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TOPIC 1: UNITS AND CONVERSIONS

UNITS 1.1: Why Use Units? 

If you asked me to estimate the size of a parking spot and I said, “It’s about 4,”
would you park there? 

Clearly, it depends on whether I mean 4 feet, 4 square meters, or 4 car lengths.  By
itself “4” does not mean very much.  So, by saying only “4” I have given you some
information but it’s not terribly useful.  

If you have made a measurement, you want to say what the units are; otherwise,
why bother to make the measurement in the first place?

The Point: Without units, the meaning of the number is lost.

A numerical expression without units is considered incomplete or wrong because
without units the number has lost much if not all of its meaning. (When you are
working with dimensionless numbers, however, there are no units.  Also, when you
are working with molecular weights, the units are usually not indicated. In these
cases the number’s meaning is preserved even though there are no units mentioned.)

You can use a knowledge of units to help you do math. For  example, units can help
you to set up equations correctly, and they can help you check your work.

The Point: The units on the left hand side (LHS) of the equation must be the same as
the units on the right hand side (RHS).

Put another way, the units must balance.  If you are checking your calculations and
you find that the units do not balance, then you know right away that you’ve gone
wrong somewhere.

Thus, an easy way to do a first check on your calculations is to make sure the units bal-
ance (note: this check alone will not tell you if the magnitude of the number is correct.)
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You can do a first check only after you have written down every unit.  Thus, r ule 1 is:

Write down every unit every time you write an expr ession or an equation.

It may seem like a great bother, especially when you are not working on the final copy.
But do not give in to the urge to skip units.  Writing down units every single time you write
an expression may seem tedious (and sometimes it definitely is!) but it will save you
lots of time in the long r un, because you will get your equations right the first time.

The important idea: when a unit in the denominator is the same as a unit in
the numerator, they cancel.

EXAMPLE: Convert 4.502 x 103 µL to mL.

We know 1 mL=103µL, so equals one.

You can multiply any number by one without changing its magnitude. That’s the
information to use to convert units.

Canceling:

Check: On the LHS, the units ar e mL, on the RHS the units ar e mL.  Milliliters do in
fact equal milliliters; so, units balance, the equation is set up corr ectly.

Checking that units balance will help you check your work. The units on the LHS
must match the units on the RHS; to see if they do, cancel units. It does not matter
how long your expression is; however, if it is long, it can be helpful to r e-write a
“units only” version.

EXAMPLE:

µ
µ

L
mL

L
g

mol
mol
mL

J
g

J× × × × =

4 502 10 10 58 44 27 95 10 80 7 9423 3. . . . .× × × × × =−µ
µ

L
mL

L
g

mol
mol
mL

J
g

J

4 502 10
10

4 5023
3. .× × =m
m

L
mL

L
mL

4 502 10
10

3
3. ?× × =µ
µ

L
mL

L
mL

1
103

mL
Lµ
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The units on the LHS (J) ar e the same as in the units on the RHS (also J). The units
balance. The equation is set up corr ectly.

CHECKING EQUATIONS SHORTCUT:

Always write down units.
Cancel and check that units balance.

To convert among units, you need to pick an appr opriate fraction by which to multi-
ply the LHS. How do you do that?

UNITS 1.2: Converting Among Units: A Five-Step Plan

The key to getting conversions right is to balance units of measur ement, using the
following basic ideas:

When two measures are equal, one divided by the other has a magnitude of one.

EXAMPLES:      1.00 meter = 1.09 yards

so,

or equivalently:

A fraction like this is called a unit fraction (in this case, the wor d unit refers to the “1”). 

Multiplying by a unit fraction is like multipyling by 1; that is, multiplying by a unit
fraction does not change the magnitude of your measur e, only its units.  So, if you want
to convert units without changing the magnitude, you can multiply by unit fractions.

EXAMPLE: Convert 10 meters to yards.

These units balance.10 0
1 09
1 00

10 9.
.
.

.m
yd
m

yd× =

1 09
1 00

1
.
.

yd
m

=

 

1
1 09

1
m

yd.
=
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Meters cancel.

So, to convert units, use these key ideas: 

1. You can multiply or divide by a unit fraction without changing the meaning
of the equation.

2. You can cancel units.

The trick to conversions is to multiply the LHS of the equation by unit fractions as
many times as needed to make the units match the RHS.  

Building the right unit fraction

To start, write everything down.  In fact, write down a place to put everything befor e
you begin.

Here is an example:

Mitochondria are typically about 1 micrometer (1 micron) in diameter.  How wide
are they in picometers?  

Step one: Write down the question as an equation. Be sur e to write the units.

1 µm =  ? pm

Step two: Count the number of different units that appear in the equation.

micrometers and picometers;  two different units

Step three: Draw a place for as many fractions as you have units so that they 
can become unit fractions.  Put them on the LHS.

1 µm × ( — ) × ( — ) = ? pm

Step four: Dedicate one fraction to each unit.  Arrange the units in the fractions 
so that the cancellations you need can happen and so that corr ect 
new units will appear:

m yd
m

yd
×

=
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You need µm in the denominator to cancel the µm on the LHS, and
you need pm in the numerator to balance the pm on the RHS.

Step five: Make your fractions equal to 1.  Do this by looking for r elationships 
you know.  You could do this in at least two ways.

[1] You know or can find out fr om consulting the table of PREFIXES
listed in REFERENCES, that 1 µm = 10−6 m and 1 pm = 10 −12 m.   

You can use the information as follows to make useful unit fractions: 

and

Now, fill in your equation:

or, equivalently,

Now, cancel both µm and m, solve, and you find that 1 µm = 106 pm.

[2] If you happen to know that 10 −6 µm = 1 pm, you can combine 
your two unit fractions into a single unit fraction.  Use one with µm
in the denominator. That is, because 

1 10
1

10
16

6pm m
pm

m
= =−

−µ
µ

,      

1
10

10
16

12

µ
µ

m
m

m
pm

m
pm× × =?

 
1

10
1

1
10

6

12µ
µ

m
m

pm
m

pm× × =
−

−
m

?

If 10 m m  then,  
1 m
0 m

−
−= =12

121
1

1p
p

.

If 10 m m  then,  
10 m

m
−

−

= =6
6

1
1

1µ
µ

.

