

Transport properties in layered thermoelectric chalcogenides

Intercalation, substitution and non stochiometry : three different approaches to increase phonon scattering in TiS_2

-26 February 2014 –

Emmanuel Guilmeau

EPSRC Workshop, Manchester

Summary

- 1. MS₂ Layered Dichalcogenides
- 2. Intercalation : the case of copper and silver
- Heavy metal cations Substitution (Ta, Nb)
- 4. Non-stochiometry: Tuning of TE properties and structural disordering

MS₂ Layered Structure

Trigonal prismatic or octahedral
Hexagonal packed planes
Van-der-Waals interaction between layers
Alkali, Metal intercalation

Electronic Properties

Insulating-SC-Metal
Degree of filling of d bands (metal)
Non stoichiometry

MS₂ Layered Structure

 Trigonal prismatic or octahedral
Hexagonal packed planes
Van-der-Waals interaction between layers

Alkali, Metal intercalation

Electronic Properties

Insulating-SC-Metal
Degree of filling of d bands (metal)
Non stoichiometry

J.A.Wilson and A.D. Yoffe, Adv. Phys (1969)

Non-stochiometry

MS₂ Layered Structure

 Trigonal prismatic or octahedral
Hexagonal packed planes
Van-der-Waals interaction between layers
Alkali, Metal intercalation

Electronic Properties

Insulating-SC-Metal
Degree of filling of d bands (metal)
Non stoichiometry

Strong Anisotropy

Two-dimensional character, e.g. electrical and thermal properties
Electron mobility in Cdl₂ planes
Phonon scattering along c direction

$[Ca_2CoO_3]_{0.62}[CoO_2]$

An Oxide Single Crystal with High Thermoelectric Performance in Air

Ryoji FUNAHASHI^{*}, Ichiro MATSUBARA, Hiroshi IKUTA¹, Tsunehiro TAKEUCHI², Uichiro MIZUTANI² and Satoshi SODEOKA

Osaka National Research Institute, AIST, Midorigaoka, Ikeda, Osaka 563-8577, Japan ¹Center for Integrated Research in Science and Engineering, Nagoya University, Chikusa-ku, Nagoya, Aichi 464-8603, Japan ²Department of Crystalline Materials Science, Nagoya University, Chikusa-ku, Nagoya, Aichi 464-8603, Japan

(Received September 27, 2000; accepted for publication October 6, 2000)

Misfit-layered cobaltite with an anisotropic giant magnetoresistance: Ca₃Co₄O₉

A. C. Masset, C. Michel,* A. Maignan, M. Hervieu, O. Toulemonde, F. Studer, and B. Raveau Laboratoire CRISMAT, UMR 6508 associée au CNRS, ISMRA et Université de Caen 6, Boulevard du Maréchal Juin, 14050 CAEN Cedex, France

J. Hejtmanek Laboratory of Oxidic Materials, Institute of Physics, 162 53 Prague 6, Cukrovarnicka 10, Czech Republic (Received 1 February 2000)

A. C. Masset et al., PR B 62, 166, 2000 R. Funahashi et al., JJAP 39, L1127, 2000 $\rightarrow S = +120 \mu V/K$

Substitution

Non-stochiometry

Why TiS_2 as a TE element?

Criteria for thermoelectricty

Narrow band-gap semiconductor

Low electrical resistivity, high Seebeck coefficient

n= 10²⁰ cm⁻³ High Power factor 1.7 mW/mK² @ 300K

Flexible compositions for tuning transport properties
Optimum carrier concentration

Large unit cell, complex structure, disorder Low thermal conductivity

Low thermal conductivity

Substitution

Non-stochiometry

Summary

- 1. MS₂ Layered Dichalcogenides
- 2. Intercalation : the case of copper and silver
- 3. Heavy metal cations Substitution (Ta, Nb)
- 4. Non-stochiometry: Tuning of TE properties and structural disordering

Material Processing

Powder

Sealed tube synthesis (650°C/12h)

Grain size (5 μm)

Traces of TiO₂

MS₂ compounds

Intercalation

Bulk

SPS Sintering 600-900°C 50-300 MPa

Relative Density > 95%

> Grain size (20 µm)

Slight (001) texture

Substitution

Non-stochiometry

Material Processing

Powder

Sealed tube synthesis (650°C/12h)

Grain size (5 μm)

Traces of TiO₂

MS₂ compounds

Intercalation

Bulk

SPS Sintering 600-900°C 50-300 MPa

Relative Density > 95%

> Grain size (20 µm)

Slight (001) texture

Substitution

Non-stochiometry

Intercalation in TiS₂

Synthesis and Structure

MS₂ compounds

 Copper diffusion by In Situ SPS
High density (>95%)
Slight (001) texture
c cell parameter increase
TEM: Elongated dot reflexion →Disorder

Intercalation

Electrical Properties

Electrical Properties

Thermal Properties

 $Ag_{x}TiS_{2}$

Different Intercalation mechanism
Increase in ZT up to 0.46 @ 700K

$Ag_{x}TiS_{2}$

Different Intercalation mechanism
Increase in ZT up to 0.46 @ 700K

Summary

- 1. MS₂ Layered Dichalcogenides
- 2. Intercalation : the case of copper and silver

3. Heavy metal cations Substitution (Ta, Nb)

4. Non-stochiometry: Tuning of TE properties and structural disordering

Solid Solution $Ti_{1-x}Ta_xS_2$, $Ti_{1-x}Nb_xS_2$

Solid Solution $Ti_{1-x}Ta_xS_2$, $Ti_{1-x}Nb_xS_2$

Solid Solution $Ti_{1-x}Ta_xS_2$, $Ti_{1-x}Nb_xS_2$

Summary

- 1. MS₂ Layered Dichalcogenides
- 2. Intercalation : the case of copper and silver
- 3. Heavy metal cations Substitution (Ta, Nb)
- 4. Non-stochiometry: Tuning of TE properties and structural disordering

Ti_{1+x}S₂: Non stochiometry Approach

$Ti_{1+x}S_2$: Non stochiometry Approach

Tuned carrier concentrationWide range of Seebeck coeff.

□ Drastic decrease in κ_{tot} □ Ti intercalation → disorder □ ZT improved up to 0.45 @ 700K

Conclusion

1. Intercalation, Substitution, Non Stochiometry Three potential approachs to decrease kappa.

- **2.** Progress achieved with ZT>0.5 @ 700K
- **3.** More efforts required to double ZT in the temperature range RT-700K

Conclusion

Acknowledgements

Marine Beaumale Tristan Barbier Yohann Bréard Oleg Lebedev Sylvie Hébert Yoshiaki Kinemuchi Antoine Maignan

G. Guélou P. Vaqueiro A.V. Powell

FP7 for Financial Support (INNOVTEG, Research for SMEs)

Thank you for your attention!!!!