

Are Satellite Based Correction Services The "Next Utility" For Surveyors? Continued!!

"The Future is Here"

Are Satellite-Based Correction Services the "Next Utility"?

ROBERT L. GREEN, PS // 06.20.2021

GPS: The Original "Next Utility"

In the summer of 1978, I worked as a rodman/chainman for Boston Survey Consultant (now the BSC Group). My crew partnered with the engineering staff to conduct soil percolation tests for septic system design. At one point, our boss informed us he had just attended a meeting at our corporate office in Boston on the status of the GPS satellite constellation. Little was known about this technology as the first GPS satellite (NAVSTAR 1) had only been launched months earlier. He told us that within a few years you would be able to put a "magic black box" on the surface of the earth and obtain XYZ coordinates. As an 18-year-old kid, it was impossible for me to comprehend as we were in the process of locating the percolation test holes with a turn of the century K&E transit, a handheld magnifying glass to read the vernier, a Philly stadia rod for distance interpolation, and a machete for cutting line. As I reflect on this story, I realize how lucky I am to have witnessed all these measurement technology enhancements over the last four decades.

Jeff Hurn, published by Trimble in 1989.

LEARNING OBJECTIVES:

Technology Game Changers:

- Real Time Kinematic Positioning Solutions
- Real Time Networks (RTN's)
- Satellite Based
 Augmentation

Private SBAS Solutions

Precise Point Positioning (PPP):

- How does it work?
- Multiple Manufactures Solutions
- What's in it for me?

Experimentation and Testing Results

FRENTIER PRECISION

GPS the Original "NEXT UTILITY" and My Story

- First GPS Satellite Launch February 22, 1978
 - NAVSTAR 1
 - 3 more launches that year!
 - May 13th, October 7th and December 11th
- I was working for Boston Survey Consultants (Later The BSC Group) as a Rodman/Chainman/Instrument Operator-in-Training
- GPS "Hype" was trickling into the industry

Instruments I Used in My Career _"The Past Predicts the Future"

1990's

Early 1980's

Instruments I Used in My Career "The Past Predicts the Future"

FRENTIER PRECISION

PLOYEE-OWNED COMPANY

FRENTIER PRECISION

Game Changer #1 – Real Time Kinematic (RTK)

Important Dates

- December 8, 1993 GPS Initial Operational Capability (IOC) (DOD/DOT)
- April 27, 1995, GPS Full Operational Capability (FOC) (USAF SPACE CMD) April 27, 1995, GPS Full Operational Capability (FOC)

Mathematics Innovation Technology

- Dr. Benjamin Remondi
- Charlie Trimble
- Javad Ashjaee
- Specifications
 - 1 cm + 1 **ppm** RMS HZ x 2 cm +2 **ppm** RMS VT
 - 6 miles (10 KM) 1990's
 - 12 miles (20 KM) 2000's

Game Changer #2 – Real Time Networks (RTN's)

- My Introduction to RTN's (2000)
 - Grand Junction, CO
 - UHF Data Transmission from Multiple Reference Stations
 - Helped to find the body of Jennifer Blagg at County Landfill (2002)
 - Became one of the longest operational RTN's in the Country
- Internet Protocal
 - Voids the "Weak Link" of UHF Radio
 - Drastically Minimizes PPM Error
 - Localized Corrections
- Drawbacks
 - Internet Connection Required
 - RTK Bridges
 - Specific to a Geographical Area

GNSS Constellations

FRENTIER PRECISION

- Global Positioning System (GPS)
- Global Orbiting Navigation
 Satellite System (GLONASS)
- Galileo Satellite Navigation System
- BeiDou 3 (BDS)
- Quasi-Zenith Satellite System (QZSS)

Indian Regional Navigation
 Satellite System (IRNSS)

GNSS

GPS

- US Department of Defense Satellite System
 - 31 Current Operational Satellites
 - GPS Block III Satellites Continue to be Launched
 - First GPS III tracked January 13th, 2020 (SVN 74)
 - 10 GPS Block III's Developed and Manufactured by Lockheed Martin, Waterton Canyon, Littleton, CO
 - Future: GPS Block IIIF (Follow On), will include 22 SV's being developed by Lockheed Martin
 - Discontinuation of Codeless/Semi-Codeless GPS
 Access (2019 Federal Radionavigation Plan)
 - Legacy L1/L2 Receivers Plan to update
 - https://www.gps.gov/technical/codeless/

