝑗,𝑘+

1
2

𝑛+1 −𝐸𝑧
𝑖,𝑗,𝑘+

1
2

𝑛+
1
2

∆𝑡
2⁄

   = 
1

𝜀
[

𝐻𝑦
𝑖+

1
2
,𝑗,𝑘+

1
2

𝑛+
1
2 −𝐻𝑦

𝑖−
1
2
,𝑗,𝑘+

1
2

𝑛+
1
2

∆𝑥
−

𝐻𝑥
𝑖,𝑗+

1
2
,𝑘+

1
2

𝑛+1 −𝐻𝑥
𝑖,𝑗−

1
2
,𝑘+

1
2

𝑛+1

∆𝑦
]                   (11𝑐) 

𝐻𝑥
𝑖,𝑗+

1
2
,𝑘+

1
2

𝑛+1 −𝐻𝑥
𝑖,𝑗+

1
2
,𝑘+

1
2

𝑛+
1
2

∆𝑡
2⁄

   = 
1

𝜇
[

𝐸𝑦
𝑖,𝑗+

1
2
,𝑘+1

𝑛+
1
2 −𝐸𝑦

𝑖,𝑗+
1
2
,𝑘

𝑛+
1
2

∆𝑧
−

𝐸𝑧
𝑖,𝑗+1,𝑘+

1
2

𝑛+1 −𝐸𝑧
𝑖,𝑗,𝑘+

1
2

𝑛+1

∆𝑦
]                  (11𝑑) 
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𝐻𝑦
𝑖+

1
2
,𝑗,𝑘+

1
2

𝑛+1 −𝐻𝑦
𝑖+

1
2
,𝑗,𝑘+

1
2

𝑛+
1
2

∆𝑡
2⁄

   = 
1

𝜇
[

𝐸𝑧
𝑖+1,𝑗,𝑘+

1
2

𝑛+
1
2 −𝐸𝑦

𝑖,𝑗,𝑘+
1
2

𝑛+
1
2

∆𝑥
−

𝐸𝑥
𝑖+

1
2
,𝑗,𝑘+1

𝑛+1 −𝐸𝑥
𝑖+

1
2
,𝑗,𝑘

𝑛+1

∆𝑧
]                  (11𝑒) 

𝐻𝑧
𝑖+

1
2
,𝑗+

1
2
,𝑘

𝑛+1 −𝐻𝑧
𝑖+

1
2
,𝑗+

1
2
,𝑘

𝑛+
1
2

∆𝑡
2⁄

   = 
1

𝜇
[

𝐸𝑥
𝑖+

1
2
,𝑗+1,𝑘

𝑛+
1
2 −𝐸𝑥

𝑖+
1
2
,𝑗,𝑘

𝑛+
1
2

∆𝑦
−

𝐸𝑦
𝑖+1,𝑗+

1
2
,𝑘

𝑛+1 −𝐸𝑦
𝑖,𝑗+

1
2
,𝑘

𝑛+1

∆𝑥
]                  (11𝑓) 

Here the field components are represented with the notations 

𝐸∝𝑖,𝑗,𝑘
𝑛  and 𝐻∝𝑖,𝑗,𝑘

𝑛 𝑤𝑖𝑡ℎ ∝= 𝑥, 𝑦, 𝑧. The grid positions of the 

field components are similar to those of the conventional 

FDTD of the Yee’s method. When a large step size is 

considered which results a large number of numerical 

dispersion errors in ADI-FDTD technique. The spatial 

discretization in ADI-FDTD technique provides accurate 

results for first order discontinuous media. The increased 

error in the spatial discretization is coupled to the large error 

temporal discretization which increase the error rate in ADI-

FDTD technique for discontinues media. The ADI-FDTD 

technique fails when conformal structures are considered as 

an object.  In order to overcome these drawbacks the ADI 

technique is integrating with CFDTD technique for the reason 

of enhancing the accuracy in the conventional ADI-FDTD 

technique.  

