COLLEGE OF ENGINEERING

Oregon GNSS Users Group Precise Point Positioning (PPP) Under Geomagnetic Storm Conditions

Dr. Brian Weaver

Oregon State University

January 17, 2025

Contents

- GNSS Positioning Methods and Signals
- Carrier Phase and Cycle Slips
- Geomagnetic Storms and Monitoring
- Precise Point Positioning (PPP) Model and Configurations
- Static and Kinematic PPP Performance and Analysis
 - Under Extreme Geomagnetic Storm Conditions
- Data-Driven Stochastic Model
- Recommendations and Ongoing Research

Oregon State University College of Engineering

brian.weaver@oregonstate.edu

GNSS Positioning Methods

This presentation's topic Dual-Frequency (DF) Code and Carrier Phase

Positioning concept	Accuracy (1-sigma)	Convergence time	Coverage area
SF SPP	< 10 m	Instantaneous	Global
SF PPP (GIM-based)	1–2 dm	< 10 min	Global
DF PPP	< 1 dm	30 min (static)	Global
(ionosphere-float)		60 min (kin.)	
Single-baseline (code-based)	1–5 m	Instantaneous	Regional/local
DGNSS			
Wide area DGNSS	0.5–2m	Instantaneous	Regional
SF RTK-short baseline	< 1 dm	10 min	Local
DF RTK-short baseline	< 1 dm	Instantaneous to few min	Local
Network RTK	< 1 dm	< 10 min	Regional
SF PPP-RTK	< 1 dm	< 10 min	Regional
(precise iono corrections)			
DF PPP-RTK	< 1 dm	30 min (static)	Global
(ionosphere-float)	< 1 dm	90 min (kin.)	Regional

Springer GNSS Handbook (2017), Chapter 21

GNSS Signals

amplitude-modulation-and-phase-modulation

GPS Signal Evolution and Current Status

Source: Springer GNSS Handbook (2017), Chapter 7

National PNT Advisory Board

Satellite Block	Quantity	Average Age (yrs.)	Oldest
GPS IIR	6 (4*)	22.8	27.3
GPS IIR-M	7 (1*)	17.1	19.1
GPS IIF	11 (1*)	10.5	14.1
GPS III	6	4.8	5.8
*Not set healthy			As of: 18 Nov 24

Source: https://www.gps.gov/governance/advisory/meetings/2024-12/delapena.pdf

Carrier Phase

 $\lambda_{GPS, L1} \approx 19 \ cm$

Carrier Phase

Carrier Phase

Carrier Phase Cycle Slips

- > Individual satellite detection and repair using standard dual-frequency linear combinations
 - Melbourne–Wübbena Wide-Lane (MWWL) (Melbourne 1985; Wübbena and Hannover 1985)
 - Geometry-free combination (contains ionospheric residual)

Carrier Phase Cycle Slips

- > Individual satellite detection and repair using standard dual-frequency linear combinations
 - Melbourne–Wübbena Wide-Lane (MWWL) (Melbourne 1985; Wübbena and Hannover 1985)
 - Geometry-free combination (contains ionospheric residual)

TurboEdit (Blewitt, 1990) — Higher-order time-differencing (Liu, 2011) — Smoothing (Cai et al., 2013)

Model Error Detection

- > Evaluate all measurements (satellites) together in a per-epoch "least squares adjustment"
 - Carrier phase model errors are assumed to be cycle slips

Model Error Detection

- > Evaluate all measurements (satellites) together in a per-epoch "least squares adjustment"
 - Carrier phase model errors are assumed to be cycle slips

Geomagnetic Activity

- Equatorial Ionospheric Anomaly (EIA)
 - Daily amplification of ionospheric activity at low latitude (equatorial regions), near geomagnetic equator
 - Primarily driven by fountain (Appleton) effect, interaction of free ions with Earth's electric and magnetic fields

Source: https://gssc.esa.int/navipedia/index.php/Klobuchar_lonospheric_Model

Geomagnetic Storms

- Correlated with solar activity (11-year cycle between maximums)
 - More free ions and rapidly changing magnetic field lines
 - Challenging for radio-frequency systems, especially GNSS signals (more cycle slips)

Source: https://www.esa.int/

Recent Geomagnetic Conditions

- Currently, at the peak, or approaching peak, of Solar Cycle (SC) 25
 - Previous cycle was lower activity

Source: https://www.spaceweatherlive.com/en/solar-activity/solar-cycle/historical-solar-cycles.html

Recent Geomagnetic Conditions

Mother's Day Storm (May 10-13, 2024)

Source: https://www.spaceweatherlive.com/en/archive/2024/05.html

Monitoring Space Weather

NOAA Space Weather Prediction Center (SWPC), warning two days prior to storm arrival at Earth \succ

GNSS Positioning

- > Fundamental starting place: raw measurements (undifferenced/uncombined observations)
 - Some parameters can be emphasized or eliminated by linear combinations of these observations
 - Problem can become quite complex with multiple: receivers, satellites, frequencies, channels, epochs, + more

Precise Point Positioning (PPP)

- Single-receiver "stand-alone" GNSS positioning technique \succ
 - Position accuracy: mm-level stationary (static); cm-level non-stationary (kinematic)

Why PPP?