 
1µ

µ
m

m
pm

pm×






×






= ?
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This is what your equation looks like:

Now, cancel microns, do the multiplication, and solve.  
Once again 1µm = 106 pm.

Either way, you are simply multiplying by unit fractions (i.e., “1”) as many times as
you need to.  Here’s another set of examples. We’ll show the five steps for each
example.

EXAMPLE: Convert 5 × 103 Angstroms to micrometers.

1. 5 × 103 Å = ? µm

2. There are two different units appearing, Å and µm.

3. 

4. 

5. 

Convert 5 × 103 Angstroms to millimeters.

1. 5 × 103 Å = ? mm

2. There are two different units appearing.

3.

4.

5. 5 10
10 1

10
5 10 5 103

10

6
3 4× ×





× 



 = × = ×

−

−
−Å

m
Å

mm
m

mm Å mm? ;  

 
5 103× ×





×






=Å
Å

mm
mm?

 
5 103× ×







×






=Å mm?

 
5 10

10 10
1

5 10 5 103
10 6

3 1× ×






×






= × = ×
−

−Å
m

Å
m

m
m Å m

µ µ µ? ;   

 
5 103× ×



 ×







=Å
Å

m
m

µ µ?

 
5 103× ×







×






=Å m?µ

1
1

10 6µ
µ

m
pm

m
pm×







=− ?
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Convert 5 × 103 Angstroms to meters.

1. 5 × 103 Å = ? m

2.  There are two different units appearing.

3.

4.

5.

Note: Nothing happened to the 5!  If all you ar e doing is multiplying by powers of
10, the mantissa is equal to 1, and anything times 1 equals itself.

UNITS 1.3: More Conversions Among Units
Use the following information when doing conversions:

1. You can multiply or divide by a unit fraction without changing the mean-
ing of an equation.

2. You can cancel units.

The trick to conversions is to multiply the left hand side (LHS) of the equation by
unit fractions as many times as needed to make the units match the right hand side
(RHS).

To start, write everything down.  Then write down a place to put everything befor e
you begin.

 
5 10

1
10

5 10 5 103
10

3 7× ×



 = × = × −Å

m
Å

mm Å m? ;   

 
5 103× ×





×






=Å
Å

m
m?

 
5 103× ×







×






=Å m?
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EXAMPLE: How many moles of NaCl are there in 1.0 mg?

Step one: Write down the question as an equation.

1.0mg NaCl = ? mol

Step two: Count the number of different units that appear in the equation.

milligrams and moles; two different units.

Step three: Draw a place for as many fractions as you have units so that they 
can become unit fractions.  Put them on the LHS.

Step four: Dedicate one fraction to each unit.  Arrange the units in the fractions 
so that the cancelations you need can happen and so that corr ect new 
units will appear.

Step five: Make your fractions equal to 1.  To do this, you have to look at the 
units and determine which ones have known r elationships.  In this 
case, you know that molecular weight tells you the grams per mole
of a molecule.  So, you set the second fraction equal to 1 by 
putting in molecular weight:

You still have to deal with mg and g as well.  Is ther e a relationship between 
mg and g?  Yes.

1g = 103mg; 1
mg

= therefore 
1g

103

1 0. ?mg mol×






×






=    
mg

  1mol  
58.44g

1 0. ?mg mol×






×






=    
mg

  mol  

1 0. ?mg mol×






×






=        
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So, make the first fraction equal to 1 by r elating grams to milligrams.

Now, solve:

This example had two different dimensions  amount (moles) and mass (grams and
milligrams).  This technique works no matter how many dif ferent dimensions there
are.  As long as you multiply by 1, you ar e safe.  For more examples, see the SOLU-
TIONS section.

CONVERSIONS SHORTCUT

1. Write an equation.
2. Count units.
3. Insert that many fractions.
4. Make units cancelable.
5. Make fractions =1, then calculate.

UNITS 1.4: Units Raised to Powers

What if you want to convert m 2 to mm2?  These units are both squared. Here is a
handy technique for converting units that ar e raised to powers. 

The Point: Use parentheses.

1. Put parentheses around the units, but not around the exponent, on the LHS
of the equation.

5.0 (m)2 = ? mm2 ?

1 0 1 7 10 5. .mg
mg

mol×






×






= × −1g    
10

1mol  
58.44g3

1 0. ?mg
mg

mol×






×






=1g    
10

1mol  
58.44g3
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2. Convert the units that are inside the parentheses. 

3. Now carry out the calculations, raising both the number and the units within
the parentheses to the appropriate power.

5.0 (m)2 = 5.0 × (103 mm)2

5.0 m2 = 5.0 × 106 mm2

UNITS TO POWERS SHORTCUT

1. Put parentheses around LHS units.
2. Convert units.
3. Calculate.

5 0
103 2

2. ?m
mm

m
mm×







=
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UNITS – Try It Out

EXERCISE I: Convert 4.67 × 104 nm to [A] Angstroms, [B] microns, and 
[C] millimeters. Use the five-step method.

A. 
1. 4.67 × 104 nm = ? Å

2. two different units

3. 

4. 

5. 

B. 
1. 4.67 × 104 nm = ?  µm

2. two different units

3.

4.

5.
 
4 67 104. ? ;× ×



 ×







= ×nm
nm

m
m nm m

      
  4.67 10  =                4µ µ µ

 
4 67 104. ?× ×



 ×







=nm
nm

m
m

      µ µ

 
4 67 104. ?× ×







×






=nm m
        µ

 
4 67 10

10
4

10. ? ;× ×






×






= ×−nm
Å

m
Å nm Å

 10 m  
nm

  
  4.67 10  =                

-9
4

 
4 67 104. ?× ×



 ×







=nm
Å

Å
    
nm

  

 
4 67 104. ?× ×







×






=nm Å
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C.
1. 4.67 × 104 nm = ? mm

2. two different units

3.

4. 

5. 

EXERCISE II: Convert 3 microns to [A] meters and [B] millimeters.
Use the five-step method.

A.
1. 3 µm = ? m

2. ? different units

3. 3 µm  × = ?  m

4. 3 µm  × = ?  m

5. 3 µm  × = ?  m;  3 µm =              m

For the next part, combine steps 3, 4, and 5 into one step.

