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Abstract

With the growing popularity of short-form video shar-
ing platforms such as Instagram and Vine, there has been
an increasing need for techniques that automatically ex-
tract highlights from video. Whereas prior works have ap-
proached this problem with heuristic rules or supervised
learning, we present an unsupervised learning approach
that takes advantage of the abundance of user-edited videos
on social media websites such as YouTube. Based on the
idea that the most significant sub-events within a video class
are commonly present among edited videos while less inter-
esting ones appear less frequently, we identify the signifi-
cant sub-events via a robust recurrent auto-encoder trained
on a collection of user-edited videos queried for each par-
ticular class of interest. The auto-encoder is trained using
a proposed shrinking exponential loss function that makes
it robust to noise in the web-crawled training data, and
is configured with bidirectional long short term memory
(LSTM) [5] cells to better model the temporal structure of
highlight segments. Different from supervised techniques,
our method can infer highlights using only a set of down-
loaded edited videos, without also needing their pre-edited
counterparts which are rarely available online. Extensive
experiments indicate the promise of our proposed solution
in this challenging unsupervised setting.

1. Introduction

Short-form video has become a popular way for users
to share their experiences on social media platforms such
as YouTube and Facebook. With a well-crafted video, the
user’s experience can be quickly conveyed without testing
the attention span of viewers. However, manually produc-
ing a highlight clip from a lengthy video, such as those cap-
tured with wearable devices like GoPro cameras, can be
a time-consuming and laborious task, especially on small

∗This work was done when Huan Yang was an intern at Microsoft Re-
search

3
D

 C
on

vo
lu

ti
on

 D
e

e
p

 F
ea

tu
re

User Edited Video

Raw Video

Unsupervised
Robust Recurrent 

Auto-encoder

Reconstruction Error

Highlight Outlier

T
ra

in
in

g 
P

ip
el

in
e

T
es

ti
n

g 
P

ip
el

in
e

small large

Figure 1. Overall system pipeline

form-factor display devices such as smart phones. An auto-
mated tool for generating highlight clips is thus immensely
desirable such that the user need only to deal with content
capture.

Previous techniques address this problem either by lim-
iting the scope to a particular context or through the use
of supervised learning. The first type of method gener-
ally employs heuristic rules designed for a certain type of
video, such as for broadcast sports [20, 18, 25, 31]. Though
effective for their targeted settings, these techniques may
not generalize well to generic, unstructured videos. In con-
trast, methods based on supervised learning rely on pairs of
edited and raw source videos [24] to infer highlight actions.
Collecting such video pairs, however, can be a challenge.
Although there exists a considerable amount of video data
on the web, users typically do not upload both the raw and
edited versions of a video.

In this work, we propose an unsupervised approach for



generating highlight clips, using only edited videos. On the
web, there are seemingly countless short-form videos that
have been edited by thousands of users to contain mainly
highlight sub-events. Our method capitalizes on this wealth
of data by web crawling for videos in a given domain (e.g.,
“surfing”), and modeling the highlights from them by infer-
ring their common features. In this way, their raw counter-
parts are not needed, making it easy to scale up and collect
more training data. Additionally, since the videos have been
edited by a large community of users, the risk of building
a biased highlight model is greatly reduced in comparison
to using a training set constructed from a small number of
users.

There exist significant challenges with this approach:
(1) Although most people have a common notion of what
the highlights should be in a certain video domain such
as “surfing”, there nevertheless may exist subjective dif-
ferences among users (e.g., whether entering the water is
highlight-worthy). (2) A query on a given keyword, such
as “GoPro surfing”, may return some noisy results that are
not relevant to the targeted domain. (3) No information
other than the queried videos themselves are available to
be leveraged. Unlike in previous supervised learning ap-
proaches [24, 19, 4, 2], there are no unedited counterpart
videos that can be used to identify what is and is not impor-
tant to keep in a highlight clip.

To address these issues, we propose to identify and
model highlights as the most common sub-events among
the queried videos and remove uninteresting or idiosyn-
cratic snippet selections that occur relatively infrequently.
Our method accomplishes this via an auto-encoding recur-
sive neural network (RNN) [28] that is trained from posi-
tive examples to reconstruct highlight input instances accu-
rately while non-highlights are not. Intuitively, since high-
lights are assumed to occur much more frequently among
the queried videos, they will have clustered distributions in
the feature space while non-highlights occur as outliers.

