Calculus 3 - Surface Area

In calculus 1 we were able to find arc length using integrals. On a small interval, we create a small triangle. The hypotenuse approximates the length of the curve

If we denote $d x, d y$ and $d s$ and the lengths of each side then

$$
\begin{equation*}
d s^{2}=d x^{2}+d y^{2} \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
d s=\sqrt{d x^{2}+d y^{2}}=\sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \tag{2}
\end{equation*}
$$

Now we add of the little line segments and in the limit, we obtain the integral

$$
\begin{equation*}
s=\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \tag{3}
\end{equation*}
$$

If x and y are given parametrically $x=f(t), y=g(t)$, then this would become

$$
\begin{equation*}
s=\int_{t_{1}}^{t_{2}} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t \tag{4}
\end{equation*}
$$

Surface Area

In 3D, the analogy to arc length is surface area. Recall when we obtained the tangent plane. We created two vectors

$$
\begin{equation*}
\vec{u}=<1,0, f_{x}>, \quad \vec{v}=<0,1, f_{y}>, \tag{5}
\end{equation*}
$$

and evaluate these at some point (a, b).

We now cross these two vectors to get the normal so

$$
\vec{n}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \tag{6}\\
1 & 0 & f_{x}(a, b) \\
0 & 1 & f_{y}(a, b)
\end{array}\right|=<-f_{x}(a, b),-f_{y}(a, b), 1>
$$

The equation of the tangent plane is then

$$
\begin{equation*}
f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)-(z-c)=0 \tag{7}
\end{equation*}
$$

where $c=f(a, b)$.

Let us return back to vectors from Calc 2 . The area of the parallelogram

with $\|\vec{u}\|$ and $\|\vec{v}\|$ as sides is given by

$$
\begin{equation*}
A=\|\vec{u}\|\|\vec{v}\| \sin \theta \tag{8}
\end{equation*}
$$

where θ is the angle between the vectors. It can be shown that

$$
\begin{equation*}
|\vec{u} \times \vec{v}|=\|\vec{u}\|\|\vec{v}\| \sin \theta \tag{9}
\end{equation*}
$$

Now we create two small vectors

$$
\begin{equation*}
\vec{u}=<1,0, f_{x}>d x, \quad \vec{v}=<0,1, f_{y}>d y \tag{10}
\end{equation*}
$$

We now cross these two vectors to get the normal so

$$
\vec{n}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \tag{11}\\
d x & 0 & f_{x} d x \\
0 & d y & f_{y} d y
\end{array}\right|=<-f_{x},-f_{y}, 1>d x d y
$$

and then take the magnitude of this which gives

$$
\begin{equation*}
d S A=\sqrt{1+f_{x}^{2}+f_{y}^{2}} d x d y \tag{12}
\end{equation*}
$$

Now we add up all the little areas and in the limit we obtain the double integral

$$
\begin{equation*}
S A=\iint_{R} \sqrt{1+f_{x}^{2}+f_{y}^{2}} d A \tag{13}
\end{equation*}
$$

Example 1. Find surface area of the plane of $2 x+2 y+z=2$ in the first octant.

Soln. We first find the partial derivatives so if $z=2-2 x-2 y$ then $f_{x}=$ $-2, \quad f_{y}=-2$. The surface area is given by

$$
\begin{equation*}
S A=\int_{0}^{1} \int_{0}^{1-x} \sqrt{1+2^{2}+2^{2}} d y d x=\frac{3}{2} \tag{14}
\end{equation*}
$$

Area of Plane Regions

If the integrand is a number say 5 . then

$$
\begin{equation*}
\iint_{R} 5 d A=5 A(R) \tag{15}
\end{equation*}
$$

where $A(R)$ is the area of the region R. To show this consider

$$
\int_{a}^{b} \int_{g(x)}^{h(x)} 1 d y d x=\left.\int_{a}^{b} y\right|_{g(x)} ^{h(x)} d x=\int_{a}^{b} g(x)-h(x) d x
$$

which is exactly the area of the region R.

Example 2. Find surface area of the paraboloid of $z=4-x^{2}-y^{2}$ for $z \geq 0$ Soln. We first find the partial derivatives so

$$
\begin{equation*}
f_{x}=-2 x, \quad f_{y}=-2 y \tag{17}
\end{equation*}
$$

The surface area is given by

$$
\begin{equation*}
S A=\iint_{R} \sqrt{1+4 x^{2}+4 y^{2}} d A \tag{18}
\end{equation*}
$$

The region of integration is a circle of radius 2 so we switch to polar so

$$
\begin{align*}
S A & =\int_{0}^{2 \pi} \int_{0}^{2} \sqrt{1+4 r^{2}} r d r d \theta \\
& =\left.\int_{0}^{2 \pi} \frac{1}{12}\left(1+4 r^{2}\right)^{3 / 2}\right|_{0} ^{2} d \theta \tag{19}\\
& =\frac{17 \sqrt{17}-1}{12} \int_{0}^{2 \pi} d \theta \\
& =\frac{17 \sqrt{17}-1}{12} \cdot 2 \pi
\end{align*}
$$

Example 3. Find surface area of the cone of $z=\sqrt{x^{2}+y^{2}}$ with the top of $z=1$

Soln. We first find the partial derivatives so

$$
\begin{equation*}
f_{x}=\frac{x}{\sqrt{x^{2}+y^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}}} . \tag{20}
\end{equation*}
$$

The surface area is given by

$$
\begin{equation*}
S A=\iint_{R} \sqrt{1+\frac{x^{2}}{x^{2}+y^{2}}+\frac{y^{2}}{x^{2}+y^{2}}} d A . \tag{21}
\end{equation*}
$$

Simplifying the integrand gives

$$
\begin{equation*}
\sqrt{1+\frac{x^{2}}{x^{2}+y^{2}}+\frac{y^{2}}{x^{2}+y^{2}}}=\sqrt{\frac{x^{2}+y^{2}}{x^{2}+y^{2}}+\frac{x^{2}+y^{2}}{x^{2}+y^{2}}}=\sqrt{2} \tag{22}
\end{equation*}
$$

So the surface area of the outside of the cone is $\sqrt{2}$ times the area of the region R which is π so the surface area (including the top) is

$$
\begin{equation*}
S A=\sqrt{2} \pi+\pi \tag{23}
\end{equation*}
$$

Example 4. Find surface area of the cone of $y=\sqrt{x^{2}+z^{2}}$ with the top of $y=1$

Soln. This is exactly the same problem as \# 3 except the cone is on its side. We certainly could solve the equation of the cone for z but instead, let's use the variables x and z. The region of integration is still a circle but in the (x, z) plane.

In general, if the surface is given by $y=g(x, z)$ our surface area formula is

$$
\begin{equation*}
S A=\iint_{R_{x z}} \sqrt{1+g_{x}^{2}+g_{z}^{2}} d A_{x z} \tag{24}
\end{equation*}
$$

where $d A_{x z}=d x d z$ or $d z d x$
Similarly, if the surface is given by $x=h(y, z)$ our surface area formula is

$$
\begin{equation*}
S A=\iint_{R_{y z}} \sqrt{1+h_{y}^{2}+h_{z}^{2}} d A_{y z} . \tag{25}
\end{equation*}
$$

where $d A_{y z}=d y d z$ or $d z d y$

