
IJRECE VOL. 7 ISSUE 3 JULY.-SEPT 2019 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 449 | P a g e

“Enhancement of performance 32 bit RISC Processor

using Genetic Algorithm”
Amit Yadav1, Deepak Sharma2

Lord Krishna College of Technology

Abstract- Genetic algorithms (GAs) With 32 bit concept are used to solve search and optimization problems in which an optimal

solution can be found using an iterative process with probabilistic and non-deterministic transitions. However, depending on the

problem’s nature, the time required to find a solution can be high in sequential machines due to the computational complexity of

genetic algorithms. This work proposes a full-parallel implementation of a genetic algorithm on field-programmable gate array

(FPGA) to perform as similar operation like as 32 bit RISC Processor. Optimization of the system’s processing time is the main

goal of this project. Results associated with the processing time and area occupancy (on FPGA) for various population sizes are

analyzed. Studies concerning the accuracy of the GA response for the optimization of two variables functions were also evaluated
for the hardware implementation. However, the high-performance implementation proposed in this paper is able to work with more

variable from some adjustments on hardware architecture. The results showed that the GA full-parallel implementation achieved

throughput about 16 millions of generations per second and speedups between 17 and 170,000 associated with several works

proposed in the literature.

Keywords: parallel implementation FPGA Genetic algorithms Reconfigurable computing.

I. INTRODUCTION

1.1 Processor architecture and its fundamentals

A processor takes input information, processes that input and

produces output result which gets stored inside the memory.

This is the fundamental operation of a processor. The

functional units of a processor are input output, memory

storage, arithmetic logic unit and control unit. Information in

a processor is in the form of data. In terms of technical

language we can define this data in bits or bytes. The memory

of the processor can be increased as per need.

Information in a processor is known as instruction which is

given by an human operator. There is a particular language

for the understanding of processor called as assembly

language. It contains the instruction sets. A sequence of
instruction is called as program. Processor fetches

instructions that make up a program from the memory and

performs the operations stated in those instructions. There are

n no of programs written for a process.

Figure 1.1: Overview of the RISC processor

1.2.1Memory:

Memory unit stores instructions and data. There are mainly

two types of memory. The first is volatile and second is non

volatile. Random Access Memory (RAM), is a volatile

memory that stores information on an integrated circuit,

whereas ROM (Read only memory) is a non-volatile memory
and can last longer even after the power is off. The

classification of memory is as follows-

1.2.2 Control unit:

All operations of processors are controlled by this unit. It

actually generates timing signals which determines when the

operation is going to take place. The interfacing of

components with external elements is also done by this unit.

It can be hardwired or micro programmed but hardwired
controllers are fast. The functions of control unit are as

follows-

• Control unit has communication among all

components of the processor.

• It instructs the arithmetic logic unit that which type

of operation is to be performed.

• It coordinates with peripherals of the processor.

• It directs all components to perform action.

• It regulates the flow of data between main memory

and other units.

II. INTRODUCTION TO PIPELINING

This concept comes in to picture after decades of 80’s.If we

analyze any non-pipelined architecture, and then we found

some hazards in it. There are five stages for processing any

bit. The stages are namely Instruction fetch, decoder,

Output

Memory Arithmetic
and logic
unit

Control
unit

Input

IJRECE VOL. 7 ISSUE 3 JULY.-SEPT 2019 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 450 | P a g e

execution, memory access and write back. Now if any

instruction is given to processor it has to pass through all

stages to give an output. Therefore total no of clock cycles

needed for16 bit instruction will be 16.Hence,we have to wait

for a long time to get output and processor is called as slow

processor. To speed up the work pipeline concept came in to

picture. Now, the scenario will change.

Pipelining is a process where a microprocessor involves

several stages of execution one after another in different

segments. It is developed to reduce the total time for
processing. These will in turn improves the speed of the

processor. Using pipelining concept computer architecture

allows next instructions to be fetched while executing the

previous instructions. At the same time result is loaded to

memory. We can increase the no of stages of pipelining as

our application demands. For this we can understand this by

simple example like there is a task T which has being

assigned to me.Now,I can divide this task in to subtasks that

is s1,s2 and s3.

A pipelined architecture is little more complex than non-

pipelined. As we know that complexity always increase when

design becomes small and speed becomes a major issue. We

have to add some mechanism here, like some registers. Now

in case of pipelining, in the first cycle t1 fetching is done and

then its data is stored in register R1, thus the fetch register is
free to fetch new bit. The data bit of R1 is now decoded by

decoder in next cycle t2 and at the same time next data bit is

fetched by fetch register. Similary, this bit of decoder is

stored in register R2.This procedure is followed till write

back. So total no of registers required are 5.Hence the total

no of cycles are reduced. If 32 bits of instruction is there then

total no of cycles required will be 11.Hence we get fast output

in this case.