III Proposed ADI-CFDTD technique 

 Integrating ADI FDTD with CFDTD technique can 

helpful to enhance accuracy for the analysis of conformal 

structures. With this scope ADI CFDTD is proposed and 

same is discussed here. In the ADI-CFDTD technique the 

updating equations at regular grid points are similar to the 

ADI method. The electric field equations which are Ex, Ey 

and Ez updating equations are also identical to the ADI 

method at conformal boundaries.  

The update equation for Ex from the time step n to n+1/2 is 

expressed in equation  

𝐸𝑥
𝑛+1 2⁄ (𝑖, 𝑗, 𝑘)

= 𝐴(𝑖, 𝑗, 𝑘). 𝐸𝑥
𝑛(𝑖, 𝑗, 𝑘)

+ 𝐵(𝑖, 𝑗, 𝑘).

[
 
 
 
 𝐻𝑍

𝑛+1 2⁄
(𝑖, 𝑗, 𝑘) − 𝐻𝑍

𝑛+1 2⁄
(𝑖, 𝑗 − 1, 𝑘)

∆𝑦

−
𝐻𝑦

𝑛(𝑖, 𝑗, 𝑘) − 𝐻𝑦
𝑛(𝑖, 𝑗, 𝑘 − 1)

∆𝑧 ]
 
 
 
 

      (12) 

The update equation for Ex from the time step n+1/2 to n+1 is 

expressed in equation 

𝐸𝑥
𝑛+1(𝑖, 𝑗, 𝑘)

= 𝐴(𝑖, 𝑗, 𝑘). 𝐸𝑥
𝑛+1 2⁄ (𝑖, 𝑗, 𝑘)

+ 𝐵(𝑖, 𝑗, 𝑘).

[
 
 
 
 𝐻𝑍

𝑛+1 2⁄ (𝑖, 𝑗, 𝑘) − 𝐻𝑍
𝑛+1 2⁄ (𝑖, 𝑗 − 1, 𝑘)

∆𝑦

−
𝐻𝑦

𝑛+1(𝑖, 𝑗, 𝑘) − 𝐻𝑦
𝑛+1(𝑖, 𝑗, 𝑘 − 1)

∆𝑧 ]
 
 
 
 

     (13) 

Similarly update equations for 𝐸𝑦𝑎𝑛𝑑𝐸𝑧are similar to the 

ADI- FDTD technique. 

In the proposed ADI- CFDTD technique the Magnetic field 

components are modified at conformal gird points and 

corresponding H-Field updated equations are mentioned 

below: 

The magnetic field equations which are Hx, Hy and Hz from 

the time step n to n+1/2 can be written as : 

𝐻𝑥
𝑛+1 2⁄

(𝑖, 𝑗, 𝑘)

= 𝐻𝑥
𝑛(𝑖, 𝑗, 𝑘)

+
𝐶(𝑖, 𝑗, 𝑘)

𝑆𝑦𝑧(𝑖, 𝑗, 𝑘)
. [𝐸𝑦

𝑛+1 2⁄ (𝑖, 𝑗, 𝑘 + 1)𝑙𝑦(𝑖, 𝑗, 𝑘)

−𝐸𝑦
𝑛+1 2⁄ (𝑖, 𝑗, 𝑘)𝑙𝑦(𝑖, 𝑗, 𝑘) − 𝐸𝑧

𝑛(𝑖, 𝑗 + 1, 𝑘)𝑙𝑧(𝑖, 𝑗, 𝑘)

+𝐸𝑧
𝑛(𝑖, 𝑗 + 1, 𝑘)𝑙𝑧(𝑖, 𝑗, 𝑘)]                                                (14) 

𝐻𝑦
𝑛+1 2⁄ (𝑖, 𝑗, 𝑘)

= 𝐻𝑦
𝑛(𝑖, 𝑗, 𝑘)

+
𝐶(𝑖, 𝑗, 𝑘)

