Chapter 9 Trigonometric Ratios and Functions

Section 9-3 Trigonometric Functions of Any Angle

Trigonometric Functions of Any Angle

You can generalize the right-triangle definitions of trigonometric functions so that they apply to any angle in standard position.

General Definitions of Trigonometric Functions

Let θ be an angle in standard position, and let (x, y)be the point where the terminal side of θ intersects the circle $x^2 + y^2 = r^2$. The six trigonometric functions of θ are defined as shown.

$$\sin \theta = \frac{y}{r} \qquad \qquad \csc \theta = \frac{r}{y}, y \neq 0$$

$$\csc \theta = \frac{r}{y}, y \neq 0$$

$$\cos \theta = \frac{x}{r}$$

$$\cos \theta = \frac{x}{r}$$
 $\sec \theta = \frac{r}{x}, x \neq 0$

$$\tan \theta = \frac{y}{x}, x \neq 0$$

$$\tan \theta = \frac{y}{x}, x \neq 0$$
 $\cot \theta = \frac{x}{y}, y \neq 0$

1

These functions are sometimes called circular functions.

Evaluating Trigonometric Functions Given a Point

Let (-4, 3) be a point on the terminal side of an angle θ in standard position. Evaluate the six trigonometric functions of θ .

The Unit Circle

The circle $x^2 + y^2 = 1$, which has center (0, 0) and radius 1, is called the **unit circle**. The values of $\sin \theta$ and $\cos \theta$ are simply the y-coordinate and x-coordinate, respectively, of the point where the terminal side of θ intersects the unit circle.

$$\sin \theta = \frac{y}{r} = \frac{y}{1} = y$$

$$\cos \theta = \frac{x}{r} = \frac{x}{1} = x$$

It is convenient to use the unit circle to find trigonometric functions of quadrantal angles. A quadrantal angle is an angle in standard position whose terminal side lies on an axis. The measure of a quadrantal angle is always a multiple of 90°, or $\frac{\pi}{2}$ radians.

EXAMPLE 2 Using the Unit Circle

Use the unit circle to evaluate the six trigonometric functions of $\theta = 270^{\circ}$.

Reference Angles

Core Concept

Reference Angle Relationships

Let θ be an angle in standard position. The reference angle for θ is the acute angle θ' formed by the terminal side of θ and the x-axis. The relationship between θ and θ' is shown below for nonquadrantal angles θ such that $90^{\circ} < \theta < 360^{\circ}$ or, in radians, $\frac{\pi}{2} < \theta < 2\pi$.

Quadrant II

Degrees: $\theta' = 180^{\circ} - \theta$ Radians: $\theta' = \pi - \theta$

Quadrant III

Degrees: $\theta' = \theta - 180^{\circ}$

Radians: $\theta' = \theta - \pi$

Quadrant IV

Degrees: $\theta' = 360^{\circ} - \theta$ Radians: $\theta' = 2\pi - \theta$

EXAMPLE 3 Finding Reference Angles

Find the reference angle θ' for (a) $\theta = \frac{5\pi}{3}$ and (b) $\theta = -130^{\circ}$.

Reference angles allow you to evaluate a trigonometric function for any angle θ . The sign of the trigonometric function value depends on the quadrant in which θ lies.

ocore Concept

Evaluating Trigonometric Functions

Use these steps to evaluate a trigonometric function for any angle θ :

- **Step 1** Find the reference angle θ' .
- Step 2 Evaluate the trigonometric function for θ' .
- Step 3 Determine the sign of the trigonometric function value from the quadrant in which θ lies.

Signs of Function Values

Quadrant II	Ay Quadrant I
$\sin \theta$, $\csc \theta$: +	$\sin \theta$, $\csc \theta$: +
$\cos \theta$, $\sec \theta$: –	$\cos \theta$, $\sec \theta$: +
$\tan \theta$, $\cot \theta$: –	$\tan \theta$, $\cot \theta$: +
Quadrant III $\sin \theta$, $\csc \theta$:	Quadrant IV x $\sin \theta$, $\csc \theta$:
$\cos \theta$, $\sec \theta$: –	$\cos \theta$, $\sec \theta$: +
$\tan \theta$, $\cot \theta$: +	$\tan \theta$, $\cot \theta$: –

EXAMPLE 4 Using Reference Angles to Evaluate Functions

Evaluate (a)
$$\tan(-240^{\circ})$$
 and (b) $\csc \frac{17\pi}{6}$.

EXAMPLE 5 Solving a Real-Life Problem

The horizontal distance d (in feet) traveled by a projectile launched at an angle θ and with an initial speed v (in feet per second) is given by

$$d = \frac{v^2}{32} \sin 2\theta$$
. Model for horizontal distance

Estimate the horizontal distance traveled by a golf ball that is hit at an angle of 50° with an initial speed of 105 feet per second.

This model neglects air resistance and assumes that the projectile's starting and ending heights are the same.