B.
1. 3 µm = ? mm

2.

3–5. 3 µm   × = ? mm ;    3 µm =                      mm 

 
4 67 104. ? ;× ×







×






= ×nm mm nm mm
        

  4.67 10  =                4

 
4 67 104. ?× ×







×






=nm mm
        

 
4 67 104. ?× ×







×






=nm mm
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EXERCISE III: Convert 800 cubic nanometers into cubic Angstroms.  (You 
can use × in place of * to show multiplication, as we do in       
this exercise.) 

1. 800 nm3 = ? Å3

2. 8.00 × 102 (nm)3 = ? Å3

3. 

4. 

5.

EXERCISE IV: Convert 5.67 × 10-4 mm2 to pm2. 

1. 5.67 × 10−4 mm2 = ? pm2

2. 5.67 × 10−4(mm2) = ? pm2

3. 

4. 

5. 5.67 × 10−4(      pm2) = ? pm2 ; .=

5 67 10 4

2

2. ?× ×






×












=− mm pm

5 67 10 4

2

2. ?× ×






×












=− mm pm

 
8 00 102

3

3. ? ; .× ×





×












= =nm

nm
Å

 
8 00 102

3

3. ?× ×





×












=nm

nm
Å

Å

 
8 00 102

3

3. ?× ×






×












=nm Å
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EXERCISE V: Convert 10.0 µg/mL of CaCl2 (molecular weight = 111) to [A] mg/mL
and [B] molarity

A.

1. 

2. three different units

3. 

4. 

B.

1. 

2. four different units

3. 

4. 

5. 10 0. ? ;
µ

µ
g

mL
m×







×






×






×






= 10.0 g /mL =                          M

10 0. ?
µg
mL

mg
mL

×






×






×






×






=

10 0. ?
µg
mL

mol
L

×






×






×






×






=

 
10 0. ?

µg
mL

mol
L

=

10 0. ?
µ

µ
µ

g
mL g

mL
mL

mg mg
mL

×






× 



 ×







= ; 10.0 g /mL =              mg /mL 

 
10 0. ?

µg
mL

mg
mL

×






×






×






=

 
10 0. ?

µg
mL

mg
mL

=
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EXERCISE VI: What is the molarity of 100% pur e water
(molecular weight 18.015 g/mol)?

1. 

2. four different units

3. ; 

LINKS TO ANSWERS

EXERCISE I

EXERCISE II

EXERCISE III

EXERCISE IV

EXERCISE V

EXERCISE VI

Pure water =                          M.

 
1

g
mg

mol
L

=






×






×






×






=            
?

 
1

g
mg

= ?
mol
L

100 1% =
g

mL
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TRY IT OUT: ANSWERS

EXERCISE I: Convert 4.67 × 104 nm to [A] Angstroms, [B] microns, and 
[C] millimeters.

A.

B.

C.

General Pattern: If you look at these answers, you will see the pattern: if you ar e
converting from smaller units to larger units, the magnitude of the number should
decrease (you need fewer big things to take up the same space as the smaller things);
if you are converting from larger units to smaller units, the magnitude of the number
should increase (you need more smaller things to take up the same space as the big-
ger things).

 
4 67 10

10
10

4 67 104
9

3
2. .× ×



 ×







= × −nm
m
nm

mm
m

mm

4 67 10
10 10

4 67 104
9 6

1. .× ×






×






= ×
−

nm
m

nm
m

m
m

µ µ

4 67 10
10

10
4 67 104

9

10
5. .× ×







×






= ×
−

−nm
m

nm
Å

m
Å

TOPIC 1: UNITS AND CONVERSIONS / Page 16Math for Life



TRY IT OUT: ANSWERS

EXERCISE II: Convert 3 microns to [A] meters and [B] millimeters.

A.

B.
 
3

10 10
3 10

6 3
3µ

µ
m

m
m

mm
m

mm×






×






= ×
−

−

 
3

10
3 106

6µ
µ

m
m

m
m×







= × −
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TRY IT OUT: ANSWERS 

EXERCISE III: Convert 800 nm3 to cubic Angstroms.

 
800

10 10
800 10 8 00 10

9 10
3

1 3 5 3× ( ) ×






×












= ×( ) = ×

−

nm
m

nm
Å

m
Å Å.
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TRY IT OUT: ANSWERS 

EXERCISE IV: Convert 5.67 × 10−4 mm2 to pm2.

 
5 67 10

10 10
5 67 104

3 12 2

14 2. .× × ( ) ×






×












= ×−

−

mm
m

mm
pm

m
pm
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TRY IT OUT: ANSWERS 

EXERCISE V: Convert 10.0 µg/mL of CaCl2 (molecular weight = 111) to 
[A] µg/mL and [B] molarity.

A.

B.
 
10 0

10
10 111

9 01 10 90 1
6

3
5. . .

µ
µ

µ
g

mL
g

g
mL

L
mol

g
M M×







× 



 ×







= × =
−

−
−  

10 0
10

1 00 10
3

2. .
–

–µ
µ

g
mL

mg
g

mg
mL

×






= ×
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TRY IT OUT: ANSWERS 

EXERCISE VI: What is the molarity of 100% pur e water? (molecular weight 
18.015 g/mol)

 
1 00

18 015 10
55 53.

.
. 

 
 

g
mL

mol
g

mL
L

M×






× 



 =−
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TOPIC 2: EXPONENTS AND POWERS OF TEN

EXPONENTS 2.1: Powers of Ten 

The powers of 10 are in a pattern.  If you look at the pattern, you can see why 
100 = 1, and why the negative powers of 10 mean “reciprocal.”

For Example: , , and so on.

You can also see why multiplying or dividing by 10 is as simple as moving the deci-
mal point:                                            

103 = 1000.

102 = 100.

101 = 10.

100 = 1.

To divide by 10, all you have to do is move the decimal point one digit to the left; and
to multiply by 10, all you have to do is move the decimal point one digit to the right.

10 0 001
1

1000
1

10
3

3
± .= = =
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This is a very useful shortcut if you ar e doing computations with powers of 10.

EXPONENTS 2.2: Multiplying Numbers that Have Exponents

To multiply two numbers with the same base, add the exponents.

f s × f t = f s + t

Here f is called the base. The two numbers f s and f t have the same base. So the expo-
nents s and t can be added.