𝑆𝑧𝑥(𝑖, 𝑗, 𝑘)
. [𝐸𝑧

𝑛+1 2⁄ (𝑖 + 1, 𝑗, 𝑘)𝑙𝑧(𝑖 + 1, 𝑗, 𝑘)

−𝐸𝑧
𝑛+1 2⁄ (𝑖, 𝑗, 𝑘)𝑙𝑧(𝑖, 𝑗, 𝑘) − 𝐸𝑥

𝑛(𝑖, 𝑗, 𝑘 + 1)𝑙𝑥(𝑖, 𝑗, 𝑘 + 1)

+𝐸𝑥
𝑛(𝑖, 𝑗, 𝑘)𝑙𝑥(𝑖, 𝑗, 𝑘)]                                                 (15) 

𝐻𝑧
𝑛+1 2⁄

(𝑖, 𝑗, 𝑘)

= 𝐻𝑧
𝑛(𝑖, 𝑗, 𝑘)

+
𝐶(𝑖, 𝑗, 𝑘)

𝑆𝑥𝑦(𝑖, 𝑗, 𝑘)
. [𝐸𝑥

𝑛+1 2⁄ (𝑖, 𝑗 + 1, 𝑘)𝑙𝑥(𝑖, 𝑗 + 1, 𝑘)

−𝐸𝑥
𝑛+1 2⁄ (𝑖, 𝑗, 𝑘)𝑙𝑥(𝑖, 𝑗, 𝑘) − 𝐸𝑦

𝑛(𝑖 + 1, 𝑗, 𝑘)𝑙𝑦(𝑖 + 1, 𝑗, 𝑘)

+𝐸𝑦
𝑛(𝑖, 𝑗, 𝑘)𝑙𝑦(𝑖, 𝑗, 𝑘)]                                                 (16) 

In the same way, the H-field updated equations from n+1/2 to 

n+1  

𝐻𝑥
𝑛+1(𝑖, 𝑗, 𝑘)

= 𝐻𝑥
𝑛+1 2⁄

(𝑖, 𝑗, 𝑘)

+
𝐶(𝑖, 𝑗, 𝑘)

𝑆𝑦𝑧(𝑖, 𝑗, 𝑘)
. [𝐸𝑦

𝑛+1 2⁄
(𝑖, 𝑗, 𝑘 + 1)𝑙𝑦(𝑖, 𝑗, 𝑘 + 1)

−𝐸𝑦
𝑛+1 2⁄ (𝑖, 𝑗, 𝑘)𝑙𝑦(𝑖, 𝑗, 𝑘) − 𝐸𝑧

𝑛+1(𝑖, 𝑗 + 1, 𝑘)𝑙𝑧(𝑖, 𝑗 + 1, 𝑘)

+𝐸𝑧
𝑛+1(𝑖, 𝑗, 𝑘)𝑙𝑧(𝑖, 𝑗, 𝑘)]                                        (17) 
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𝐻𝑦
𝑛+1(𝑖, 𝑗, 𝑘)

= 𝐻𝑦
𝑛+1 2⁄

(𝑖, 𝑗, 𝑘)

+
𝐶(𝑖, 𝑗, 𝑘)

𝑆𝑧𝑥(𝑖, 𝑗, 𝑘)
. [𝐸𝑧

𝑛+1 2⁄ (𝑖 + 1, 𝑗, 𝑘)𝑙𝑧(𝑖 + 1, 𝑗, 𝑘)

−𝐸𝑧
𝑛+1 2⁄ (𝑖, 𝑗, 𝑘)𝑙𝑧(𝑖, 𝑗, 𝑘) − 𝐸𝑥

𝑛+1(𝑖, 𝑗, 𝑘 + 1)𝑙𝑥(𝑖, 𝑗, 𝑘 + 1)

+𝐸𝑥
𝑛+1(𝑖, 𝑗, 𝑘)𝑙𝑥(𝑖, 𝑗, 𝑘)]                                        (18) 

𝐻𝑧
𝑛+1(𝑖, 𝑗, 𝑘)