We formulate the auto-encoder with two main features.
Since training data crawled from the web is generally noisy
(containing some amount of negative examples), we pro-
pose a novel shrinking exponential loss function that makes
the auto-encoder training robust to noisy data. With the
shrinking exponential loss, outliers are gradually identified
in the training data and their influence in the auto-encoder
training is progressively reduced. The other main feature
accounts for the temporal structure of video highlights (e.g.,
standing up on the surfboard, riding the wave, and then
falling into the ocean). To take advantage of this contex-
tual dependency, we construct the auto-encoder with bidi-
rectional long short term memory (LSTM) [5] cells, which
have been shown in areas such as speech recognition [3] to
effectively model long-range context in time-series data.

The main technical contributions of this work are the for-

mulation of video highlight detection as an unsupervised
learning problem that takes advantage of the abundance of
short-form video on the web, and modeling video highlight
structure through a robust recurrent auto-encoder with a
shrinking exponential loss function and bidirectional LSTM
cells. With the proposed unsupervised technique, we show
promising results that approach the quality of supervised
learning but without the burden of collecting pre- and post-
edit video pairs.

2. Related Work
As defined in [24], a video highlight is a moment of

major or special interest in a video. Generating highlight
clips is thus different from the task of video summariza-
tion, which instead accounts for factors such as “diversity”
and “representativeness” to convey a brief but comprehen-
sive synopsis of a video. Despite this different goal, we re-
view methods for video summarization in addition to video
highlight detection because of similarities between the two
topics.

Video Highlight Detection Traditionally, video highlight
detection has primarily been focused on broadcast sports
videos [20, 18, 25, 31]. These techniques usually employ
features that are specific to a given sport and the struc-
ture of sports broadcasts, and are therefore hard to gen-
eralize to the more generic videos of ordinary users. Re-
cently, the scope of highlight detection was expanded to a
broad range of videos in [24], where a latent SVM model
was proposed to rank highlight segments ahead of less in-
teresting parts through supervised learning. Good results
have been demonstrated with this approach on action videos
such as those captured by GoPro cameras. However, the
supervised learning requires each training example to be a
video pair composed of an edited video and its correspond-
ing raw source video. Such training pairs are difficult to
collect in large quantities, since users tend to upload/share
only the edited versions, as the source videos generally are
too long for general consumption. This makes large scale
training mostly impractical for this approach. In addition, it
employs a computationally-intensive feature representation,
namely dense trajectories [29], which involves computing
dense optical flows and extracting low-level features such
as HoG, HoF and MBH prior to Fisher vector encoding. By
contrast, our method performs unsupervised learning from
edited videos only, and utilizes generic deep learning fea-
tures which are more computationally efficient and more
accurate in characterizing both appearance and motion.

Video Summarization A comprehensive review of video
summarization can be found in [27]. Among recent meth-
ods, several are guided by saliency-based properties such



as attention [13], interestingness [17, 7, 4], and important
people and objects [9]. However, the most salient frames
in a video do not necessarily correspond to its highlights,
which depend heavily on the video domain. Others aim
to provide a comprehensive synopsis based on connectivity
of sub-events [12] or diversity of video segments [32, 10].
While this helps to provide a complete overview of a video,
a highlight clip instead is focused on only certain segments
that are specific to the video domain, while discarding the
rest.

Video summarization techniques have also employed
supervised learning. Methods along this direction use
category-specific classifiers for importance scoring [19] or
learn how to select informative and diverse video subsets
from human-created summaries [2]. These supervised tech-
niques have led to state-of-the-art video summarization re-
sults, but are not suitable for highlight clip generation. In
addition, it is generally feasible to have only a limited num-
ber of users to annotate training videos, which may lead to
a biased summarization model. Our method instead learns
from videos pooled from many users on the web to obtain
a highlight model less influenced by the particular prefer-
ences of certain people.

Novelty Detection The one-class learning of our recur-
rent auto-encoder is related to works on novelty detec-
tion, which aim to identify outliers from an observed class.
In [15], novelty detection is performed for audio features
using an auto-encoder with LSTM. Our concurrent work
deals instead with RGB video data, for which meaning-
ful features are more challenging to extract. We address
this through temporal video segmentation, extraction of
high-level spatial-temporal features for each segment, and
then temporal pooling, before feeding to the auto-encoder.
Moreover, we introduce a novel shrinking loss function to
address the noisy training data in our context.