GNSS

• GPS

- L5 1176.45Mhz
 - Currently satellites broadcasting L5 = 12 IIF's + 4 Block III's
 - 3rd Carrier Observable
 - Positive impact for surveying
 - Due to wide bandwidth and comparatively longer spreading codes, the L5 signal is giving a high processing gain
 - Improved Ionospheric Modeling
 - Will enhance RTK vector lengths

FRENTIER PRECISEN

AN EMPLOYEE-OWNED COMPANY

GNSS

GPS

- High Precision Benefits
 - Ionospheric Errors
 - Reduced by Enhanced Ionospheric Modeling
 - Combining Signals from at least 2 frequency bands that are sufficiently apart from each other
 - Traditional L1 at 1575.42 and L2 at 1227.60
 - L1C at 1575.42 and L5 at 1176.45

FR MNTIER PRECISION

AN EMPLOYEE-OWNED COMPANY

LEGACY SATELLITES		MODERNIZED SATELLITES			
BLOCK IIA	BLOCK IIR	BLOCK IIR-M	BLOCK IIF	GPS III/IIIF	
0 operational	8 operational	7 operational	12 operational	4 operational	
 Coarse Acquisition (C/A) code on L1 frequency for civil users Precise P(Y) code on L1 & L2 frequencies for military users 7.5-year design lifespan Launched in 1990-1997 Last one decommissioned in 2019 	 C/A code on L1 P(Y) code on L1 & L2 On-board clock monitoring 7.5-year design lifespan Launched in 1997-2004 LEARN MORE ABOUT GPS IIR AT AF.MIL → 	 All legacy signals 2nd civil signal on L2 (L2C) <i>LEARN MORE</i> New military M code signals for enhanced jam resistance Flexible power levels for military signals 7.5-year design lifespan Launched in 2005-2009 LEARN MORE ABOUT GPS IIR-M AT AF.MIL 	 All Block IIR-M signals 3rd civil signal on L5 frequency (L5) <i>LEARN MORE</i> Advanced atomic clocks Improved accuracy, signal strength, and quality 12-year design lifespan Launched in 2010-2016 LEARN MORE ABOUT GPS IIF AT AF.MIL 	 All Block IIF signals 4th civil signal on L1 (L1C) <i>LEARN MORE</i> → Enhanced signal reliability, accuracy, and integrity No Selective Availability <i>LEARN MORE</i> → 15-year design lifespan IIIF: laser reflectors; search & rescue payload First launch in 2018 LEARN MORE ABOUT GPS III AT AF.MIL → 	

IONOSPHERE MAP/TEC

http://www.trimbleionoinfo.com/Images.svc/TEC

GPS Modernization

- Control Segment
 - Legacy Accuracy Improvement Initiative
 - Completed in 2008
 - Expanded monitor stations from 6 to 16
 - GPS Intrusion Protection Reinforcement Nov '15
 - Operational Control System (OCX)
 - Dedicated Monitor Stations
 - Improved Cyber Security

FRONTIER PRECISON

AN EMPLOYEE-OWNED COMPANY

Additional "Sky Plots"

On the Equator

75 Degrees North Latitude

Satellite Based Augmentation System FRONTIER PRECISION

AN EMPLOYEE-OWNED COMPANY

PUBLIC GLOBAL SBAS COVERAGE

PRIVATE GLOBAL SBAS SERVICES

** (PPP) Precise Point Positioning Technology

TerraStar Correction Services / Novatel

WHAT IS TRIMBLE® RTX

Trimble RTX (Real-Time eXtended) is a different type of correction technology known as Precise Point Positioning (PPP).

CO | AK | MT | ID | HI | WY | UT | OR | WA

FR®NTIER PRECISION

A true global positioning technology Multi-GNSS positioning system Symbiosis with existing RTK technology

Introduced in 2011 Evolution of Infrastructure Pivot Software Used by Agricultural, Geospatial, Construction

Updated CenterPoint RTX Performance in 2018 +/- 2cm RMS Horizontal Precision! WHAT CORRECTION SERVICES ARE AVAILABLE?

	Horizontal Accuracy (cm)	Vertical Accuracy (cm)	Initialization (mins) ⁱ Fast / Standard	
	CenterR	oint" RTX		
RMS	2 cm	5 cm	<1/<15	
95%	2.5 cm	12	<2/<20	
	FieldPoi	nt RTX™		
RMS	10 cm		all and all	
95%	20 cm	e	<1 and <15	
	ViewPo	ntRTX™		
RMS	50 cm		-1	
95%	100 cm		< 5	