EXAMPLE: 124 × 125 = 129

WHY: (12 × 12 × 12 × 12) × (12 × 12 × 12 × 12 × 12) = 129

The base, 12, is the same thr oughout, so we can just add the exponents 4 + 5 = 9. The
answer is 129.

EXPONENTS 2.3: Raising Exponents to a Power

To raise an expression that contains a power to a power, multiply the exponents.

(jv)w = j v × w

The exponents v and w are multiplied.

EXAMPLE: (32)3 = 36

WHY: (3 × 3) × (3 × 3) × (3 × 3) = 36

EXPONENTS 2.4: Dividing Numbers that Have Exponents

To divide two numbers that have the same base, subtract the exponents.

a

a
a a

m

n
m n= −
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The two numbers am and an have the same base, a. So the exponents m and n can be
subtracted.

EXAMPLE:

WHY:

EXPONENTS 2.5: Multiplying Numbers in Scientific Notation

When you are multiplying, order doesn’t matter. You can choose a convenient order.

(a × b) × (c × d) = (a × c) × (b × d)

EXAMPLE: Multiply (4.1 × 102) × (3.2 × 104).  Rearrange the order of the factors.
Group the powers of 10 together.

(4.1 × 3.2) × (102 × 104) = 13 × 106

This answer could also be written as 1.3 × 107.  However, in science, we’re fond of pow-
ers of three, so there are prefixes that can substitute for powers that are multiples of
three.  If, for example, the above number wer e a length in nanometers, it could be writ-
ten as 1.3 × 107 nm or as 13 mm.  This conversion is legitimate because 1.3 × 107 nm = 13
× 106 nm, and 106 nm = 1 mm, so 1.3 × 107 nm = 13 mm.  (See the discussion on signifi-
cant digits in topic 3 to see why the answer is 13 × 106 nm and not 13.12 × 106 nm.)

In scientific notation, the number multiplying the power of 10 is called the mantissa.
In 5 × 106, 5 is the mantissa.  When ther e is no mantissa written, the mantissa is 1. So
106 has a mantissa of 1: 10 6 = 1 × 106.

EXAMPLE:

To see why, write 106 as 1 × 106 and rearrange the factors:

EXAMPLE:
5 678 10

1 10
5 678

1
10
10

5 678 10
3

6

3

6
3. .

.
×

×
= × = × −

5 678 10
10

5 678 10
3

6
3.

.
× = × −

10 10 10
10 10

10
× ×

×
=

10
10

10 10 10
3

2
3 2 1= = =−
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In scientific notation, when no power of 10 is written, the power of 10 that is meant
is 100.  That’s because 10 0 = 1.

EXAMPLE:

To see why, write 4.12 in scientific notation as 4.12 × 100.  Then rearrange the factors
and divide.

A word about notation:

Another way of writing scientific notation uses a capital E for the × 10.  You may
have seen this notation from a computer.

EXAMPLES: 4.356 × 107 is sometimes written as 4.356E7. 
2.516E5 means 2.516 × 105.

The letter E is also sometimes written as a lower case e; this choice is unfortunate
because e has two other meanings.

5 678 10
4 12 10

5 678
4 12

10
10

1 38 10
3

0

3

0
3.

.
.
.

.
×
×

= × = ×

5 678 10
4 12

1 38 10
3

3.
.

.
× = ×
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EXPONENTS – Try It Out

EXERCISE I: Solve the following equations; all answers should be in the form of a
number (or variable) raised to an exponent:

EXAMPLE: 144 × 148 = 1412

A.
1. 106 × 104 = 

2. 103 × 103 =

3. 10123 × 100 =

4. 104 × 104 =

5. 10 n × 10m =

6. 33 × 32 =

7. n4 × n12 =

8. h7 × h7 = 

9. an × am = 

10. j3 × jm =

B.
1. (63)3 =

2. (62)3 =

3. (104)2 =
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4. (106)3 =

5. (22)2 =

6. (162)10 =

7. (k3)4 =

8. (m6)2 =

9. (nk)l =

10. (sm)2 =

C.
1.  

2.  

3.  

4.  

5.  

6.  

7.  

8.  
j

j

n

n

( )

( )

+

− =
4

6

( )
( )
n m

n m

+
+

=
5

2

m

m

t

t( )− =1

m

m

10

7 =

10
10

m

n =

10

10

1
2

1
4

=

10
10

2

4 =

10
10

6

1 =
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9.  

10.  

D.
1. (3 × 106) × (4 × 104) = 

2. (5 × 107) × (7 × 10–2) =

3. (1.6 × 102) × (4 × 103) =

4. (−4.6 × 106) × (−2.1 ) × 104 =

5. (1.11 × 100) × (6.00 × 101) =

LINKS TO ANSWERS

EXERCISE I A.

EXERCISE I B.

EXERCISE I C.

EXERCISE I D.

q

q

j

h =

e

e

2π

π =
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TRY IT OUT: ANSWERS

A.
1. 1010

2. 106

3. 10123

4. 108

5. 10(n+m)

6. 35

7. n16

8. h14

9. a(n+m)

10. j (3+m)
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TRY IT OUT: ANSWERS

B.
1. 69

2. 66

3. 108

4. 1018

5. 24

6. 1620

7. k12

8. m12

9. nkl

10. s2m
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TRY IT OUT: ANSWERS

C.
1. 10 5

2. 10−2

3.

4. 10(m − n)

5. m3

6. m1 or m

7. (n + m)3

8. j10

9. eπ

10. q(j − h)

10
1
4
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TRY IT OUT: ANSWERS

D.
1. 12 × 1010

2. 35 × 105

3. 6.4 × 105

4. 9.66 × 1010

5. 6.66 × 101
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Math for Life
TOPIC 3: READING AND REPORTING

NUMERICAL DATA

NUMERICAL DATA 3.1: Significant Digits; Honest
Reporting of Measured Values

Why report uncertainty?  That is how you tell the reader how confident to be about
the precision of the measurements.

Why use significant digits?  They are the best way to report uncertainty about precision.