There exist other unsupervised novelty detection tech-
niques that could potentially be applied to our problem,
such as the unsupervised one-class learning in [11] or
outlier-robust PCA [30]. In our work, we chose the auto-
encoder as our basic unsupervised framework because its
properties are well-suited to our application, such as scal-
ability, easy parallelization, and seamless integration with
LSTM cells. How to customize other novelty detection
techniques for video highlight detection is a potential di-
rection for future investigation.

3. Auto-Encoder-Based Removal of Outliers
An auto-encoder is an artificial neural network [21] that

is trained to reconstruct its own input. A common use of
auto-encoders is for dimensionality reduction, where if the
hidden layers have fewer nodes than the input/output layers,
then the activations of the final hidden layer can be taken
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Figure 2. Conceptual illustration of our overall pipeline and ar-
chitecture. (a) Each video is first segmented into multiple short
snippets. (b) Then we apply a pre-trained 3D convolution neural
network model [26] to extract spatial-temporal features. (c) This
is followed by a temporal pooling scheme that respects the local
ordering structure within each snippet. (d) The robust recurrent
auto-encoder with the proposed companion loss is then employed
to capture the long range contextual structure.

as a compressed representation of the original signal. An
auto-encoder operates by taking an input vector x ∈ [0, 1]d

and first mapping it to a hidden layer h ∈ [0, 1]d
′

through a
deterministic function fθ(x) = s(Wx + b), parameterized
by θ = {W, b} where W is a d′ × d weight matrix, b is a
bias vector, and s is the activation function, such as a sig-
moid or rectified linear unit (ReLU). This hidden layer is
then mapped to an output layer y ∈ [0, 1]d with the same
number of nodes as the input layer through another func-
tion gθ′(x) = s(W ′x + b′), with s being a linear function
at this layer. Thus, y = gθ′(fθ(x)). Backpropagation with
stochastic gradient descent (SGD) is employed to optimize
the parameters θ and θ′ via the following loss function

(θ∗, θ′∗) = arg min
θ,θ′

1

n

n∑
i=1

L(xi, yi) (1)

= arg min
θ,θ′

1

n

n∑
i=1

L(xi, gθ′(fθ(x
i))), (2)

where L is generally defined as the squared error L(x, y) =
‖x − y‖2 and each xi is a training sample. When d′ < d,
the auto-encoder acts as a compression neural network that
works surprisingly well for single-class document classifi-
cation [14] and novelty detection [6]. The key idea is that
inlier (or positive) instances are expected to be faithfully re-
constructed by the auto-encoder, while outliers (or negative)
instances are not. So one can classify an unseen instance
by checking its reconstruction error from the auto-encoder.
Our work is partially inspired by the applications of auto-
encoders for novelty detection, and we present two signifi-
cant modifications to tailor them for our highlight detection
problem.



4. Our Approach
In this section, we introduce a new domain-specific

video highlight system. Our core idea is to leverage the
wealth of crowd-sourced video data from the web and auto-
matically learn a parametric highlight detection model. Be-
fore describing the technical details, we first introduce the
overall system pipeline, illustrated in Fig. 1.

4.1. Overview

Acquisition of Training Data: Our system starts with a
simple video crawling step. Given the keyword for a spe-
cific domain, such as “GoPro Surfing”, our system auto-
matically retrieves a large number of videos from YouTube
with this keyword. We restrict this search to only short-form
videos (i.e., videos less than four minutes long), since such
videos from social media are likely to have been edited by
the user. With this approach, we can easily build a large-
scale training set edited by many different people. Since
our system learns what is a highlight based on common-
alities among different videos, having a diverse user pool
helps to avoid biases in this inference. Let us denote the
training video set as S = {v1, v2, ..., vN}. Our system then
automatically models the highlights in S through the use of
a proposed auto-encoder.

Temporal Segmentation: A highlight can be defined as a
motion or moment of interest with respect to the video do-
main context. So we first segment each video vi, i ∈ [1, N ]
into multiple non-uniform snippets using an existing tem-
poral segmentation algorithm [19]. We added a constraint
to the segmentation algorithm to ensure that the number of
frames within each snippet lies in the range of [48, 96]. The
segmented snippets serve as the basic units for feature ex-
traction and subsequent learning and inference (Fig. 2(a)).
After segmentation, a highlight sequence in the edited video
might correspond to one or multiple consecutive snippets.
At runtime, our system outputs the highlight confidence
score for each snippet within the input video.