Oregon State University College of Engineering

- Relative positioning requires at least two GNSS receivers
 - Also, eliminates interesting effects to be studied

Exclude Ocean Tide Model

Include Ocean Tide Model

Ocean tide model and data source: Greene et al. (2024): <u>https://doi.org/10.21105/joss.06018</u>. Hart-Davis, et al. (2021): <u>doi:10.5194/essd-13-3869-2021</u>.

PPP Observation Model

Pseudorange Observations at an Epoch

$$P_{j}^{s} = \rho_{r}^{s} + c \cdot \Delta t_{r} + m_{r}^{s} \cdot T^{Z} + f_{1}^{2} / f_{j}^{2} \cdot I_{1} + B_{r,j} - B_{j}^{s} + \epsilon_{j}^{s}$$

Springer GNSS Handbook (2017), Ch. 21

Dual-Frequency Pseudorange Single-Receiver and Single-Satellite

$$P_{j} = \rho + c \cdot \Delta t + m \cdot T^{Z} + f_{1}^{2} / f_{j}^{2} \cdot I_{1} + B_{j}^{r} - B_{j}^{s} + \epsilon_{j}; j = \{1, 2\}$$

$$P_{1} = \rho + c \cdot \Delta t + m \cdot T^{Z} + f_{1}^{2} / f_{1}^{2} \cdot I_{1} + B_{1}^{r} - B_{1}^{s} + \epsilon_{1}; j = \{1\}$$

$$P_{2} = \rho + c \cdot \Delta t + m \cdot T^{Z} + f_{1}^{2} / f_{2}^{2} \cdot I_{1} + B_{2}^{r} - B_{2}^{s} + \epsilon_{2}; j = \{2\}$$

Ionosphere-Free Linear Combination

$$P_{IF} = \alpha_{IF} \cdot P_1 + \beta_{IF} \cdot P_2; \alpha_{IF} = 1 - \beta_{IF}$$

$$\alpha_{IF} = \frac{f_1^2}{f_1^2 - f_2^2}; \beta_{IF} = \frac{f_2^2}{f_1^2 - f_2^2}$$

PPP Observation Model

Group Frequency Independent Terms

 $G = \rho + c \cdot \Delta t + m \cdot T^Z$

Dual-Frequency lonosphere-free Pseudorange

$$\begin{aligned} \alpha_{IF} \cdot P_1 &= \alpha_{IF} \cdot (G + f_1^2 / f_1^2 \cdot I_1 + B_1^r - B_1^s + \epsilon_1) \\ \beta_{IF} \cdot P_2 &= \beta_{IF} \cdot (G + f_1^2 / f_2^2 \cdot I_1 + B_2^r - B_2^s + \epsilon_2) \\ \vdots \\ \alpha_{IF} \cdot P_1 &= + \frac{f_1^2}{f_1^2 - f_2^2} \cdot (G + f_1^2 / f_1^2 \cdot I_1 + B_1^r - B_1^s + \epsilon_1) \\ \beta_{IF} \cdot P_2 &= - \frac{f_2^2}{f_1^2 - f_2^2} \cdot (G + f_1^2 / f_2^2 \cdot I_1 + B_2^r - B_2^s + \epsilon_2) \end{aligned}$$

$$Geometry \qquad Oregon State UniversityCollege of Engineering
$$G_{IF} = \alpha_{IF} \cdot G + \beta_{IF} \cdot GG_{IF} = G \cdot (\alpha_{IF} + \beta_{IF})G_{IF} = G \cdot (\frac{f_1^2}{f_1^2 - f_2^2} - \frac{f_2^2}{f_1^2 - f_2^2})G_{IF} = G \cdot (1)G_{IF} = G \checkmark Geometry-preserving
$$I_{IF} = \alpha_{IF} \cdot (f_1^2/f_1^2 \cdot I_1) + \beta_{IF} \cdot (f_1^2/f_2^2 \cdot I_1)$$
$$I_{IF} = \frac{f_1^2}{f_1^2 - f_2^2} \left(\frac{f_1^2}{f_1^2} \cdot I_1\right) - \frac{f_2^2}{f_1^2 - f_2^2} \cdot \left(\frac{f_1^2}{f_2^2} \cdot I_1\right)$$
$$I_{IF} = \frac{f_1^2}{f_1^2 - f_2^2} \cdot I_1 - \frac{f_1^2}{f_1^2 - f_2^2} \cdot I_1$$
$$I_{IF} = \alpha_{IF} \cdot I_1 - \alpha_{IF} \cdot I_1$$
$$I_{IF} = 0 \qquad \checkmark Ionosphere-free$$$$$$