III. PROPOSED METHODOLOGY TO DESIGN OF 32

BIT PROCESSOR

The classical optimization techniques are useful in finding

the optimum solution or unconstrained maxima or minima of

continuous and differentiable functions. These are analytical

methods and make use of differential calculus in locating the

optimum solution. The classical methods have limited scope

in practical applications as some of them involve objective

functions which are not continuous and/or differentiable. Yet,

the study of these classical techniques of optimization form a

basis for developing most of the numerical techniques that
have evolved into advanced techniques more suitable for

today's practical problems.

IV.PARAMETERS OF GENETIC ALGORITHMS

A number of parameters control the precise operation of the

genetic algorithm. They are:

1. Crossover probability: It is the measure of how often

crossover will be performed. If there is no crossover,

offspring are exact copies of parents. If there is

crossover, offspring are made from parts of both

parent's chromosome. If crossover probability is

100%, then all offspring are made by crossover. If it

is 0%, whole new generation is made from exact

copies of chromosomes from old population.

Crossover is made in hope that new chromosomes

will contain good parts of old chromosomes and
therefore the new chromosomes will be better.

2. Mutation probability: It is the measure of how often

parts of chromosome will be mutated. If there is no

mutation, offspring are generated immediately after

crossover without any change. If mutation is

performed, one or more parts of a chromosome are

changed. If mutation probability is 100%, whole

chromosome is changed, if it is 0%, nothing is

changed. Mutation generally prevents the genetic

algorithm from falling into local extremes and helps

in recovering the lost genetic material. Mutation

should not occur very often, because then genetic
algorithms would act as to random search.

3. Population size: It is the number of how many

chromosomes are present in the population

(representing one generation). If there are too few

chromosomes, genetic algorithm has few options

available for crossover and only a small part of

search space is explored. On the counterpart, if there

are too many chromosomes in one population then

the speed of genetic algorithm slows down.

V. STEPS IN BASIC GENETIC ALGORITHM

1. [Start] Define the fitness function f(x) according to
the problem definition.

2. [Initialise] Generate random population of n

chromosomes – each chromosome being the

potential solution.

3. [Fitness] Evaluate the fitness f(x) of each

chromosome x in the population.

4. [New population]Repeat the following steps to

create the new population of chromosomes:

a. [Selection] Select some parent chromosomes

from a population according to their fitness

to form mating pool.

b. [Crossover] Mate the selected chromosomes
as per given crossover probability to form

new off-springs.

c. [Mutation]Mutate new chromosomes as per

given mutation probability.

d. [Replace] Replace the old population of

chromosomes with the new population.

5. [Convergence check] If the maximum number of

generations is reached, then stop, and return the best

solution. 6. [Loop] Go to step 3.

IJRECE VOL. 7 ISSUE 3 JULY.-SEPT 2019 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 451 | P a g e

Basic flowchart of Genetic Algorithm

VI. RESULTS AND DISCUSSION

6.1 Processor pipelining in computer architecture

(Implementation outcomes):

Fig(6.1) RTL 32 bit Processor pipelining.

Fig (6.2) RAM, ROM, Accumulator, ALU, MUX, Adders

all units of processor.

Fig (6.3) ALL unit routing.

IJRECE VOL. 7 ISSUE 3 JULY.-SEPT 2019 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 452 | P a g e

Fig (6.4) Power dissipation of all unit.

 Fig (6.5) 32 Bit Processor.

Fig (6.6) Processor instruction cycle.

Fig (6.7) Internal Register outcomes

Fig (6.11) Device Utilization summary.

Fig (6.12) 32 bit Instruction cycle Time.

ENHANCEMENT REPORT

1. The first graph presents the change switching time with

respect to variation in aspect ratio. It is important to see these

results because it’s the main thing which will affect the speed

of the processor.

IJRECE VOL. 7 ISSUE 3 JULY.-SEPT 2019 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 453 | P a g e

Fig 6.13 Graph between switching time & aspect ratio

From this graph it is very clear that as we increase value of
aspect ratio the switching time decreases. Switching time is

the time required to on or off the transistor. So that speed will

increase because speed is indirectly proportional to time. For

better results w=3l can be a good option.

2. This graph represents the relation between drain current

and aspect ratio for three different materials Ge, Si and GaAs.

Their motilities are different; other things are constant for

them.

Fig 6.14 Graph represents Comparison of three elements

based on mobility

From this graph we can observe that GaAs is the best because

its curve reaches at max.Some results which are drawn from

analysis at w/l=3 are as follows;

 The threshold voltage for the processor is decreased.

 Power consumption naturally will reduce.

 The input impedance decreases to some content.

 Before the triggering was at5 V, now it is reduced to

3 V.

 RAM, ROM can be designed easily.

Applications

 ADC where we deal with very low voltage swings

 Microstrip antenna can be designed.

 High speed processor or controller can be designed.