= 𝐻𝑧
𝑛+1 2⁄

(𝑖, 𝑗, 𝑘)

+
𝐶(𝑖, 𝑗, 𝑘)

𝑆𝑥𝑦(𝑖, 𝑗, 𝑘)
. [𝐸𝑥

𝑛+1 2⁄
(𝑖, 𝑗 + 1, 𝑘)𝑙𝑥(𝑖, 𝑗 + 1, 𝑘)

−𝐸𝑥
𝑛+1 2⁄ (𝑖, 𝑗, 𝑘)𝑙𝑥(𝑖, 𝑗, 𝑘) − 𝐸𝑦

𝑛+1(𝑖 + 1, 𝑗, 𝑘)𝑙𝑦(𝑖 + 1, 𝑗, 𝑘)

+𝐸𝑦
𝑛+1(𝑖, 𝑗, 𝑘)𝑙𝑦(𝑖, 𝑗, 𝑘)]                                        (19) 

Where the coefficients are: 

𝐴 =
4𝜖 − 𝜎∆𝑡

4𝜖 + 𝜎∆𝑡
𝐵 =

2∆𝑡

4𝜖 + 𝜎∆𝑡
𝐶 =

∆𝑡

2𝜇
 

𝑙𝑥 , 𝑙𝑦𝑎𝑛𝑑𝑙𝑧 are Cell lengths along x, y, and z directions 

𝑆𝑥𝑦 , 𝑆𝑦𝑧𝑎𝑛𝑑𝑆𝑧𝑥 are Surface areas which are present in the 

irregular cell parallel to xy, xz, and yz planes. 

Substituting the values of magnetic field back to the electric 

filed will lead to an implicit tri-diagonal updating equation 

for the electric field and explicit updating equation for the 

magnetic field at every sub-time step.  

The tri-diagonal updating equation for Ex can be written as: 

∝𝑖𝑗𝑘 𝐸𝑥
𝑛+1 2⁄ (𝑖, 𝑗 − 1, 𝑘) + 𝛽𝑖𝑗𝑘𝐸𝑥

𝑛+1 2⁄ (𝑖, 𝑗, 𝑘)

+ 𝛾𝑖𝑗𝑘𝐸𝑥
𝑛+1 2⁄ (𝑖, 𝑗 + 1, 𝑘)

= 𝑏𝑖𝑗𝑘               (20) 

Where 

∝𝑖𝑗𝑘= −
𝐵(𝑖, 𝑗, 𝑘)

∆𝑦

𝐶(𝑖, 𝑗 − 1, 𝑘)

𝑆𝑥𝑦(𝑖, 𝑗 − 1, 𝑘)
𝑙𝑥(𝑖, 𝑗 − 1, 𝑘) 

𝛽𝑖𝑗𝑘 = 1 +
𝐵(𝑖, 𝑗, 𝑘)

∆𝑦
𝑙𝑥(𝑖, 𝑗, 𝑘). [

𝐶(𝑖, 𝑗, 𝑘)

𝑆𝑥𝑦(𝑖, 𝑗, 𝑘)

+
𝐶(𝑖, 𝑗 − 1, 𝑘)

𝑆𝑥𝑦(𝑖, 𝑗 − 1, 𝑘)
] 

𝛾𝑖𝑗𝑘 = −
𝐵(𝑖, 𝑗, 𝑘)

∆𝑦
.

𝐶(𝑖, 𝑗, 𝑘)

𝑆𝑥𝑦(𝑖, 𝑗, 𝑘)
𝑙𝑥(𝑖, 𝑗 + 1, 𝑘) 

𝑏𝑖𝑗𝑘

= 𝐴(𝑖, 𝑗, 𝑘)𝐸𝑥
𝑛+1 2⁄

(𝑖, 𝑗, 𝑘)

+
𝐵(𝑖, 𝑗, 𝑘)

∆𝑦
. [−𝐸𝑦

𝑛(𝑖 + 1, 𝑗, 𝑘)
𝐶(𝑖, 𝑗, 𝑘)

