

EKU Faculty Disclosure

In compliance with ACCME Guidelines, I hereby declare:

Royalties from Springer Publishers

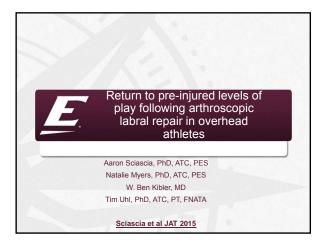
Aaron Sciascia, PhD, ATC, PES Assistant Professor: Eastern Kentucky University President: American Society of Shoulder and Elbow Therapists Adjunct Faculty: Moravian College Orthopedic Research Specialist: Lexington Clinic

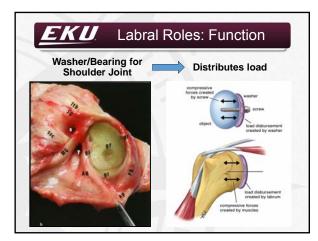
EKU Why Superior Labral Injury?

 Clinical data 2006-2013 for patients under the age of 30 y/o

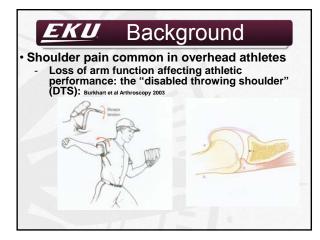
Year	Total Labral and Capsular Repairs	% Increase
2006	99	
2007	121	22%
2008	133	10%
2009	174	31%
2010	201	15%
2011	182	-9%
2012	179	-2%
2013	208	16%

EKU Question

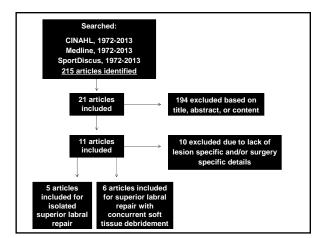

- What are you currently telling your athletes about RTP possibility following shoulder surgery?
 - What level of return?
 Pre-injured level
 - Any level
 - □ No return


EKU

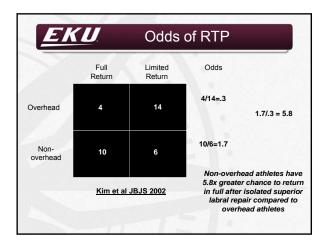
• What do we know about RTP and overhead athletes after superior labral repair?


Focus

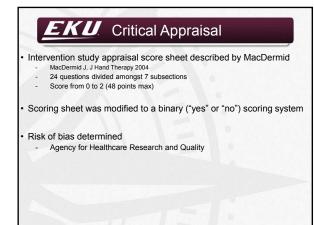
- What does the literature say?
- What has clinical experience revealed?
- What suggestions can I provide to you?



EKU Background


- · Surgery attempts to restore the functional loss
- Return to athletic function following arthroscopic SLAP/Int. Imp. repair is a concern of both the patient and clinician
- Unclear as to what extent overhead athletes
 return to pre-injury play following the procedure

Ľ	<u>EKU</u>	Search Limits
• Data	abases CINAHL, Medline, Spo	rtDiscus
• Limi	ts English, Human Studie	s 1972-2013
• Inclu	usion	
6	Overhead athletes with	cal repair of an isolated superior labral injury or a labral inju ment a mean age ≤40 years of return to pre-injury level of play
• Excl		
1		the type of labral lesion repaired lescribe surgical technique/procedure


L

EKU Results: Isolated Labral Repair

- Mean age: 24-34 years
- Average # overhead athletes: 16/study
- Follow-up: minimum 2 years (24-97 months)
- Return to play assessed at follow-up only
 22-92% full return
 - Odds ratio: Non-overhead athletes 2-6x more likely to return to full activity
- All retrospective case series
- Critical appraisal

EKU

- 10-15 points (42-62%)

Results: Labral Repair with Debridement

- Mean age: 24-36 years
- Average # overhead athletes: 29/study
- Follow-up: minimum 1 year (12-120 months)
- Return to play assessed at follow-up only
 41-84% full return
 - Odds ratio: Non-overhead athletes 2-4x more likely to return to full activity
- All retrospective case series
- Critical appraisal
 - 11-17 points (42-70%)

Study	Odds of Non-Overhead RTP
Kim et al 2002	6
Cohen et al 2006	2
Yung et al 2008	N/A
Maier et al 2013	2
Park et al 2013	5
Morgan et al 1998	N/A
lde et al 2005	4
Brockmeier et al 2009	2
Friel et al 2010	2
Park and Glousman 2011	N/A
Neri et al 2011	28

EKU Superior Labral Repair with Concurrent Debridement

Both groups had positive chance of success
 Odds for both groups all greater than 1

Non-overhead groups superior to overhead groups

• But why???