FRENTIER PRECISION

High-accuracy GNSS/GPS positioning - RTK/VRS

High-accuracy GNSS/GPS positioning - xFill

High-accuracy GNSS/GPS positioning - RTX

High-accuracy GNSS/GPS positioning - RTX

RTX TRACKING NETWORK OF GNSS RECEIVERS

• Trimble receivers tracking GPS, GLN, GAL, BDS, QZS

FRENTIER PRECISION

CENTERPOINT RTX REVIEW

Satellite delivered high-accurac Global Coverage GNSS corrections

- 2 cm (RMS) (< 1 in.) Horizontal
- 5 cm (RMS) (< 2 in.) Vertical
- Convergence < 1 minute in Fast
 Regions, or < 15 minutes elsewhere
- Delivery via satellite or cellular/IP
- Available globally

RTX Fast

RTX standard

Topography, boundary work, stakeout or as-built Large Boundaries & Asset Mapping, Cadastral Mapping

NO BASE STATION, RTN/VRS OR CELL REQUIRED

<u>RTX Requirements</u>

- Good GNSS visibility
- Good view of the southern sky (where the L-band satellites are)
- RTX Compliant GNSS Receiver
- Mission Planning
- Be Careful working around Obstrucations
 - Tall Buildings, Canyons and Heavy Canopy

WHAT DATUM AND COORDINATE SYSTEM IS MY GNSS DATA IN? The correction source, along with any transformations taking place, determine the datum and coordinate system of the GNSS data

FRENTIER PRECISEN

Horizontal adjustment

Origin north	1716489.618
Origin east	3104469.462
Translation north	-2.303
Translation east	3.256
Rotation	0°00'00.0000"
Scale factor	1.0000000

ITRF VS NAD83 LOCALIZATION/CALIBRATION OR RTK TO RTX OFFSET REQUIRED

CenterPoint RTX Recent Technical Enhancements

ENHANCEMENT 1: RTX "FAST" CONUS COVERAGE

Today

Prior to May 5, 2020

Similarities!!!

RTK VS. RTX — DETERMINING COORDINATE SYSTEMS

ITRF2014 – constant frame, rotating plate

NAD83 – rotating frame, constant with plate

ITRF2014 to/from NAD83

FRENTIER PRECISION

NORTH AMERICAN AND PACIFIC PLATE VELOCITIES

DISPLACEMENT MODELS: HTDP 3.2.9

at https://frontierprecision.com/wp-content/uploads/Trimble-Def-Models.pdf

National Geodetic Survey						
NGS Home	About NGS	Data & Imagery	Tools	Surveys	Science & Education	Search
ools & So C Products eodetic Too Veb Service	ftware of Kit s	HTDP – Horiz HTDP is a utility reference frames	that allows	ne-Depende users to transfo	nt Positioning rm positional coordinates acro	ss time and between spatial
User-Contributed Software Other Products & *** HTDP should NOT be used to transform between NAD 83 realizations (2011, NSRS2 HARN, etc.). It will not give correct results. To transform between NAD 83 realizations, the NGS Coordinate Conversion and Transformation Tool (NCAT) instead. ***						ations (2011, NSRS2007, NAD 83 realizations, use Instead. ***
		Interactive Com 1. Estimate 2. Estimate 3. Transfor 4. Transfor 5. Transfor	putations (horizontal horizontal m observat m position m velocitie	(using HTDP v displacement velocities. tions to a spec s between refe s between refe	ersion 3.2.9): s between two dates. :ified reference frame and/or erence frames and/or dates. (erence frames.	date. (Note) Note)
		More Info: • View Use • Download source co • Relevant	r's Guide [d a Zip'ed (ode, the Use publicatio	pdf] and/or <mark>Re</mark> md5 43f354f18 er's Guide, Rev ns	vision Log [pdf] 7a9c6a2901687a5979ae267) a ision Log, and sample data file	archive of the HTDP Fortran-90 s
		Maps of Horizor	ntal Velocit	ies: 5' -110'	-106 	

Local displacement models

Country	Reference frame	Local displacement model
Brazil	SIRGAS2000	VEMOS2009
Denmark	EUREF-DK94	NKG-RF03
Estonia	EST97	NKG-RF03
Finland	EUREF-FIN	NKG-RF03
Sweden	SWEREF99	NKG-RF03
Norway	EUREF89	NKG-RF03
Iceland	ISN2016	ISN2016
New Zealand	NZGD2000	NZGD2000 Deformation Model
USA	NAD83(2011)	HTDP V3.2.9
Canada	NAD83(CSRS)v7	CSRS Velocity Grid V7.0

