
Calculus 3 - Surface Area

In calculus 1 we were able to find arc length using integrals. On a

small interval, we create a small triangle. The hypotenuse approximates

the length of the curve

If we denote dx, dy and ds and the lengths of each side then

ds2 = dx2 + dy2 (1)

or

ds =
√

dx2 + dy2 =

√
1 +

(
dy
dx

)2

dx (2)

Now we add of the little line segments and in the limit, we obtain the

integral

s =
∫ b

a

√
1 +

(
dy
dx

)2

dx. (3)

If x and y are given parametrically x = f (t), y = g(t), then this would

become

s =
∫ t2

t1

√(
dx
dt

)2

+

(
dy
dt

)2

dt (4)
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Surface Area

In 3D, the analogy to arc length is surface area. Recall when we obtained

the tangent plane. We created two vectors

#»u =< 1, 0, fx >, #»v =< 0, 1, fy >, (5)

and evaluate these at some point (a, b).

We now cross these two vectors to get the normal so

#»n =

∣∣∣∣∣∣∣∣∣
#»

i
#»

j
#»

k

1 0 fx(a, b)

0 1 fy(a, b)

∣∣∣∣∣∣∣∣∣ =< − fx(a, b),− fy(a, b), 1 > . (6)

The equation of the tangent plane is then

fx(a, b)(x− a) + fy(a, b)(y− b)− (z− c) = 0 (7)

where c = f (a, b).
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Let us return back to vectors from Calc 2. The area of the parallelogram

with ‖ #»u‖ and ‖ #»v ‖ as sides is given by

A = ‖ #»u‖‖ #»v ‖ sin θ (8)

where θ is the angle between the vectors. It can be shown that

| #»u × #»v | = ‖ #»u‖‖ #»v ‖ sin θ (9)

Now we create two small vectors

#»u =< 1, 0, fx > dx, #»v =< 0, 1, fy > dy, (10)

We now cross these two vectors to get the normal so

#»n =

∣∣∣∣∣∣∣∣∣
#»

i
#»

j
#»

k

dx 0 fxdx

0 dy fydy

∣∣∣∣∣∣∣∣∣ =< − fx,− fy, 1 > dxdy. (11)
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and then take the magnitude of this which gives

dSA =
√

1 + f 2
x + f 2

y dxdy (12)

Now we add up all the little areas and in the limit we obtain the double

integral

SA =
∫∫
R

√
1 + f 2

x + f 2
y dA. (13)

Example 1. Find surface area of the plane of 2x + 2y + z = 2 in the first

octant.

Soln. We first find the partial derivatives so if z = 2− 2x − 2y then fx =

−2, fy = −2. The surface area is given by

SA =
∫ 1

0

∫ 1−x

0

√
1 + 22 + 22 dydx =

3
2

(14)
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Area of Plane Regions

If the integrand is a number say 5. then

∫∫
R

5dA = 5A(R) (15)

where A(R) is the area of the region R. To show this consider

∫ b

a

∫ h(x)

g(x)
1dydx =

∫ b

a
y
∣∣∣h(x)

g(x)
dx =

∫ b

a
g(x)− h(x)dx (16)

which is exactly the area of the region R.

Example 2. Find surface area of the paraboloid of z = 4− x2− y2 for z ≥ 0

Soln. We first find the partial derivatives so

fx = −2x, fy = −2y. (17)
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The surface area is given by

SA =
∫∫
R

√
1 + 4x2 + 4y2 dA (18)

The region of integration is a circle of radius 2 so we switch to polar so

SA =
∫ 2π

0

∫ 2

0

√
1 + 4r2 rdrdθ

=
∫ 2π

0

1
12

(
1 + 4r2)3/2

∣∣∣2
0

dθ

=
17
√

17− 1
12

∫ 2π

0
dθ

=
17
√

17− 1
12

· 2π

(19)
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Example 3. Find surface area of the cone of z =
√

x2 + y2 with the top of

z = 1

Soln. We first find the partial derivatives so

fx =
x√

x2 + y2
,

y√
x2 + y2

. (20)

The surface area is given by

SA =
∫∫
R

√
1 +

x2

x2 + y2 +
y2

x2 + y2 dA. (21)

Simplifying the integrand gives

√
1 +

x2

x2 + y2 +
y2

x2 + y2 =

√
x2 + y2

x2 + y2 +
x2 + y2

x2 + y2 =
√

2 (22)

So the surface area of the outside of the cone is
√

2 times the area of the

region R which is π so the surface area (including the top) is

SA =
√

2π + π (23)
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Example 4. Find surface area of the cone of y =
√

x2 + z2 with the top of

y = 1

Soln. This is exactly the same problem as # 3 except the cone is on its side.

We certainly could solve the equation of the cone for z but instead, let’s

use the variables x and z. The region of integration is still a circle but in

the (x, z) plane.

In general, if the surface is given by y = g(x, z) our surface area formula

is

SA =
∫∫
Rxz

√
1 + g2

x + g2
z dAxz. (24)

where dAxz = dxdz or dzdx

Similarly, if the surface is given by x = h(y, z) our surface area formula

is

SA =
∫∫
Ryz

√
1 + h2

y + h2
z dAyz. (25)

where dAyz = dydz or dzdy

8