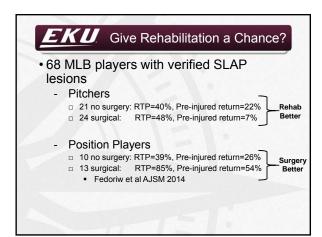
- 13 more overhead patients in concurrent procedure groups
- Superior labral injury not occurring in isolation
- Optimum method to treat labral pathology not fully understood

Study	Number of Anchors Reported	Anchor Location Described
Kim et al 2002	At least 1	Base of biceps
Cohen et al 2006	1-4	Where indicated
Yung et al 2008	2-4	2 o'clock to 10 o'clock
Maier et al 2013	1-2	Where indicated
Park et al 2013	At least 1	12 o'clock for double loaded anchor, 11 o'clock and 1 o'clock for single loaded anchor
Morgan et al 1998	No	Articular margin
Ide et al 2005	At least 2	11 o'clock to 1 o'clock
Brockmeier et al 2009	At least 1	Articular margin not beyond 10 o'clock
Friel et al 2010	At least 1	Base of biceps to 11 o'clock
Park and Glousman 2011	No	No
Neri et al 2011	Mean 2.3	On either side of biceps

EKU Limitations Inconsistent definition of overhead/throwing athlete Wide range of age and follow-up time Mean age 24-36 across all studies No determination of sample size Lack of a thorough statistical analysis Confounding variables not accounted for Rehabilitation details not reported

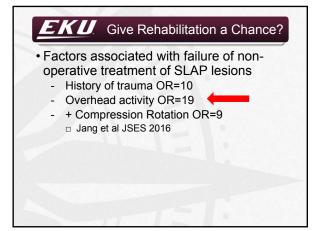
Evident biases exist

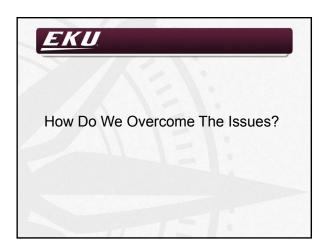

- Recall (100%)
- No prospective assessment of pre-injured ability

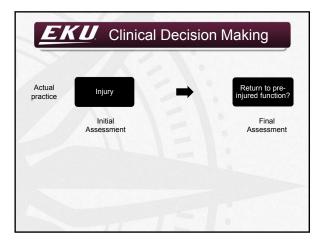

EKUConclusions• Use of odds reduces noise in literature showing
consistent trend of non-overhead athletes having
greater success with superior labral surgery• Limitations within studies and variations between
studies limits strength of findings

Labral surgery should not be abandoned
 Treat based on functional deficit and demands

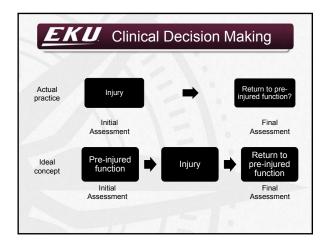
EKU Recommendations

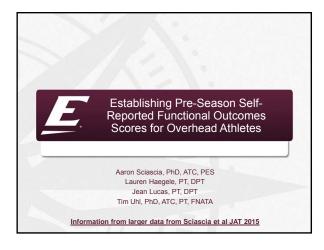

- Be comfortable stating:
 - Overhead athletes can return to activity following superior labral repair
 - We cannot guarantee return to pre-injured activity level not because the surgery is bad, but solid information doesn't exist
 - Non-overhead athletes do have better odds of returning to full activity (at least 2x better)

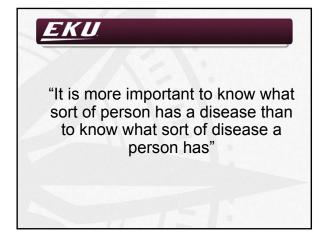


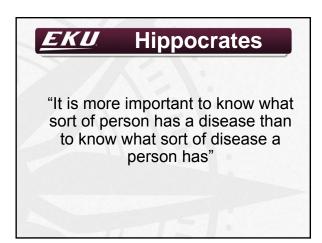


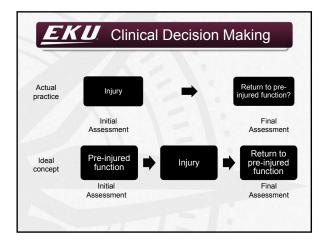
EKU Give Rehabilitation a Chance?


