

SPWLA

Measurements, analysis and interpretation of SCAL data

Outline

- Experimental Design
- Drainage versus imbibition
- Experimental Pc techniques (with and without resistivity)
 - Mercury Injection technique
 - Equilibrium technique
 - Continuous injection technique
 - Centrifugation
- Numerical interpretation
- Examples of misleading SCAL results
- Examples of correct/incorrect use of reliable SCAL data in models

Which Pc curve is the correct one ?

If all capillaries was 100 % oil wet (prior to invasion), how does the Pc look like

DFOV: 15.0 x 15.0cm

Tit: 0.0 1.0.s W:800 L:2600

Lenormand's phase-diagram for primary drainage:

Stable Displacement:

Viscous force (from the invading phase) controls the flood Pressure drop-Mainly from inlet injection side till front

$$N_C = \frac{q \cdot \mu}{\sum \cdot \sigma} \qquad M = \frac{\mu_{invading}}{\mu_{defending}}$$

Viscous Fingering:

Viscous force (from the defending phase) controls the flood Pressure Drop–mainly from finger tip till the outlet end

$$N_{C} = \frac{q \cdot \mu}{\sum \cdot \sigma} \qquad M = \frac{\mu_{invading}}{\mu_{defending}}$$

Capillary Fingering:

Capillary forces controls the flood

Pressure drop - In principle constant across the continuous fluid interface

$$N_C = \frac{q \cdot \mu}{\sum \cdot \sigma} \qquad M = \frac{\mu_{invading}}{\mu_{defending}}$$

Drainage versus imbibition

Drainage

•Must be done in initially water wet preference

Drainage versus imbibition

Water wet

Wettability:

•Affects all multiphase property behavior such as relative permeability, capillary pressure, nexponent

Drainage versus imbibition

Water connected in smaller pores

Oil drains from connected films high krw

Impact of wettability

Wettability may not be a constant:

Non invaded capillaries that have never seen oil is water wet (by default)!

Impact of wettability

Common questions to SCAL experts:

- Field recovery factors is low, so why is Sorw from Pc experiment low ?
- Wettability is important- I would therefore like to measure it

Pc curves are used in dynamic models-while Wettability Index is not

Mercury Injection

Concept:

Outer diameter of tube is coated with a conductor

Mercury Injection

Concept:

You are measuring conductance in the tube and pressure in the oil bath

Strength:

- Very fast technique (around 8 MICP curves per day/ machine)
- Give you simultaneously pore size distribution
- A reliable and accurate technique if proper procedure are established
- Cost

Weakness

- Sample size (limited to a 1 inch core plug with 1 inch length)
- Its NOT a 2-phase experiment (Swc=0 @ 60 000 psi)
- Needs correction (conformance, clay bound water, stress)
- Questionable for vuggy material
- HSE aspect
- Questionable for friable or unconsolidated material
- Can not be combined with electrical properties (n exponent)

Basic Properties

Equilibrium technique (Porous Plate technique)

Equilibrium technique (Porous Plate technique)

Strength:

- It's a direct technique
- It does not require a model for converting measurements to Sw or Pc
- It yield simultaneously resistivity behavior without changing set-up or conditions.
- It can be used at all types of conditions
- It is slow (from a wettability restoration point of view)

Weakness

- It is slow (from a interpretation point of view)
- In some cases difficult to combine with individual 4 electrode configurations

Continuous Injection method

Continuous Injection method

Strength:

- Accurate technique if applied correctly
- It gives fast input parameters for the PP evaluation
- Can be used for all types of conditions
- It does not require a model for Pc and Sw
- Method should always be followed by constant displacement pressure period (constant Pc)

Weakness

- Pseudo Pc is NOT an actual Pc curve
- Require correct rate design (Capillary number and Viscosity Ratio). Can be done by presimulations
- The technique have limitations for high viscosity oils and low permeability.
- Design of rates might require pre-simulations

Centrifugation

Centrifugation

Hassler-Brunner: Assumption is constant capillary pressure gradient

$$Pc(HB)_{n} = \frac{(Pc_{inlet})_{n} + (Pc_{inlet})_{n-1}}{2}$$

$$Sw(inlet)_{n} = \frac{\partial Sw_{average} \cdot Pc_{inlet}}{\partial Pc_{inlet}} = \frac{(Sw_{average} \cdot Pc_{inlet})_{n} - (Sw_{average} \cdot Pc_{inlet})_{n-1}}{(Pc_{inlet})_{n} - (Pc_{inlet})_{n-1}}$$

Centrifugation

Strength:

- It is a fast technique
- Can be done with stress.
- Reliable and accurate technique if speed designed is done correctly

Weakness

- It requires a model for converting speed to Pc, and volumetric production to Sw (inlet end saturation)
- Pc from lab needs to be corrected before use (by numerical interpretation)
- The technique is questionable for friable and unconsolidated material
- Cannot be combined with electrical properties (n exponent)
- Method have limitations in test temperature

Numerical interpretation of experiments

Numerical interpretation of experiments

Example 1: Misleading lab experiments- plug selection

Assessment from LAB: Core Plug is suitable for SCAL

Example 2: Misleading lab experiments – Pc experiments

Example 3: Misleading lab experiments -Centrifugation

Example 4: Misleading lab experiments- CI

N-exp based on injected oil volume: 1.84 (reported by lab) N-exp based on expelled water volume: 2.07

Lab's procedure does not take into account oil compressibility

Example 1: Modelling with and without Pc IMB

Implemented in dynamic: Pc(DR)+Kr(IMB)

Implemented in dynamic model: Pc(DR and IMB) + Kr(DR and IMB) with Scanning curves

Example 2: Modelled with and without scanning curves

Consistent Pc and Kr With scanning curves

0.4 sw

0.6

0.8

4

1.E-05

0

0.2

Example 3: DR versus IMB n-exp in terms of understanding ROS