That is, significant digits tell your reader about the precision with which you meas-
ured.  (Precision is different from accuracy; accuracy is how close your measure is to
the true value, precision is how much resolution you had.  Significant digits are the
way you report precision; you need replication and statistics to report accuracy.)

If there is no error indicated explicitly, it means the last digit is precise within plus or
minus one.

NUMERICAL DATA 3.2: Determining Uncertainty

The precision of your measure is determined by the measuring device you use.  A
measurement with that device will have a certain number of significant digits. The
number of significant digits depends on the precision of the device.

EXAMPLE: Suppose you are measuring temperature and have two devices.  Measur -
ing device 1 is a mercury thermometer, with black lines indicating incre-
ments of 0.1 degree Celsius (0.1°C).

Can you tell the difference between 10°C and 11°C?  Yes.  

Can you tell the difference between 10.5°C and 10.6°C?  Yes.



Can you tell the difference between 10.57°C and 10.56°C ?  No.  Thus, it
would be overstating the precision (lying) to report a temperature of
10.56°C.  10.6°C is the best you could say.  This measurement has three sig-
nificant digits.

Measuring device 2 is a digital thermocouple, with a r eadout that shows three deci-
mal places.

Can you tell the difference between 10.56°C and 10.57°C?  Yes.

Can you tell the difference between 10.565C° and 10.566°C?  Yes.

Can you tell the difference between 10.5656C° and 10.5657°C?  No.
10.566°C is the best you could say.  This measurement has five significant
digits.

The thermocouple has higher precision than the mercury thermometer.

How many significant digits should you r eport?  

1. First, figure out how precisely you can measure using each of your measur-
ing tools.

2. Then, report the correct number of digits.

NUMERICAL DATA 3.3: Determining the Number of
Significant Digits

Which digits can be considered significant?

• Nonzero digits

• Zeros between nonzero digits

• Zeros to the right of the first nonzer o digit

Which digits are not significant? 

• Zeros to the left of the first nonzer o digit.  
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EXAMPLES: Column A lists four measurements. Column B tells the number of sig-
nificant digits of each of these values.

A B  
Value No. of significant digits
1.0067 5  
0.0010067 5  
5.0 2  
453 3           

So, when you report a value, you can use the above r ules to determine how to accu-
rately report the precision of your measurement.

If you have to manipulate your values do conversions, for example you need to
know how multiplication and division affect the number of significant digits.

NUMERICAL DATA 3.4: Multiplying and Dividing
Significantly

When you are multiplying or dividing, the answer has the same number of signifi-
cant figures as the measure with the fewest significant figures.

EXAMPLE: 1.440 × 10–6 ÷ 5.66609 = 2.540 × 10–7 

4 6 4 No. of significant digits

On the LHS, the two numbers being divided have 4 and 6 significant digits, r espec-
tively. The smaller number is 4, and so the answer has 4 significant digits.

NUMERICAL DATA 3.5: Adding and Subtracting
Significantly

When adding or subtracting, pay attention to decimal places, not significant figur es.
The answer should have the same number of decimal places as the number with the
fewest decimal places.

EXAMPLE: 200 + 4.56 = 205
0 2 0 No. of decimal places
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On the LHS, the two numbers being added have 0 and 2 decimal places, r espectively.
The smaller number is 0, and so the answer has 0 decimal places.

EXAMPLE: 1.440 × 10−2 − 5.6 × 10−5 = 1.439 × 10−2 

5 6 5 No. of decimal places

Subtraction is treated the same way as addition.  1.440 × 10−2 can be determined to
have 5 decimal places, (to see, r ewrite it as 0.01440) –5.6 × 10−5 has 6, so the answer
has 5 decimal places.  

NUMERICAL DATA 3.6: Dealing with Exact Numbers

Some values have no uncertainty.  For example, 1 liter is exactly 1,000 milliliters.
These numbers do not affect the precision of your calculated value, so ignor e them
when determining uncertainty.  That is, ignore them when counting significant dig-
its, and ignore them when counting decimal places.

EXAMPLE:

4 ignore 4

In calculating the number of significant digits, we ignor ed the because that 

is an exact value.  The answer has 4 decimal places.

NUMERICAL DATA 3.7: Why Use Scientific Notation?

What if a researcher reports a value of  7,000?  How do you know if the number of
significant digits is four, three, two, or one?  Did this person use a measuring device
that had its smallest divisions in the ones, tens, hundr eds, or thousands place?  You
can’t be 100 percent sure.  

If, however, the person reporting 7,000 had used scientific notation, then the answer
would be perfectly clear: 

103µg
mg

1 440 10 10 1 4403. .× × = ×–2 mg
mL

g
mg

g
mL

µ µ
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Value No. of significant digits 
7 × 103 1 
7.0 × 103 2  
7.00 × 103 3  
7.000 × 103 4  

That is a benefit of scientific notation.  It is the only unambiguous way to r eport the
precision of all of your measures.

NUMERICAL DATA 3.8: Graphs

What is a graph and what is it good for?

A graph is one way of representing numerical data.  A table is another.  Tables are
preferable if you have a few data points; a graph is pr eferable if you have many. 

The point of graphing data is to see whether there is a relationship between the vari-
ables and whether that relationship can be described by an equation.

If there is a mathematical relationship between the variables, you can use an equa-
tion to describe the data, you can use the equation to pr edict the results of experi-
ments that you have not done, and you can, in futur e, measure any one variable and
immediately know the value of the other.  So, describing a relationship using an
equation can save you a lot of work.

Determining what the equation is requires a priori knowledge, and/or a curve-fitting
algorithm.

Determining how well your equation describes your data r equires statistics. 

Graph conventions

Most graphs have two axes, x and y.  If there is a third, it is designated z.

The origin is at (0,0); magnitudes incr ease with distance from the origin.
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The variable on the x axis is the independent variable, that is, the variable that the
researcher controls.  Time is also usually graphed on the horizontal axis.

The variable on the y axis is the dependent variable, that is, the quantity that the
researcher is measuring and that varies as a r esult of a variation in x.  The value of y
“depends” on the value of x.

NUMERICAL DATA 3.9: Lines

The general equation for any line is y = mx + b; m is the slope and b is the y intercept.

The x intercept 

The x axis is the graph of the equation y = 0.  

The y axis is the graph of the equation x = 0.