- 19 patients with SLAP treated nonoperatively
 - ASES pain and function improved
 - □ Pain decreased from 4.5 to 2 (p=.04)
 - □ Function increased from 31/50 to 45/50 (p<.001)
 - All athletes pre-injured return=71% -
 - Overhead athlete pre-injured return=66%
 - Edwards et al AJSM 2010








EKU Paradigm Shift?

Biopsychosocial Model

- Let the individual be the guide by appreciating individual factors that could affect outcome
 - □ Chassany et al Value Health 2006
 - □ Chen et al JSES 2007
 - Barratt Patient Educ Couns 2008
 - □ Michener and Snyder Clin Sports Med 2008
 - Deutscher et al APMR 2009

EKU Background

- The goal of rehabilitation is to return the athlete to pre-injured levels; however:
 Prospective pre-injured levels of function are not routinely documented and thus not utilized utilized
- Outcomes collection begins at a time of dysfunction

Never feel loose during games or practice	Normal warm-up
How much pain do you experience in y	our shoulder or elbow?
Pain at rest	No pain with competition
How much weakness and/or fatigue (i.e elbow?	. loss of strength) do you experience in your shoulder or
Weakness or fatigue preventing any competition	No weakness, normal competition fatigue
How unstable does your shoulder or elb	ow feel during competition?
"Popping out" routinely	No instability
How much have arm problems affected	

How much have you had to change your t	hrowing motion, serve, stroke, etc. due to your arm?
Completely changed,	No change in
don't perform motion anymore	motion
How much has your velocity and/or power	r suffered due to your arm?
Lost all power.	No change in
became finesse or	velocity/power
distance athlete	
What limitation do you have in endurance	in competition due to your arm?
Significant limitation	No endurance limitation
(became relief pitcher,	in competition
switched to short races	
for example)	
How much has your control (of pitches, s	rrves, strokes, etc.) suffered due to your arm?
Unpredictable control on	No loss of control
all pitches, serves,	
strokes, etc.	
How much do you feel your arm affects y	our current level of competition in your sport (i.e. is your arm holding you
back from being at your full potential)?	
Cannot compete,	Desired level
Had to switch sports	of competition

EKU Background

· Pre-season assessment of arm capability has been conducted in professional baseball players

- Asymptomatic players: ≥90/100 □ Kraeutler et al JSES 2013 □ Franz et al AJSM 2013
 - No history of injury: 97/100
 - History of injury: 84-87 □ Franz et al AJSM 2013

-

_

□ Fronek et al JSES 2014

EKU Background

Assessment of arm capability in swimmers during fall practice

- -Not currently injured: 84/100
- Currently injured: 54/100 --
- Years competing
- □ ≤10 years: 86
- □ ≥11 years: 72 Wymore and Fronek AJSM 2015

EKU Questions

- · What are the average KJOC values of subjective functional scores at the beginning of a competitive season for collegiate overhead athletes?
- · Is there a difference in subjective scores between athletes with and without a history of injury?
- · Is there a difference either within or between sexes?

EKU **Methods** • Pre-participation physical examinations at physician offices and athletic facilities

- Athletes 17-32 years old
 - Baseline measure all overhead athletes -

Demographics, KJOC

- KJOC scale 0-100 (low to high function) □ Alberta et al AJSM 2010

EKU Statistical Analysis

Summary statistics

- Demographic variables
- Overall score medians
- Non-parametric statistics
- Differences between history and no history of injury within and between sexes
 - Mann-Whitney U
- Significance set at p<.05
 - Removed athletes with elbow injury

EKU Results • 168 overhead athletes • History of injury completed surveys No injury ever: 114 1 Age: 19±2 (94 F, 74 M) 5 colleges (68%) Injury ever: 54 (32%) 5 sports o Baseball (51) o 25 of 54 injured in past year Volleyball (45) Swimming (35) Softball (27) Overall KJOC Score: Tennis (10) Years playing: 11±4 97/100