RESULT COMPARISON & ANALYSIS

S.N. Base paper Proposed method

1 0.752ns 0.523ns

VII. CONCLUSION & FUTURE WORK

A pipelined architecture is a better option for us to support

RISC processors. In this survey we observed the motivation

for VLSI design. In comparison to microcontroller

programming, this is better because program can be burned

within the chip and erased easily, hence most of the

customers are demanding for FPGA and designers are also

moving in same direction.

Here we observed that w=3l is a better option for increasing

the speed (Time<0.523ns) of the processor because drain

current increases which in turn increases the switching

capability of processor.

The speed will improve and to reduce the power consumption

short transistors must be used. In this project we have shown

the concept of pipelining through the comparison of different

width to length ratio is done using the software XILINX’S.

Optimization will take place in future as the demand will
increase. Fabrication techniques can be improved for In

future many things can be done to add features with this

processor. Like more stages of pipelines can be added but at

the same time hazards of pipelined should be taken care. The

main idea was to optimize the design such as to increase

speed of the processor; also the design uses a less amount of

chip area.

REFERENCES

1.S.P.H. Alinodehi, S. Moshfe, M.S. Zaeimian, A. Khoei, K.

Hadidi, High-speed general purpose genetic algorithm

processor. IEEE Trans. Cybern. 46(7), 1551–1565 (2016)

CrossRefGoogle Scholar

2.M.S.B. Ameur, A. Sakly, Fpga based hardware

implementation of bat algorithm. Appl. Soft Comput. 58,

378–387 (2017)

CrossRefGoogle Scholar

3.K. Chapman, Multiplexer design techniques for datapath

performance with minimized routing resources, in

Application Note: Spartan-6 Family, Virtex-6 Family, 7

Series FPGAs (2014)

Google Scholar

4.Y. Chen, Q. Wu, Design and implementation of PID

controller based on FPGA and genetic algorithm, in 2011

International Conference on Electronics and Optoelectronics

(ICEOE), vol. 4, p. V4–308. IEEE (2011)

IJRECE VOL. 7 ISSUE 3 JULY.-SEPT 2019 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 454 | P a g e

Google Scholar

5.K. Deliparaschos, G. Doyamis, S. Tzafestas, A

parameterised genetic algorithm IP core: FPGA design,

implementation and performance evaluation. Int. J. Electron.

95(11), 1149–1166 (2008)

CrossRefGoogle Scholar

6.P. Fernando, H. Sankaran, S. Katkoori, D. Keymeulen, A.

Stoica, R. Zebulum, R. Rajeshuni, A customizable FPGA IP

core implementation of a general purpose genetic algorithm

engine, in IEEE International Symposium on Parallel and

Distributed Processing, 2008. IPDPS 2008 (IEEE, 2008), p.

1–8

Google Scholar

7.P.R. Fernando, S. Katkoori, D. Keymeulen, R. Zebulum, A.
Stoica, Customizable FPGA IP core implementation of a

general-purpose genetic algorithm engine. IEEE Trans.

Evolut. Comput. 14(1), 133–149 (2010).

https://doi.org/10.1109/TEVC.2009.2025032

CrossRefGoogle Scholar

8.M. Goresky, A. Klapper, Pseudonoise sequences based on

algebraic feedback shift registers. IEEE Trans. Inf. Theory

52(4), 1649–1662 (2006)

MathSciNetCrossRefzbMATHGoogle Scholar

9.L. Guo, A.I. Funie, D.B. Thomas, H. Fu, W. Luk, Parallel

genetic algorithms on multiple fpgas. ACM SIGARCH

Comput. Arch. News 43(4), 86–93 (2016)

CrossRefGoogle Scholar

10.L. Guo, A.I. Funie, Z. Xie, D. Thomas, W. Luk, A general-

purpose framework for FPGA-accelerated genetic

algorithms. Int. J. Bio-Inspir. Comput. 7(6), 361–375 (2015)

CrossRefGoogle Scholar

11.J.H. Holland, Adaptation in Natural and Artificial

Systems: An Introductory Analysis with Applications to
Biology, Control, and Artificial Intelligence (U Michigan

Press, Ann Arbor, 1975) zbMATHGoogle Scholar

12.N. Instruments, Understanding parallel hardware:

multiprocessors, hyperthreading, dual-core, multicore and

FPGAs (2011). http://www.ni.com/tutorial/6097/en/

13.L.M. Ionescu, A. Mazare, A.I. Lita, G. Serban, Fully

integrated artificial intelligence solution for real time route

tracking, in 2015 38th International Spring Seminar on
Electronics Technology (ISSE) (IEEE, 2015), p. 536–

540Google Scholar

14.Y. Jewajinda, P. Chongstitvatana, Hardware architecture
and FPGA implementation of a parallel elitism-based

compact genetic algorithm, in TENCON 2009-2009 IEEE

Region 10 Conference (IEEE, 2009), p. 1–6

Google Scholar

15.J.R. Koza, Genetic evolution and co-evolution of

computer programs. Artif. Life II(10), 603–629

(1991)Google Scholar