If the slope of the line is positive, the dependent variable is said to vary positively , or
directly with the independent variable.  If the slope of the line is negative, the depend-
ent variable is said to vary negatively or inversely with the independent variable.

NUMERICAL DATA 3.10: Transformations

Because lines are much easier to interpret than curves, data are sometimes trans-
formed so that a line will be a good descriptor .  To transform data means to perform
an operation on each of the points.

Common transformations include:

• Taking the log of the data.  This makes data that ar e very spread out at high values
and closer together at lower values space out mor e evenly over their entire range. 

• Taking the reciprocal of the data.  This turns a certain kind of curve into a line.

Either or both variables can be transformed.  If the variable is transformed, its units
must be transformed as well.

= − b

m

TOPIC 3: NUMERICAL DATA / Page 38Math for Life



EXAMPLE:

The data:

Concentration of Reactant Rate of Reaction 

1.0 × 101 mM 1.3 × 10−1 nmol/s 

2.0 × 101 mM 2.2 × 10−1 nmol/s  

4.0 × 101 mM 3.7 × 10−1 nmol/s  

8.0 × 101 mM 5.5 × 10−1 nmol/s  

2.0 × 102 mM 7.0 × 10−1 nmol/s  

4.0 × 102 mM 7.2 × 10−1 nmol/s  

8.0 × 102 mM 7.5 × 10−1 nmol/s 

The graphical representation of the data:

Even after looking at the graph, it is dif ficult to describe the relationship represented
by these data.
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Now look at the data transformed by taking the r eciprocal of both variables:
The transformed data:

(Concentration of Reactant) –1 (Rate of Reaction) –1

1.0 × 10−1 L/mmol 7.5 × 100 s/nmol  

5.0 × 10−2 L/mmol 4.6 × 100 s/nmol  

2.5 × 10−2 L/mmol 2.7 × 100 s/nmol  

1.3 × 10−2 L/mmol 1.8 × 100 s/nmol  

5.0 × 10−3 L/mmol 1.4 × 100 s/nmol  

2.5 × 10−3 L/mmol 1.4 × 100 s/nmol  

1.3 × 10−3 L/mmol 1.3 × 100 s/nmol  

The graphical representation of the transformed data:

Now, the data are linearly related, and the relationship is easily described by:

This is the equation for the line shown.

1
6 4 10

1
1 21

rate
= × × +. .

concentration

8.0

7.0

6.0

5.0

4.0

3.0

2.0

1.0
—0.2 0 .02 .08 .1

1/Concentration [L/mmol]

1/
R

at
e 

[s
/n

m
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]

.04 .06 .12

TOPIC 3: NUMERICAL DATA / Page 40Math for Life



READING AND REPORTING NUMERICAL DATA – Try It Out

EXERCISE I: How many significant digits should you use when r eporting values
measured in the following ways:

A. 250 mL measured using a pipette marked in 10 mL increments

B. 0.8 mL measured using a 1 mL pipette marked in 0.1 mL increments

C. 1.5 grams measured using a digital balance that r eports three decimal places

D. An absorbance of 1.450 using a spectr ophotometer that reports three decimal
places

E. A temperature of 350 K using a thermometer that reports one decimal place

F. Half a meter measured using a meter stick divided into cm incr ements

G. A weight of 56.6 kg measured using a digital scale that r eports two decimal
places

EXERCISE II: You have created a solution by pipetting 1.0 mL of water into a tube,
then adding 1.26 x 10−3 mg of NaCl.  How many significant digits
should you use when reporting the concentration of this solution in
mg/mL?

EXERCISE III: To determine the area of a rectangular plot of land, you measure the
length of the two sides and find them to be 20.8 m and 9.1 m.  How
many significant digits should you use when you r eport the area of
the plot?
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EXERCISE IV: The following numbers were used in recent scientific journals.  How
many significant digits in each value? (Assume the authors know the
rules for reporting values.)

A. 100 µg of a peptide

B. 250 mM NaCl

C. 7.8 ×102 years

D. 58 kg ha−1 yr−1

E. 303 K

F. 5 × 106 mL−1

G. 2.57 hours

H. 0.75 mN force on spider leg segment

I. 8 × 106 cells L−1

J. 400 base pairs

K. 4,562 citations
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LINKS TO ANSWERS

EXERCISE I

EXERCISE II

EXERCISE III

EXERCISE IV
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TRY IT OUT: ANSWERS

EXERCISE I:

A. The pipette is marked in 10 mL increments, so, you could tell the dif ference
between 240, 250, and 260, but not between 249, 250, and 251.  W ritten in scien-
tific notation, then, you could honestly write 2.5 × 102, which has two signifi-
cant digits. 

B. The pipette is marked in 0.1 mL increments, so, you could tell the dif ference
between 0.7, 0.8, and 0.9, but not between 0.79, 0.80, and 0.81.  W ritten in scien-
tific notation, then, you could honestly write 8 × 10-1, which has one significant
digit.

C. When you measured this, the balance read 1.500 g.  So, you can tell the dif fer-
ence between 1.499g, 1.500g, and 1.501g.  Four significant digits.

D. When you measured this, the spectrophotometer read 1.450.  Four significant
digits.

E. When you measured this, the thermometer read 350.0 K.  Written in scientific
notation, then, you could honestly write 3.500 × 102, which has four significant
digits.

F. When you measured, the object was closest to the line marked 500 cm.  W ritten
in scientific notation, then, you could honestly write 5.00 × 102, which has three
significant digits.

G. When you measured this, the balance read 56.60 kg.  Written in scientific nota-
tion, then, you could honestly write 5.660 × 101, which has four significant digits.
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TRY IT OUT: ANSWERS

EXERCISE II: This is a division problem,  so the answer has the same number of
significant digits as the variable with the fewest significant digits.
That’s the 1.0 mL with two significant digits, so the answer has two
significant digits. 
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TRY IT OUT: ANSWERS

EXERCISE III: This is a multiplication problem, so the answer has the same
number of significant digits as the variable with the fewest
significant digits.  That’s the 9.1 m with two significant digits,
so the answer has two significant digits.
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TRY IT OUT: ANSWERS

EXERCISE IV:

A. 3

B. 3

C. 2

D. 2

E. 3

F. 1

G. 3

H. 2

I. 1

J. 3

K. 4
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TOPIC 4: MAKING SOLUTIONS

SOLUTIONS 4.1: Making Solutions from Dry Chemicals

How do you make particular volumes of solutions of particular molarities, starting
with a bottle of a compound?