		Results: Shoulder Injury			
	Ν	Mean (SD)	95% CI	Median	P-Valu
Injury	54	78 (21)	72-83	81	P<.00
No Injury	114	96 (7)	95-98	98	

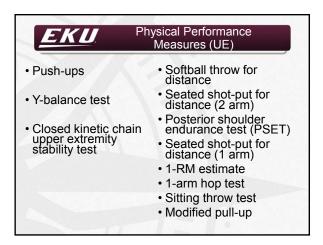
EKU.		Results: Sex			
	N	Mean (SD)	95% CI	Median	P-Value
Female					
Shoulder Injury	25	74 (22)	65-84	80	P<.001
No Injury	68	97 (4)	95-98	98	

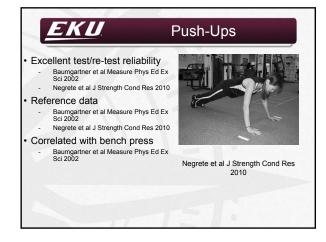
<u>EKU</u>		Results: Sex			
	N	Mean (SD)	95% CI	Median	P-Value
Female					
Shoulder Injury	25	74 (22)	65-84	80	P<.001
No Injury	68	97 (4)	95-98	98	
Male					
Shoulder Injury	29	81 (19)	73-88	88	P<.001
No Injury	45	96 (9)	93-99	99	

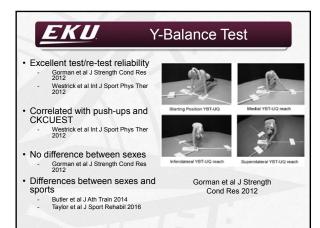
	N	Mean (SD)	95% CI	Median	P-Valu
Injury ≤1 year	25	68 (23)	58-77	70	P<.00
Injury ever	29	86 (14)	81-92	92	

EKU Key Points

- · History/current injury affects perceived physical capability in overhead athletes
 - Franz et al Am J Sports Med 2013
 - Fronek et al J Shoulder Elbow Surg 2014 -Wymore and Fronek Am J Sports Med 2015
- · Reported in other joints as well Cameron et al Am J Sports Med 2013
 - Sciascia et al J Ath Train 2015
- · Females perceived lower physical capability than males
 - Ageberg et al Am J Sports Med 2010 Naylor and McBeath Percep Psycho 2008 John and Ebbeck Sex Roles 2008

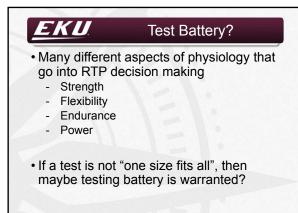

 - Bekker et al Pers Ind Diff 2002

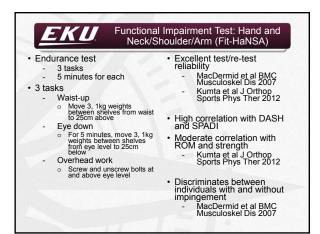

EKU Conclusions

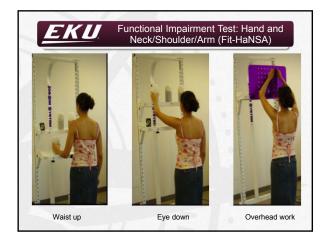

- Medically qualified overhead athletes with previous injury have perceived lower physical capability prior to a competitive season.
- This self-assessment of joint specific capability may supplement pre-season physicals and indicate a need for further monitoring or care for individual athletes.

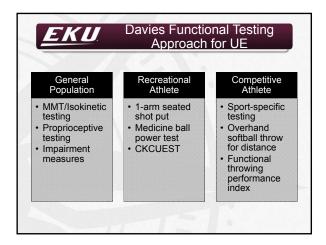
EKU What About Functional Testing?