𝑆𝑥𝑦(𝑖, 𝑗, 𝑘)
𝑙𝑦(𝑖 + 1, 𝑗, 𝑘)

+𝐸𝑦
𝑛(𝑖, 𝑗, 𝑘)

𝐶(𝑖, 𝑗, 𝑘)

𝑆𝑥𝑦(𝑖, 𝑗, 𝑘)
𝑙𝑦(𝑖, 𝑗, 𝑘)

+𝐸𝑦
𝑛(𝑖 + 1, 𝑗 − 1, 𝑘)

𝐶(𝑖, 𝑗 − 1, 𝑘)

𝑆𝑧𝑦(𝑖, 𝑗 − 1, 𝑘)
𝑙𝑦(𝑖 + 1, 𝑗 − 1, 𝑘)

−𝐸𝑦
𝑛(𝑖, 𝑗 − 1, 𝑘)

𝐶(𝑖, 𝑗 − 1, 𝑘)

𝑆𝑧𝑦(𝑖, 𝑗 − 1, 𝑘)
𝑙𝑦(𝑖, 𝑗 − 1, 𝑘)]

+
𝐵(𝑖, 𝑗, 𝑘)

∆𝑦
. [𝐻𝑧

𝑛(𝑖, 𝑗, 𝑘) − 𝐻𝑧
𝑛(𝑖, 𝑗 − 1, 𝑘)]

−
𝐵(𝑖, 𝑗, 𝑘)

∆𝑧
. [𝐻𝑦

𝑛(𝑖, 𝑗, 𝑘)

−𝐻𝑦
𝑛(𝑖, 𝑗, 𝑘

− 1)]                                                                      (21) 

The tri-diagonal updating equation can be written as a matrix 

form as show in the equation   

𝑇𝑥

[
 
 
 
 
 
 
 
 
 𝐸𝑥

𝑛+1 2⁄ (𝑖, 𝑗, 𝑘)
:

𝐸𝑧
𝑛+1 2⁄ (𝑖, 𝑗 − 1, 𝑘)

𝐸𝑥
𝑛+1 2⁄ (𝑖, 𝑗, 𝑘)

𝐸𝑧
𝑛+1 2⁄ (𝑖, 𝑗 + 1, 𝑘)

:

𝐸𝑧
𝑛+1 2⁄ (𝑖, 𝑗 − 2, 𝑘)

𝐸𝑧
𝑛+1 2⁄ (𝑖, 𝑗 − 1, 𝑘)]

 
 
 
 
 
 
 
 
 

= bx 

Where 

𝑇𝑧 =

[
 
 
 
 

𝛽𝑖1𝑘𝛾𝑖1𝑘00 …0
𝛼𝑖2𝑘𝛽𝑖2𝑘𝛾𝑖2𝑘0… 0

:
0…0𝛼𝑖(𝐽 − 2)𝑘𝛽𝑖(𝐽 − 2)𝑘𝛾𝑖(𝐽 − 2)𝑘

0…00𝛼𝑖(𝐽 − 1)𝑘𝛽𝑖(𝐽 − 1)𝑘 ]
 
 
 
 

 

The tri-diagonal matrix having dimension (J − 1) × (J − 1), 

the PML boundary condition is applied at the outer boundary 

of the computation domain.  
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Figure 5.1. Flowchart of ADI-CFDTD Algorithm  

 

IV Results 

Developed ADI-CFDTD technique is validated by using 

circular micro-strip patch antenna as conformal object. The 

same object is designed and simulated in CST microwave 

studio as shown in Figure 5.2.to operate at 2.1GHz . 

 
Figure: 5.2 Circular patch antenna modeled in CST 

Microwave Studio 

 

 
Figure5.3 S11 observed in Matlab at 2.1 GHz frequency 

 

 
Figure 5.4 S11 observed in CST MW Studio at 2.1 GHz 

frequency. 