PPP Observation Model

Ionosphere-Free Pseudorange

$$P_{IF} = \alpha_{IF} \cdot P_{1} + \beta_{IF} \cdot P_{2}; \alpha_{IF} = 1 - \beta_{IF}$$

$$P_{IF} = G + (\alpha_{IF} \cdot B_{1}^{r} + \beta_{IF} \cdot B_{2}^{r}) - (\alpha_{IF} \cdot B_{1}^{s} + \beta_{IF} \cdot B_{2}^{s}) + \epsilon_{IF}$$

$$P_{IF} = G + DCB_{r,IF} - DCB_{IF}^{s} + \epsilon_{IF}$$

$$P_{IF} = G + DCB_{r,IF} - DCB_{IF}^{s} + \epsilon_{IF}$$

$$P_{IF} = \rho + c \cdot \Delta t + m \cdot T^{Z} + \epsilon_{IF}$$

Ionosphere-Free Carrier Phase

$$L_{IF} = \alpha_{IF} \cdot L_1 + \beta_{IF} \cdot L_2$$

$$L_{IF} = \rho + c \cdot \Delta t + m \cdot T^Z + \lambda_{IF} \cdot N_{IF} + \varepsilon_{IF}$$

Standard dual-frequency PPP is based on these expressions

Model is sensitive to cycle slips which affect the ionosphere-free (non-integer) ambiguity

Typical PPP Configuration

Error Source	Product	Rate
Satellite orbit	SP3	5-minute
Satellite clock	CLK	30-second
Satellite code & phase bias	BIA	Daily
Earth orientation	ERP	Daily
Phase center offset (PCO) & variation (PCV)	igs20.atx	[N/A]

Unknown Parameters	Initial Noise [m]	Process Noise $[m/\sqrt{s}]$
Position	1e2	0 (static) 1e2 (kinematic)
Receiver clock (WLS initialization)	1e5	1e3
Troposphere (ZWD)	0.1	3e-5
Ambiguity	1e5	0
System time offset	1e2	1e-5

Pre-Processing	Method(s)	Evaluation(s)
Elevation mask	Constant	$Elev \ge 7.5 \ deg$
Cycle slip detection and repair	MWWL and IONO	$\begin{array}{l} \textit{MWWL} > \textit{s}_{M} \cdot \sigma \\ \textit{IONO} > \textit{s}_{I} \cdot \sigma \end{array}$
Ambiguity reinitializations	MWWL & failed repairs	$MWWL > s \cdot \sigma$ Satellites in epoch
Measurements and Model Components	Value/Type	Notes
Functional model	Dual-frequency ionosphere-free	Eliminates 1 st -order ionospheric delay
Constellations	GPS (G), GLONASS (R), Galileo (E), BeiDou (C)	Default: GE
Ref. noise (σ_{ref})	At zenith (best-case)	$\sigma_{code} = 60 \ cm$ $\sigma_{phas} = 2 \ mm$
Stochastic model	Satellite elevation	$\sigma_{ref}/\sin(\text{Elev})$
Error propagation	Amplified by combination	G: $\sigma_{IF} \approx 3 \cdot \sigma_{raw}$ E: $\sigma_{IF} \approx 2.6 \cdot \sigma_{raw}$

Static PPP (Storm)

- Strong static model does not respond to extreme geomagnetic storm conditions
 - Maintains mm-level position precision after initial convergence interval

Kinematic PPP (Calm)

- > Weaker kinematic model **maintains cm-level accuracy** under **calm** geomagnetic conditions
 - Mean 3D position error equal to 1.7-cm a few days prior to storm

Kinematic PPP (Storm)

- > Weaker kinematic model **responds** to **extreme** geomagnetic storm conditions
 - Position error amplification up to a few decimeters (mainly vertical component)

Kinematic PPP Analysis

Kinematic PPP Analysis

Calm

Extreme

Stochastic Modeling

Data-Driven Stochastic Model

Stochastic Model Comparison

Large measurement noise despite satellite observed at high elevation

Stochastic Model Comparison

Stochastic Model Comparison

34

Kinematic PPP

- > Data-driven stochastic model mitigates storm effects
 - Vertical error reduced from above 20-cm to below 10-cm using new approach

Elevation-Based

Data-Driven

Recommendations and Future Work

> Position accuracy during geomagnetic storm events

• Increased carrier phase biases and noise amplification

Geomagnetic activity monitoring

- Long term trends and historical activity: spaceweatherlive.com
- Short term predictions: NOAA Space Weather Predication Center

Precise Point Positioning (PPP)

- Static PPP is (typically) stable regardless of geomagnetic conditions
- Kinematic (multi-GNSS) PPP errors become amplified under storm conditions
- Stochastic modeling may mitigate errors

> Ongoing research

- Evaluate more stations and storm cases, then finalize stochastic modeling approach
- Expand benefits of new techniques to <u>real-time</u> positioning applications

Acknowledgements

- Geospatial Center for the Arctic and Pacific (GAP): <u>https://gcapgeospatial.org/</u>
 - NOAA-NGS Grant Award #2007815
- Oregon State University Team Members
 - Faculty: Chase Simpson, Jihye Park, Althaf Azeez, Christopher Parrish, Muge Albayrak
 - Students: William Ohene, Hunter Mitchell

Contact

brian.weaver@oregonstate.edu

➢ [Bonus slides are next]