EXAMPLE: Suppose you want 100 mL of a 5.00 M stock solution of CaCl2.

Step one: Figure out how many grams would go in one liter:

5.00 M = 5.00 moles per liter

Convert moles to grams using the formula weight:

Formula Weight of CaCl2 is 219.08 grams per mole.

Step two: Figure out what fraction of 1 liter you are making.

Step three: Use the same fraction of the 1095.4 g.

0.1 × 1095.4 g = 109.54 g

So, to make 100 mL of a 5.00 M solution of CaCl2, put 109.54 g into a container, then
bring the solution up to 100 mL.

These steps can be simplified.
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Written as one expression, the relationship looks like this:

If you rewrite the L as the denominator of the first variable, and note that the second
variable is molecular weight, this simplifies even further, providing a recipe for making
solutions from dry chemicals.

RECIPE SHORTCUT:

Final Molarity × Molecular weight × Final volume [L] = Grams to add

Don’t forget to bring the solution up to final volume.

SOLUTIONS 4.2: Dealing with Hydrated Compounds

Some chemicals come with water molecules attached.  For example, you can buy
sodium phosphate as NaH2PO4•H2O (sodium phosphate monobasic).  The practical
consequence of this is that for every mole of sodium phosphate you add to your
solution, you are also adding a mole of water.  

You can also buy sodium phosphate with 12 waters attached: Na 3PO4•12H2O 
(sodium phosphate tribasic).  For every mole of sodium phosphate you add, you 
are adding 12 moles of water.

One mole of water has a mass of 18.015 grams, and it has a volume of 18.015
mL. Twelve moles of water make up a volume of 216.18 mL.  This can wr eak
havoc with your final concentrations.  

The easy way to deal with this potential pr oblem is to use the following method
when working with hydrated compounds.

5 00
219 08 10 1

.
.

 
 

mol
g

mol
L

L
× ×

−
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HYDRATED SHORTCUT 1

• Use a graduated cylinder as your mixing vessel.
• Fill the cylinder with about half the final volume of water .
• Add the desired molar amounts of your compounds.
• Bring the solution up to the final volume.

With this method, the volume of any water you added as part of the hydrated com-
pound is automatically taken into account.  When you bring the solution up to the
final volume, you will be adding just the right volume. 

The other way to deal with the pr oblem is to calculate exactly what volume of water
you will be adding when you add the hydrated compounds, and subtract that fr om
the final volume of water to add.

• To calculate the added volume of water, first determine the number of moles of the
compound times the number of molecules of H 2O in the compound.  That is the
number of moles of H 2O you will be adding.

• The number of moles you are adding, times 18.015, will tell you the number of
mLs of water you are adding. 

EXAMPLE: I wish to make up 500 mLs of a 200mM solution of MgCl 2 using
MgCl2•6H2O.

From the Recipe Shortcut, I know that I need the following:

Molarity × Molecular weight × Final volume [L] = Grams to add.

The Molecular weight (listed on the jar as F .W.) is 203.3, which is the molecular
weight of MgCl2 (95.2) plus the molecular weight of 6H 2O (108.1).

Using the Recipe Shortcut, 

200 × 10–3 mol/L × 203.3 × 500 × 10–3 L = 20.33 grams to add

How much H2O will that add?

20.33 grams of MgCl2•6H2O ÷ MW = 0.1000 moles of compound being
added
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Each molecule of the compound has six molecules of H 2O; each mole of compound
has six moles of H2O.

0.1000 moles × 6 = 0.6000 moles of H 2O

0.6000 moles × 18.02 g/mol = 10.81 g

10.81 g × 1mL/g = 10.81 mL of water.

subtracting from the total,

500.0 mL − 10.81 mL = 489.2 mL of water

The recipe is: 

489.2 mLs of H2O plus 20.33g of MgCl 2•6H2O

The abbreviated version of all the above calculations is as follows:

Molarity [M] × final volume [L] × number of H2O’s per molecule ×
18.015 mL/mol = mLs of water contributed by hydrated compound

We can express this relationship as the Hydrated Shortcut 2.

HYDRATED SHORTCUT 2

The easy way, however, is to add the compounds, then bring the solution up to the
final volume.

SOLUTIONS 4.3: Diluting Stocks to Particular Concentrations

If you know what you want the concentration to be and you want to figur e out how
much of your stock to add, you can use the following equation:

What you want
What you have

Final volume =  Volume to add to mixture×

M
mol
L

Vol L H O
mL
mol

mL H O





× [ ]× × =# .2 218 015's   from Compound
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You may recognize this as a version of M1V1 = M2V2

You use that formula to calculate everything but the water , then add enough water to
bring the volume up to the desir ed volume.

Note: The units of what you want (the numerator) must be the same as the units of
what you have, (the denominator).

FOR EXAMPLE:

I want 25 mL of the I have the following  
following solution: stock solutions:

0.50 M CaCl2 5.0 M CaCl2

1.0   M MgSO 4 2.5 M MgSO4

Step one: Figure out how much of the CaCl 2 stock to add:

Step two: Figure out how much of the MgSO 4 stock to add:

Step three: Bring the solution up to 25 mL:

25mL – (2.5 mL + 10 mL) = 12.5 mL of water to add

Step four: Check your result.

For CaCl2:

2.5mL of 5.0
mol

10
put into 25 mL total volume3 mL

1 0
2 5

25
.
.

M
M

mL×  =  10 mL of MgSO  stock4

0 5
5 0

25
.
.

M
M

mL×  =  2.5 mL of CaCl  stock2
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And, for MgSO4:

Note: This is just a rearrangement of the dilution equation:

DILUTION SHORTCUT

SOLUTIONS 4.4: Calculating Concentrations from Recipes

Use the following words-to-symbols translation hints when calculating concentrations
and dilutions:

1. “…of…” means multiply.

2. “Put ... into…” means divide by.

