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Abstract— Neural networks were treated as black boxes for a 

long time. Previous works have unearthed what aspects of an image 

were important for convolutional layers at different positions in the 

network. This was done using deconvolutional networks. In this 

paper, we examine how well a convolutional neural network 

performs when those convolutional layers which are relatively 

unimportant for a particular image (i.e., the image does not produce 

one of the strongest activations) are skipped in the training, 

validating, and testing process. 
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I.  INTRODUCTION 

There is a clear understanding of why neural networks 

perform well. Images with less complex patterns produced 

relatively stronger activations in the initial convolutional 

layers. Through deconvolutional networks, Zeiler et al. proved 

that images with less complex patterns produced relatively 

stronger activations in the initial convolutional layers [1] [2]. 

On the other hand, images with more complex patterns and 

shapes produced relatively stronger activations in deeper 

convolutional layers. This implied that the initial 

convolutional layers were relatively more important for simple 

images and the opposite held true for complex images. This 

knowledge could be used to improve the performances of 

convolutional neural networks. 

For instance, if the network performed poorly on images of 

relatively lower complexity, then appropriate changes could 

be made to parameters associated with initial convolutional 

layers. These changes could include changing the number of 

feature maps, size of the kernel, or activation function. 

 In this paper, we examine how well a convolutional neural 

network performs when those convolutional layers which are 

relatively unimportant for a particular image (i.e., the image 

does not produce one of the strongest activations) are skipped 

in the training, validating, and testing process. 
 

II. BACKGROUND 

The main motivation behind the approach has been 

proposed in the work “Visualizing and Understanding 

Convolutional Networks” by Zeiler et al. [1] which has 

become a seminal work in the field of computer vision. Here, 

the authors proposed a method for visualizing and 

understanding the internal representations of convolutional 

neural networks (CNNs), which are a class of deep learning 

models widely used in image classification, object detection, 

and other computer vision tasks. 

 However, despite their high accuracy, CNNs are often 

described as "black boxes" because it is difficult to understand 

how they arrive at their predictions. This lack of 

interpretability is a major obstacle to their adoption in 

applications where transparency and accountability are 

required, such as medical diagnosis or autonomous driving. 

To address this issue, the authors proposed a technique 

called "deconvolutional networks" that can generate an 

approximation of the input image that maximally activates a 

particular neuron or feature map in a CNN. By visualizing 

these approximations, the authors showed that CNNs learn to 

recognize complex patterns and shapes at multiple levels of 

abstraction, from simple edges and corners to high-level object 

parts and concepts. The paper also introduced another 

visualization technique called "class activation mapping" 

(CAM), which can highlight the regions of an image that are 

most relevant to a particular class prediction made by a CNN. 

This method is based on the gradient of the output class score 

with respect to the feature maps of the last convolutional layer. 

By overlaying the CAM on the original image, the authors 

demonstrated that CNNs can learn to focus on the most 

discriminative parts of an object or scene, such as the face of a 

person or the body of a car. 

The authors further applied their visualization methods to 

several well-known CNN architectures, including AlexNet [3], 

VGG [4], and GoogLeNet [5], and analyzed the learned 

representations in terms of their invariance to different 

transformations and their ability to generalize to novel 

examples. They also showed how their methods can be used to 

diagnose and correct common errors made by CNNs, such as 

confusing a wolf with a husky or mistaking a fire truck for an 

ambulance. 

One of the other works which served as a starting point for 

this research was the paper “Deconvolutional Networks” by 

Zeiler et al. [2]. Here, he proposed a novel approach to 

visualizing the learned representations in deep convolutional 

neural networks (CNNs). The authors recognized that the 

feature maps produced by the convolutional layers of a CNN 

are highly abstract and difficult to interpret but are crucial for 

accurate classification and other tasks in computer vision. 

To address this issue, the authors introduced a 

"deconvolutional" approach that can reconstruct the input 

image from the feature maps of a CNN by using a reverse 

convolution operation. By applying this operation to the 

output feature maps of each convolutional layer in reverse 
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order, the authors were able to generate a series of 

"reconstructions" that highlight the parts of the input image 

that are most important for activating each feature map. 

The authors demonstrated the effectiveness of their 

approach by applying it to the well-known AlexNet CNN 

architecture and visualizing the learned representations in 

terms of their response to specific object categories. They 

showed that the deconvolutional reconstructions can reveal the 

local regions of an image that are most relevant to a particular 

category, such as the head of a dog or the wheels of a car. 