Feature Representation: Recent work in deep learning
has revealed that features extracted at higher layers of
a convolutional neural network are generic features that
have good transfer learning capabilities across different do-
mains [1, 33, 8, 23, 26]. An advantage of using deep learn-
ing features is that there exist accurate, large-scale datasets
such as Places [33] and One-million Sports [8] from which
they can be extracted. In addition, GPU-based extraction
of such features is much faster than that for the traditional
bag-of-words and Fisher vector models. For example, C3D
features [26] are 50× faster to extract than dense trajecto-
ries [29]. We therefore extract C3D features, by taking sets
of 16 input frames, applying 3D convolutional filters, and
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Figure 3. Unlike the squared loss used in standard auto-encoders,
we propose a more general exponential loss L = eλ with its expo-
nential parameter λ shrinking during the course of training. The
horizontal axis e represents the reconstruction error, while the ver-
tical axis L signifies the loss.

extracting the responses at layer “FC6” as suggested in [26]
(Fig. 2(b)). This is followed by a temporal mean pooling
scheme to maintain the local ordering structure within a
snippet (Fig. 2(c)). Then the pooling result serves as the
final input feature vector to be fed into the auto-encoder
(Fig. 2(d)).

Unsupervised Learning: After building the representa-
tion for each snippet, we learn a discriminative model for
highlight detection using a novel robust recurrent auto-
encoder. It is assumed that the collected training set S for
each domain contains coherence in the highlights so that
they can be distinguished from the remaining parts by re-
construction error. We note that this cannot be treated as
a multiple instance learning problem. Since a video does
not necessarily contain at least one highlight snippet, such
as when the video is actually unrelated to the keyword, the
bag and instance relationship is hard to define.

4.2. Robust Auto-encoder Via Shrinking Exponen-
tial Loss

In training an auto-encoder, it is assumed that the train-
ing data consists only of positive instances, which the auto-
encoder learns to replicate as output. However, since we
obtain our training data through web crawling, we cannot
guarantee that the data is free of negative instances. To train
an auto-encoder that is robust to such noise, we propose a
shrinking exponential loss function that helps to reduce the
influence of negative examples. This function is defined by

L(x, y) = (‖ x− y ‖22)λ (3)
λ = f(epo), (4)

where λ is a function f of the current epoch number epo,
andL is equivalent to the standard squared loss when λ = 1.



With backpropagation for network training, an example that
has a large loss gradient will contribute more to the training
than other examples whose corresponding loss gradient is
small. Since network parameters are randomly initialized,
all the examples will generally have a large loss at the be-
ginning. So to expedite convergence in the early stages of
training, we utilize a relatively large value of λ, which mag-
nifies the loss gradients. As the positive examples share
commonalities and are assumed to be more clustered rela-
tive to the negative examples, the network parameters will
start to converge in a manner such that the positive exam-
ples become more accurately reconstructed. At the same
time, it is desirable to shrink the exponent λ in order to de-
crease the influence of negative examples, which on average
have larger loss gradients because of their more dispersive
nature.

To accomplish this we define f to be monotonically de-
creasing with respect to epo as shown in Figure 3, with val-
ues greater than 1 in early stages to promote convergence,
and shrinking to less than 1 in later stages to reduce the
impact of outliers with higher reconstruction error. In our
work, we empirically define f such that λ varies linearly in
the range of [e, s], with e ∈ (0, 1] and s ≥ 1, giving

f(epo) = s− epo ∗ (s− e)
Γ

, (5)

where Γ is the total number of training epochs. As demon-
strated later in our experiments, this formulation of our
shrinking exponential loss provides greater robustness to
negative examples than the standard squared loss for which
λ is fixed to 1.

4.3. Recurrent Auto-Encoder with LSTM Cells

Each highlight snippet has a certain degree of depen-
dence on its preceding and even subsequent frames. Taking
surfing as an example, a surfer must first stand up on the
board before riding a wave. The “stand up” action thus pro-
vides contextual information that can help to discriminate
subsequent surfing highlights. In this work, we take advan-
tage of such temporal dependencies through the use of long
short term memory cells.