- The literature is limited in identifying a "best" test for the upper extremity
- Suggestion to change terminology to Physical Performance Measure
 Reiman and Manske J Man Manip Ther 2011
- Let's look at what is out there and what information we have

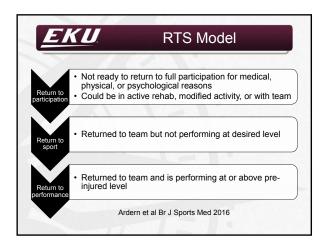




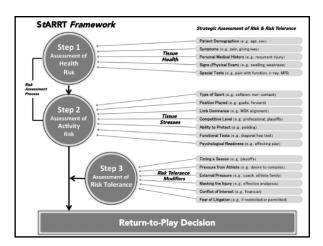




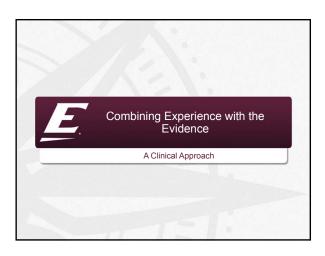
<u>EKU</u>	Discrepancy
CKCUEST discriminates between individuals with and without impingement Tucci et al BMC Musculoskel Dis 2014	 24 year age difference between impingement group and healthy group
 No difference in CKCUEST performance between individuals with and without shoulder symptoms Sciascia and Uhl Int J Sport Phys Ther 2015 	Heterogeneous diagnoses



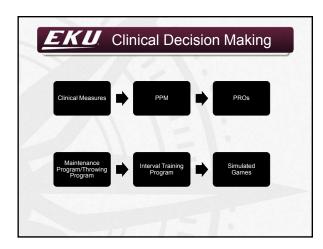
• Still no "best" test

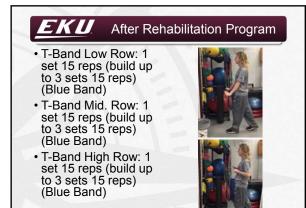

- Traditional strength tests (MMT, lifting tasks) may not be best choice for RTP decisions
- Understand the RTS model
 Treatment doesn't stop after discharge

• Strategic Assessment of Risk and Risk


- Tolerance
 - Shrier et al Scand J Med Sci Sport 2015
 - Shrier Br J Sports Med 2017
- If the risk assessment is greater than the risk tolerance, the decision should not be to allow RTP

<u>EKU</u>	STARRT Steps
 Strength, 	ue Health for clinical measures flexibility, special testing, etc. ed by clinician
readiness □ Performe • Step 3: Risk - Accounts	for sport details, physical ice testing, and psychological


	tep 3 Example: I-Grade AC Injury
 Middle Linebacker ↑ risk of contact ↑ risk of re-injury No RTP 	Let's add a caveat Playoffs Chance at higher draft position
• Kicker	
 ↓ risk of contact ↓ risk of re-injury RTP OK 	



EKU	Clinical	Decisio	n Making
Clinical Measure		PPM	PROs
2/			

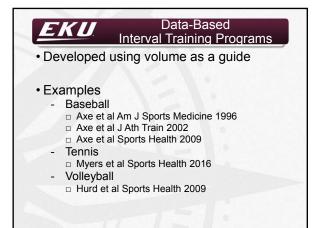
EKU **Overhead Athletes** · Standard benchmarks to begin throwing or hitting programs Minimum 100° external rotation at 90° abduction Minimum 95° external rotation with pronation at 90° abduction -Dominant arm internal rotation ≤10° compared to non-dominant arm No observable scapular dyskinesis -No observable scapular dyskinesis No observable single leg stability deficits Performance of CKCUEST at least minimum # of touches for sex 20-22 males 18-20 for females KJOC --

- □ 80-85



EKU After Rehabilitation Program

- T-Band I/R Negatives: 1 set 15 reps (build up to 3 sets 15 reps) (Blue Band)
- T-Band E/R Negatives: 1 set 15 reps (build up to 3 sets 15 reps) (Blue Band)



lap)

EK	Baseball/Softball
• Retu	rn to Throwing Program
- 1	Veek 1: 20 feet, 20 throws
- 1	Veek 2: 30 feet, 20 throws
- 1	Veek 3: 40 feet, 20 throws
- 1	Veek 4: 50 feet, 20 throws
- 1	Veek 5: 60 feet, 20 throws
	Veek 6: 70 feet, 20 throws
- 1	Veek 7: 90 feet, 20 throws
ſ	Warm-up should be at an intensity where you are only playing catch (no hard throwing) 15-3 throws
[Cool down should be the same intensity as warm-up but no more than 15 throws