The paper also introduced a method for improving the 

quality of the deconvolutional reconstructions by 

incorporating information from higher-level layers of the 

CNN. By using a "guided backpropagation" algorithm that 

selectively passes gradients from the output layer to the input 

layer based on the saliency of the feature maps, the authors 

were able to generate more accurate and visually appealing 

reconstructions. 

These two papers served as the motivation behind our work 

which examines how well a CNN performs when those 

convolutional layers which are relatively unimportant for a 

particular image (i.e., the image does not produce one of the 

strongest activations) are skipped in the training, validating, 

and testing process. 

III. MATERIALS AND METHODS 

The MNIST dataset [6] was used for training, validating, 

and testing a three-layered convolutional neural network 

(CNN 1) with one dense layer (Fig 1) . It is important to note 

that there were no max pooling layers, and only the number of 

feature maps distinguished the three convolutional layers. For 

each of the three convolutional layers, the first ten feature 

maps were selected. For each of the ten chosen feature maps 

in each of the three convolutional layers, images which 

produced the ten strongest activations (highest mean absolute 

values) were selected. This meant that there were a hundred 

images chosen for each of three convolutional layers. 

 

 

 

 

Figure 1. CNN-1 Architecture 

 

Images were assigned labels depending on convolutional 

layer at which they produced one of the ten strongest 

activations. In case of repetition, the higher label was chosen 

since that convolutional layer was significant in processing the 

image. 

 A convolutional neural network (CNN 2) was trained based 

on this training data to predict the convolutional layer at which 

the input image produced one of the strongest activations. 

In the final step, the above-mentioned images and their 

corresponding labels were used to train another convolutional 

neural network (CNN 3) (Fig 2). CNN 3 had the same 

architecture as CNN 1. It is to be noted that there were three 

unique labels 0, 1 and 2. Label 0 was used for the images 

which produced the strongest activations in the first 

convolutional layer. Similarly, labels 1 and 2 were used for 

images that produced the strongest activations in the second 

and third convolutional layers respectively. 
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Figure 2. CNN-3 Architecture 

 

For the convolutional neural network (CNN 3), weights 

were initialized. For those images with label 0, the second and 

third convolutional layers were skipped in the forward pass. 

The first convolutional layer and the dense layer were 

involved in the forward pass. Hence, weights corresponding to 

the first convolutional layer and the dense layer were updated. 

The weights corresponding to the second and third 

convolutional layers were left untouched. Similarly, for those 

images corresponding to label 1, weights corresponding to the 

third convolutional layer were left untouched, and other 

weights were updated after the forward pass skipping the third 

convolutional layer. For those images with label 2, no layer 

was skipped in the forward pass, and hence, all weights were 

updated. 

For this to happen, i.e., skipping convolutional layers in 

forward pass, it had to be ensured that all the convolutional 

layers in CNN 3 had the same height and width. 

The above-mentioned convolutional neural network was 

trained using RMSprop optimizer, ReLU activation function, 

sparse categorical cross entropy loss function and accuracy 

performance metric for 20 epochs. The above process was 

replicated for the CIFAR-100 dataset. 
 

IV. RESULTS AND CONCLUSION 

CNN 2 was trained based on the training data obtained from 

training CNN 1 to predict the convolutional layer at which the 

input image produced one of the strongest activations. It had a 

test accuracy of 62 percent. Those results were used to train, 

validate, and test the convolutional neural network mentioned 

in the previous section (CNN 3). It had a test accuracy close to 

100 percent, marginally higher than 98 percent when a 

convolutional neural network was used to train, validate, and 

test the MNIST dataset without any caveats (CNN 1). This 

result was validated using the CIFAR-100 dataset too. 

 

V. DISCUSSION 

In this paper, we systematically reduced model complexity 

by eliminating irrelevant layers in CNN topologies. This 

improved model efficiency for computer vision modules. This 

work could be extended to more complex CNNs which 

include max-pooling layers, upsampling and downsampling 

operations, dilated convolutional layers, and residual layers 

[7]. Furthermore, this methodology can be broadened to 

include other applications of computer vision like regression, 

semantic segmentation, image localization, and object 

detection. 

Despite a relatively lower accuracy in label prediction using 

CNN 2, results from CNN 3 compare well to those from CNN 

1 in the case of MNIST and CIFAR-100 datasets. 
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