Select coordinate system System Zone Sweden/SWEREF99 \mathbf{T} 17 15 \mathbf{T} Local datum SWEREF 99 (Mol) Global reference datum Global reference epoch SWEREF99 1999.50 Displacement model NKG-RF03 2019-07-01 Use geoid model No Coordinates Use datum grid No Grid \mathbf{T} Project height 15.000m Esc Key in Store E Select coordinate system Zone System United States/State Plane 1983 \mathbf{T} Colorado North 0501 \mathbf{T} Local datum NAD 1983 (Conus) (Mol) Global reference datum Global reference epoch NAD83(2011) 2010.00 Displacement model HTDP V3.2.9 Geoid model Use geoid model GEOID18 (Conus) Fixed (g18us.ggf) 🔻 Yes Coordinates Use datum grid Grid \mathbf{T} No Project height 1620.000m Esc Key in Store

COORDINATE TRANSFORMATIONS

FR MNTIER PRECISION

AN EMPLOYEE-OWNED COMPANY

SURVEY REPORT OF RTX OBSERVATIONS

Covariance Matrix

Point	1000 RTX X	-4788902.877 RTX Y	-16450235.363 RTX Z	11985522.610 Code	CORNER CONC
	Method	RTX Type	Topo point Search class	Normal	
Antenna height	6.562 Type	Uncorrected Hz Prec	0.045 Vt Prec	0.194	
QC 1	PDOP	1.3 GDOP	1.9 HDOP	0.6 VDOP	1.1
	Base data age	7 Satellites	22 Positions used	11	
QC 2	VCV xx (m ²)	0.000291 VCV xy (m²)	0.000706 VCV xz (m²)	-0.000453	
		VCV yy (m ²)	0.002291 VCV yz (m²)	-0.001470	
			VCV zz (m²)	0.001094	
Point	1001 RTX X	-4788899.049 RTX Y	-16450222.435 RTX Z	11985541.915 Code	CORNER CONC
	Method	RTX Type	Topo point Search class	Normal	
Antenna height	6.562 Type	Uncorrected Hz Prec	0.045 Vt Prec	0.166	
QC 1	PDOP	1.3 GDOP	1.9 HDOP	0.6 VDOP	1.1
	Base data age	6 Satellites	23 Positions used	3	
QC 2	VCV xx (m ²)	0.000238 VCV xy (m²)	0.000528 VCV xz (m²)	-0.000333	
		VCV vy (m ²)	0.001687 VCV vz (m²)	-0.001054	
			VCV zz (m²)	0.000813	
Point	1002 RTX X	-4788899.257 RTX Y	-16450222.325 RTX Z	11985542.150 Code	EDGE DRIVE
	Method	RTX Type	Topo point Search class	Normal	
Antenna height	6 562 Type		0.040 Vt Prec	0 147	
QC 1	PDOP	11 GDOP	16 HDOP	0.6 VDOP	10
	Rase data are	7 Satellites	23 Dositions used	3	1.0
002	VCV vv (m ²)		0.000/17 VCV vz (m²)	-0.000.0-0	
402	VCV AA (iii)	VCV vy (m²)	0.000417 VCV x2 (m)	-0.000200	
		v C v yy (m)	VCV 72 (m ²)	0.000632	
Doint	1003 PTY Y	-4788000 402 PTY Y	-16/50222 063 PTY 7	110855/2 207 Code	EDGE DRIVE
rom	Method	-47 00500.432 NTX T	Tono noint Search class	Normal	EDOL DRIVE
Antonna haight	6 562 Tuno		0.044 Vt Broc	0.150	
	0.302 Type			0.150	10
	PDUP Data data ano	6 Satellite	22 Desitions used	2	1.0
00.3	Dase data aye		0.000.000 VCV vz. (m2)	0.000260	
4C Z	VCV XX (IIF)	0.000203 VCV Xy (IIF)	0.000429 VCV X2 (III')	-0.000208	
		VCV yy (m ²)	0.001389 VCV yZ (m²)	-0.000804	
		170000 (000 PTV V		0.000673	5005 001/15
Point	1004 RTX X	-4788901.236 RTX Y	-16450220.313 RTX Z	11985544.258 Code	EDGE DRIVE
	Method	RTX Type	Topo point Search class	Normal	
Antenna height	6.562 Type	Uncorrected Hz Prec	0.046 Vt Prec	0.153	
QC 1	PDOP	1.1 GDOP	1.6 HDOP	0.6 VDOP	1.0
	Base data age	8 Satellites	23 Positions used	3	
QC 2	VCV xx (m²)	0.000214 VCV xy (m²)	0.000445 VCV xz (m²)	-0.000277	
		VCV yy (m²)	0.001445 VCV yz (m²)	-0.000885	
			VCV zz (m²)	0.000705	