Given an input sequence x = (x1, x2, ..., xT ), xt ∈
Rd, t ∈ [1, T ], a recurrent neural network (RNN) designed
as an auto-encoder needs to first compute a hidden vector
sequence h = (h1, h2, ..., hT ), ht ∈ Rd

′
, d′ < d such that it

outputs a reconstructed sequence y = (y1, y2, ..., yT ) where
yt ≈ xt. This can be solved through iterations of the fol-
lowing equations:

ht = H(Wihxt +Whhht−1 + bh) (6)
yt = Whoht + bo (7)

where Wih and Whh denote the input-hidden and hidden-
hidden weighting matrices, and bh and bo represent bias

Ct

it ot

ft Forget Gate

Output GateInput Gate

Cell

ht

xt

xt

xt xt

Figure 4. Long short term memory cell (regenerated from [3]).

vectors. H is the hidden layer activation function, usually
chosen as an element-wise sigmoid.

For time-series data, it has been found that LSTM
cells [5] are more effective at finding and modeling long-
range context along a sequence, as shown in recent works
on speech recognition [3] and human action recogni-
tion [16]. Figure 4 shows a typical structure of a LSTM
cell, which operates by learning gate functions that deter-
mine whether an input is significant enough to remember,
whether it should be forgotten, and when it should be sent
to output. By storing information over different time ranges
in this manner, a LSTM-RNN is better able to classify time-
series data than a standard RNN. Inspired by these works,
we propose to integrate LSTM cells as the hidden nodes in
the auto-encoder network. With LSTM cells, H is then de-
fined by the following composite functions:

ct = ftct−1 + it tanh(Wxcxt +Whcht−1 + bc) (8)
it = σ(Wxixt +Whiht−1 +Wcict−1 + bi) (9)
ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf ) (10)
ot = σ(Wxoxt +Whoht−1 +Wcoct + bo) (11)
ht = ot tanh(ct) (12)

where σ is the logistic sigmoid function, and i, f, o are re-
spectively the input gate, forget gate and output gate, which
take scalar values between 0 and 1. c denotes the cell activa-
tion vectors which have the same size as the hidden vector
h. The terms in the W matrices represent the connections,
for example, with Wxi denoting the input-input gate matrix
and Whf representing the hidden-forget gate matrix.

In practice, we use bidirectional LSTM cells to model
both forward and backward dependencies. For further de-
tails on LSTM, please refer to [5] and [3].

5. Experiments
5.1. Datasets

Edited Videos for Training Set As mentioned in
Sec. 4.1, our system can automatically harvest domain-
specific datasets from the web using keywords and other



# of train
videos

# of test
videos

Coverage of
train set

H-ratio of
train set

freeride 912 27 0.63 0.33
parkour 781 29 0.83 0.32
skating 940 34 0.67 0.26
skiing 945 50 0.83 0.32

skydiving 762 30 0.83 0.38
surfing 928 52 0.80 0.31
swimming 1015 29 0.73 0.25

Table 1. Statistical information on our dataset

search conditions. Unlike previous data crawling systems
such as in [24], ours need only obtain short-form videos
edited by users, and not their corresponding raw versions.
The editing operations may have been applied either by
post-processing or through selective capture. For evaluat-
ing the performance of our approach, we have crawled more
than 6500 short-form videos totaling about 13800 minutes
from YouTube1. The search terms include freeride, parkour,
skating, skiing, skydiving, surfing and swimming. Temporal
segmentation of the videos yields 442075 snippets. Com-
pared with the training set used in [24], ours is more than
10× longer, and can easily be expanded further.

To obtain a better sense of how this set correlates with the
underlying highlights, we present two quantitative measure-
ments, Coverage and H-ratio. Coverage refers to the per-
centage of videos that contain at least one highlight snippet
(the basic unit of segmentation), while H-ratio is the per-
centage of highlight snippets among all the snippets within
the set. We calculate these measures from a randomly se-
lected subset of 30 videos from each domain with manual
highlight annotations. The statistics of our dataset in Ta-
ble 1 show the Coverage value to be about 70% and the
H-ratio about 30% in each domain, indicating that users in-
deed tend to share edited videos which have a significant
amount of highlight content.

Raw Videos for Testing Set For each domain, we also
manually collected about 30 raw videos (see third column of
Table 1) which do not correspond to the training videos, and
asked six people to annotate the highlights for each video.
A snippet is considered to be a highlight only if they were
labeled as such by at least four of the people. Annotations
were collected by simply having the users mark each snip-
pet as highlight or not. The total length of the testing videos
is about 700 minutes, which is 2.5x longer than the testing
data used by [24].

1We use the tool “youtube-dl” in http://rg3.github.io/youtube-dl/ to
crawl for videos using the domain name and with a search condition of
less than four minutes.