  

Above two S11 figures depict the results obtained by 

using CST Microwave studio simulation and Matlab 

computation. The results achieved using CST Microwave 

studio considered as benchmark. Then same circular micro 

Sub-step = 1 

Is 

Step < 

Simulatio

n 

E

N

Y

E

N

O 

Update Hx, Hy and Hz from the 

time step n to n+1/2 

Sub-step = 2 

Update Ex, Ey and Ez from the 

time step n+1/2 to n+1 

Update Hx, Hy and Hz from the 

time step n+1/2 to n+1 

Compute tri-diagonal 

updating equation  

Step = 

1 

Start 

Update Ex, Ey and Ez from the 

time step n to n+1/2 

Compute Input 

Excitation 

Step = 

Step + 1 

Observe 

Output Point 
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strip antenna has developed in Matlab and applied ADI-

CFDTD with PML boundaries to obtain results. The obtained 

results are good in agreement with bench mark results. Hence, 

the developed ADI-CFDTD can be used to studies about the 

curvilinear structures.  

 

During the computation in Matlab, The applied input sine 

wave signal and achieved output signal are shown in Figure 

5.5 and 5.6.   

 

Figure 5.5 Input pulse applied at 150,100 

 

Figure 5.6 Output pulse at 100,100 

Electromagnetic wave propagation has observed at 

distinct time steps. Among them, two are presented here. In 

case study 1,From Figure 5.7, at time step 73 the EM wave 

propagates outside of the computational domain since the 

conventional ADI-FDTD is failure to proper meshing of 

domain since it is in curvilinear nature.    

 

Figure 5.7 ADI-FDTD without PML 

 

Figure 5.8 ADI-CFDTD method with PML 

 

While in other case study, ADI-CFDTD is applied to the 

domain to compute the object. I.e. shown in figure 5.8, it is 

observed that the wave is totally confined within the object 

boundaries, thus helps to get accurate results. 

Conclusion  

This paper discusses about the Stability improvement of 

modified ADI algorithm for conformal structures. In general, 

CFDTD becomes unstable when large step size is considered. 

Namki proposed ADI FDTD technique which is 

unconditionally stable irrespective of the step size. In this 

research, the conventional ADI technique is modified to suit 

circular objects and further improved accuracy at the 

boundaries using modified PML. The Proposed ADI-CFDTD 

with PML is validated with circular patch antenna and 

compared with CST Mw studio.  

 

References 



IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019)          ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)  

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING 

 A UNIT OF I2OR  3503 | P a g e  

1. Wang, Xiang-Hua, Wen-Yan Yin, Zhizhang Chen, 

and Shun-Chuan Yang. "One-step leapfrog ADI-

FDTD method including lumped elements and its 

stability analysis." IEEE Antennas and Wireless 

Propagation Letters 11 (2012): 1406-1409. 

2. Wang, Shumin, Fernando L. Teixeira, and Ji Chen. 

"An iterative ADI-FDTD with reduced splitting 

error." IEEE microwave and wireless components 

letters 15, no. 2 (2005): 92-94. 

3. Yuan, Xiang, Xiang-hua Wang, Jun Hu, and Wen-

Yan Yin. "Hybrid FDTD method based on 

conformal technique for modeling wedges 

composed of conductive and dielectric materials." 

In 2014 International Symposium on 

Electromagnetic Compatibility, pp. 207-210. IEEE, 

2014. 

4. Momoniat, E., and C. Harley. "Peaceman‐ Rachford 

ADI scheme for the two dimensional flow of a 

second‐ grade fluid." International Journal of 

Numerical Methods for Heat & Fluid Flow (2012). 

5. Martelly, Richard, and Ramakrishna Janaswamy. 

"An ADI-PE approach for modeling radio 

transmission loss in tunnels." IEEE Transactions on 

Antennas and Propagation 57, no. 6 (2009): 1759-

1770. 

6. O'Brien, George G., Morton A. Hyman, and Sidney 

Kaplan. "A study of the numerical solution of partial 

differential equations." Journal of Mathematics and 

Physics 29, no. 1-4 (1950): 223-251. 