Point	1001	RTX X	-4788899.049	RTX Y	-16450222.435 RTX Z	11985541.915	Code	CORNER CONC
		Method	RTX	Туре	Topo point Search class	Normal		
Antenna height	6.562	Туре	Uncorrected	Hz Prec	0.045 Vt Prec	0.166		
QC 1		PDOP	1.3	GDOP	1.9 HDOP	0.6	VDOP	1.1
		Base data age	6	Satellites	23 Positions used	3		
QC 2		VCV xx (m²)	0.000238	VCV xy (m²)	0.000528 VCV xz (m²)	-0.000333		
				VCV yy (m²)	0.001687 VCV yz (m²)	-0.001054		
					VCV zz (m²)	0.000813		

CENTERPOINT RTX / TRIMBLE ACCESS INTERFACE

FRONTIER PRECISION

AN EMPLOYEE-OWNED COMPANY

CENTERPOINT RTX / NGS OPUS TEST

REF FRAM	IE: NAD_83(2011)	(EPOCH:2010	.0000) ITRF2	014 (EPOCH:2021.06850)
X: -	1459667.152(m)	0.010(m)	-1459668.051(m)	0.010(m)
Y: -	5014041.367(m)	0.022(m)	-5014040.002(m)	0.022(m)
Z:	3653190.260(m)	0.018(m)	3653190.091(m)	0.018(m)
LAT: 3	35 9 20.48659	0.006(m)	35 9 20.50189 0	.006(m)
E LON:	253 46 7.97628	0.006(m)	253 46 7.92714	0.006(m)
W LON:	106 13 52.02372	2 0.006(m)	106 13 52.07286	5 0.006(m)
EL HGT:	2063.060(m)	0.029(m)	2062.097(m)	0.029(m)
ORTHO H	GT: 2082.545	(m) 0.038(m) [NAVD88 (Comput	ed using GEOID18)]

TOTAL NUMBER OF BASELINES
<u>n(n-1)</u>
2
NUMBER OF INDEPENDENT
(NON-TRIVIAL) BASELINES
n-1

SESSI

P041

CTMC

л

2020 Google

TMG2

TO TMG2

n = SIMULTANEOUS GNSS POINT OCCUPATIONS

📚 Irimble.

Imagery Date: 9/12/2019 39°47'57.44" N 105°07'40.17" W elev 5415 ft eye alt 8831 ft 🔾

COSL 🖒

Google Earth

RENTIER PRECISON

AN EMPLOYEE-OWNED COMPANY

Adjusted Grid Coordinates

Point ID	Northing (US survey foot)	Northing Error (US survey foot)	Easting (US survey foot)	Easting Error (US survey foot)	Elevation (US survey foot)	Elevation Error (US survey foot)	Constraint
<u>1_NA</u>	1717096.242	0.004	3104372.662	0.004	5427.250	0.019	
<u>2</u>	1715997.043	0.004	3104540.845	0.004	5410.859	0.019	
<u>3</u>	1716204.615	0.004	3105542.951	0.004	5400.152	0.019	
<u>4</u>	1716886.171	0.004	3105755.624	0.004	5399.405	0.019	
COSL	2022933.107	?	3631331.548	?	3970.314	?	LLh
<u>CTMC</u>	1687841.271	?	3086394.057	?	6022.264	?	LLh
<u>P041</u>	1770881.433	?	3085725.381	?	5728.278	?	LLh
TMG2	1836593.954	?	3074653.207	?	5531.202	?	LLh

Error Ellipse Components

Point ID	Semi-major axis (US survey foot)	Semi-minor axis (US survey foot)	Azimuth
<u>1_NA</u>	0.004	0.004	6°
2	0.004	0.004	9°
3	0.004	0.004	7°
<u>4</u>	0.004	0.004	6°

FRENTIER PRECISION

Trimble RTX – My Career, It Would Have Been GREAT!! Property Access and Emergencies

ND | SD | MN | CO | AK | MT | ID | HI | WY | UT | OR | WA FRENTIER PRECISEDN AN EMPLOYEE-OWNED COMPANY

Trimble RTX – My Career, It Would Have Been GREAT!! CAMP PENDELTON – DEL MAR- Amphibious Assault Vehicles

FRONTIER PRECISION

FRENTIER PRECISION

Trimble RTX – My Career, It Would Have Been GREAT!!

Q

Ļ

Search

🔲 🕒 YouTube

AC360: Drugs Tunnel

THANK YOU FOR YOUR TIME AND **ATTENTION!! Bob Green**

Bob@FrontierPrecision.com 303-728-4984