Places CNN [4] C3D [26]
freeride 0.241 0.302
parkour 0.323 0.425
skating 0.310 0.304
skiing 0.462 0.388

skydriving 0.337 0.433
surfing 0.501 0.539
swimming 0.350 0.320

Overall mAP 0.361 0.387
Table 2. Comparison of mean average precision (mAP) between
2D and 3D CNN features with a standard auto-encoder. Both types
of features are 4096-D vectors. The Places CNN features were
temporally pooled by dividing each snippet into two uniform sub-
snippets and performing mean pooling on each, while the C3D
features were simply mean pooled within each whole snippet.

5.2. Implementation & Evaluation Details

Our system was implemented in C++ and runs on a
workstation with a 3.1GHz dual-core CPU and an Nvidia
Tesla K40 graphics card. For all the training and testing
videos, we first segment them into multiple snippets using
the method described in Sec. 4.1. For the standard auto-
encoder, we treat each snippet as one example, while for
the bidirectional recurrent auto-encoder with LSTM cells,
we treat the nine-snippet sequence centered on the current
snippet as one example. We found that increasing the se-
quence length has little effect on the performance. For all
the experiments conducted in this paper, we use basic auto-
encoders with only one hidden layer and linear activation
functions. The number of hidden nodes was chosen to be
half that of the input layer. Raw features are extracted from
the “FC6” layer of the C3D [26] network prior to PCA di-
mensionality reduction, which maintains 90% of the total
energy. We then apply simple mean pooling within each
snippet, which provides performance for C3D similar to that
of segmented temporal pooling. The performance benefits
of employing the 3D spatial-temporal C3D features rather
than the 2D single-frame features of Places CNN is shown
in Table 2, where the results are obtained using standard
auto-encoders trained on each type of feature without ap-
plying PCA.

Our results can be reproduced through the following net-
work training parameters which were set without careful
tweaking: learning rate of 0.01, weight decay of 0.0005,
and momentum of 0.9. We set the maximum epoch number
(Γ) to 100, and let λ shrink from 2 to 0.25.

For evaluation, we use the same metric as in [24]. For
each video, we sort the snippets in ascending order based
on their corresponding reconstruction errors. We then com-
pute the hit rate of the top K snippets with respect to their
ground-truth. Finally this number is averaged across the en-
tire testing set to obtain the mean average precision (mAP).



s e
mAP

freeride skiing skydiving

0.5 0.25 0.260 0.429 0.330
0.5 0.277 0.443 0.356

1
0.25 0.278 0.447 0.355
0.5 0.274 0.423 0.361
1 0.264 0.423 0.336

2

0.25 0.274 0.437 0.362
0.5 0.286 0.476 0.373
1 0.289 0.476 0.360
2 0.283 0.453 0.366

Table 3. Results with different shrinking exponential parameters.
λ shrinks linearly from s to e. Due to limited space, we only show
results for three domain categories.

5.3. Results and Discussion

We compare our robust recurrent auto-encoder (RRAE)
to other unsupervised alternatives and to the supervised
learning technique of [24]. Before that, we examine the
effect of different parameters for the shrinking exponential
loss.

5.3.1 Effect of Shrinking Exponential Loss

As discussed in Sec. 4.2, using a shrinking exponential loss
during training helps to reduce the influence of outliers
compared with the standard fixed loss. This is validated
in Table 4 by comparing the standard auto-encoder (AE)
with its robust version based on the new shrinking exponen-
tial loss (robust AE). Intuitively, by gradually changing the
shape of loss functions through shrinking λ, the gradients
of non-highlight snippets become relatively small so that
their influence on network training is gradually reduced. As
shown in Table 3, shrinking λ consistently matches or sur-
passes s = e = 1 (the standard fixed squared loss). We also
observed in this study that shrinking to small values (e.g.,
λ = 0.125) may be unfavorable in some cases as this ends
up ignoring too many examples, including inliers. Although
carefully tweaking the shrinking range can improve results,
we found that going from λ > 1 to λ < 1 generally works
well for the domain categories we examined. Nevertheless,
design of a more optimal shrinking scheme would be an in-
teresting direction for future work.

5.3.2 Unsupervised Learning Comparisons

There exist other unsupervised learning techniques that
could be applied to this problem. In addition to the stan-
dard auto-encoder (AE), two frequently used methods for
anomaly detection and outlier removal are Principal Com-
ponents Analysis (PCA) and One-class Support Vector Ma-
chines (OCSVM) [22]. For PCA, we project the original
d dimensional input vector into a d′ dimensional subspace,

with d′ < d as in the auto-encoder. Then snippets with
small PCA reconstruction error are taken as highlights. For
one-class SVM, we use the LibSVM implementation where
its parameters γ (RBF kernel width) and ν (for controlling
the outlier ratio) are chosen using a simple line search based
on testing error. For the different domain classes, we found
that the optimal ν lies in the range of [0.5, 0.9], while γ lies
in [1, 10].

Comparisons among these methods are presented in Ta-
ble 4. Our robust recurrent auto-encoder consistently out-
performs AE, PCA and OCSVM on all the domain cate-
gories. Although OCSVM works better than PCA, it re-
quires much more computation because of its nonlinear ker-
nel. The table additionally includes comparisons to partial
versions of our techniques, namely recurrent AE without
the shrinking exponential loss, and non-recurrent AE but
with the shrinking loss (denoted as Robust AE). From these
results, we can see that when the standard auto-encoder is
equipped with LSTM cells (recurrent AE), the performance
is boosted by more than 10%, from 0.371 to 0.410. This in-
dicates the importance of modeling the temporal contextual
structure of video highlights.

Some of our detection results in different video domains
are illustrated in Figure 5. The blue bars represent recon-
struction error, with smaller values having a higher proba-
bility of being a highlight snippet.

5.3.3 Comparison to Supervised Learning
We have also compared our method to the latent ranking
SVM technique in [24], using their YouTube dataset and
their mAP evaluation metric. We note that our method is at
a significant disadvantage in this comparison, as our system
is trained using only the edited videos in the dataset, in con-
trast to [24] which also utilizes the unedited counterparts. In
addition, as the number of edited videos in this training set
is relatively small, there is a risk of over-fitting as our sys-
tem is primarily designed to leverage large-scale web data.
The results, listed in Table 5, show that even though the
supervised method benefits from major advantages in this
comparison, the performance gap on this testing set is small
for dog, gym, parkour and surfing. Moreover, as many of
the training and testing video clips are from the same raw
videos, it is particularly hard in this case for an unsuper-
vised method such as ours to obtain good results relative to
a supervised method trained on pre- and post-edit pairs.

We also examined latent ranking SVM trained on their
own data with C3D features, but applied to our testing set.
The results are shown in first column of Table 4 on domain
categories that are shared by the two datasets. It can be
seen that LRSVM does not perform as well as our RRAE.
A possible explanation is that the supervised learning has a
high risk of overfitting due to the limited training data, and
as a result it may not generalize well to large-scale testing



LRSVM [24] PCA OCSVM AE Robust AE Recurrent AE RRAE
freeride * 0.235 0.258 0.268 0.277 0.277 0.288
parkour 0.246 0.377 0.445 0.507 0.508 0.618 0.675
skating 0.330 0.251 0.297 0.308 0.306 0.322 0.332
skiing 0.337 0.388 0.412 0.428 0.472 0.478 0.485

skydiving * 0.376 0.332 0.335 0.364 0.338 0.390
surfing 0.564 0.525 0.484 0.494 0.534 0.565 0.582
swimming * 0.274 0.238 0.255 0.277 0.275 0.283

mAP 0.347 0.352 0.371 0.391 0.410 0.434
Table 4. Performance results of our methods and several baseline methods, all using C3D features [26]. The dimensionality of C3D features
is reduced from 4096 by a domain specific PCA that keeps 90% of the total energy.
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Figure 5. Highlight detection results in different video domains. The blue bar represents reconstruction error, where highlights tend to have
smaller errors than non-highlight snippets. The red borders indicate snippets detected as highlights.

Supervised[24] RRAE
dog 0.60 0.49

gymnastics 0.41 0.35
parkour 0.61 0.50
skating 0.62 0.25
skiing 0.36 0.22
surfing 0.61 0.49

Table 5. mAP comparison to [24] on the YouTube dataset.

sets.

6. Conclusion

We presented a scalable highlight extraction method
based on unsupervised learning. Our technique relies on an
improved auto-encoder with two significant modifications:
a novel shrinking exponential loss which reduces sensitivity
to noisy training data crawled from the web, and a recurrent
auto-encoder configuration with LSTM cells. Generalizing
this technique to other video processing problems would be
a potential avenue for future work.
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