In other words, “a of j” means a × j and “put q into s” means q ÷ s.  Note also that
whatever the actual order of the events, you should r ephrase a “put… into …”
phrase so that you are putting the solid into the liquid.

what you ant
what you ave

 olume = mount to add or,  
W
H

F V A
W
H

FV A× × =inal

want
have

final volume = volume to add×

That is,  
volume to add  have

final volume
want,  is a rearrangement of

× =

10 2 5
10

25
1 0 10

10
1 0

3
3

3mL
mol

mL
mL

mol
mL

mL
L

M
×

= × × =−
.

. .  

10mL
mL

 of 2.5
mol

10
put into 25 mL total volume3

2 5 5 0
10

25
5 0 10

10
0 50

3
4

3. .
. .

mL
mol

mL
mL

mol
mL

mL
L

M
×

= × × =−  
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The trick to figuring out dilutions is to say, in words, what you have done.  Then
translate the words into algebraic expressions using the above words-to-symbols
translation hints.

EXAMPLE: What is the concentration (in mg/mL) of enzyme in a given test tube?

Step one: Describe what happened.

I bought a bottle of enzyme.  Ther e was 1 mg of enzyme in the bottle.
I added 1 mL of solvent to the bottle.  Then, I took 100 µL of that
solution and added it to a test tube that had 9.9 mL of solvent in it.

Step two: Draw a picture.

Step three: Translate each sentence (the following assumes two significant digits).

Words: I bought a bottle of enzyme.  Ther e was 1.0 mg of enzyme in
the bottle.  I added 1.0 mL of solvent to the bottle.

Translation: I put 1.0 mg of enzyme into 1.0 mL (i.e., 1 ×10–3L) of solvent.

Expression:

1 mL solvent

1 mg enzyme 1 mg enzyme in 
1 mL of solvent

9.9 mL of
solvent

100  µL of
1 mg enzyme in
1 mL solvent
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Words: Then, I took 100 µL (1 × 10–4L) of that solution.

Translation: I took 1.0 × 10–4 µL of that solution.

Expression:

Words: ... and added it to a test tube that had 9.9 mL of solvent in it.

Translation: I put 1.0 ×102 µg of enzyme into 1.0 ×101 mL total volume.

Expression:

Step four: Thus, the answer is 1.0x10–2 mg/mL.

From these steps we can write a shortcut that describes how to calcu-
late concentrations from recipes.

w
mg

mL
hich simplifies to 

 enzyme
  solution

1 0 10
1

2. ×

g
1.0 10

L  mg
10

 g enzyme
1.0 10  solution4 3 4

1 0 10 10 1 1 0 102 3 2. .× µ
× µ

× µ ×
µ

= ×
×L mL g

m
mL

converting
g
L

 
 enzyme

1.0 10  solution
 to 

mg
mL4

1 0 102.
:

×
×

µ
µ

1 0 10
1

1 0 104 1. .× × = × × µ−
−

−L
mg

10 L
mg of enzyme =  1.0 10 g enzyme3

2

1 0
10 3

.  mg of enzyme
1.0 mL of solvent

 =  
1.0 mg

 L−
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RECIPE TO CONCENTRATION SHORTCUT

1. Draw a picture.
2. Describe the picture.
3. Translate each sentence.  “Of” means multiply; “Put ... into” means divide by .
4. Calculate.

SOLUTIONS 4.5: Converting Mass Per Volume to Molarity

To convert from mass per volume to moles per liter (molarity), you need to know the
relationship between the units.  Use the trick for converting between units developed
in Topic 1.

EXAMPLE: Convert mg/mL to M. 

Set up a units-only equation.

You know the relationship between mL and L: 103mL =1 L

Is there a relationship between mg and mol?  Yes. Molecular weight .

Let’s say the last example concerned an enzyme of molecular weight, 8.98 × 104 ;
the conversion looks like this:

Thus, for this enzyme 1.0 × 10–2 mg/mL is 1.1 × 10–7 M.

The general equation looks like this:

mg
mL

mol
g

g
mg

mL
L

mol
L

× × × =1
10

10
13

3

1 0 10 1
8 98 10

1
10

10
1

1 1 10
2

4 3

3
7.

.
.

× ×
×

× × = ×
−

−mg
mL

mol
g

g
g

mL
L

mol
L

g
mol

g
mol

mg
mL mg

mL
L

mol mol
L

× × × × =
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Now, look at the general equation above.  The final two fractions on the LHS multi-
ply to 1, so they have no ef fect on the magnitude of the number.  Thus, as long as
you have set up your equations with the correct units, the general equation can be sim-
plified and written as a shortcut.

MASS PER VOLUME TO MOLARITY SHORTCUT

(Here M.W. stands for molecular weight.)  In fact, as long as the pr efix is the same on
both the mass and the volume, you can use this trick, because you will always be
multiplying by 1 when you do the conversion.

But, don’t forget: If the prefixes are not the same, you cannot use the above shortcut;
you must start at the beginning. 

SOLUTIONS 4.6: Percents

Percent means “out of 100”; it is not a unit.  Per cents are dimensionless numbers.
37% of x means 37 hundredths of x or 0.37 × x.

The amount of an ingredient in a solution is sometimes described as a per cent of the
total solution.  A percent can be thought of as the amount of one quantity per anoth-
er.  If the same units appear in the numerator and denominator , percents mean what
you’d expect:

100% = 1g/1g 

1% = 10 mL/L

5L
20L

= 25%

mg
mL

MW M÷ =
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Percent mass per volume is based on a convention and it works as follows:

MASS PER VOLUME

100% means 1 g/mL
10% means 100 mg/mL
1% means 10 mg/mL

This convention is based on the mass/volume of pur e water: one mL of water has a
mass of 1 gram, hence 1g/mL = 100%.

SOLUTIONS 4.7: Dilution Ratios

Recipes for solutions sometimes contain directions for diluting a stock solution
according to a certain ratio.  To read these directions, you need to know the following:
A dilution in the ratio 1:x means add 1 volume of concentrate to ( x – 1) volumes of
diluent to create a total volume equal to x.  It makes sense: In the final solution, what
you added will be 1/xth of the total.

1:100 means one part concentrate, 99 parts diluent
1:14 means one part concentrate, 13 parts diluent
1:2 means one part concentrate, 1 part diluent
1:1 means straight concentrate

Note: This is the original convention; however, it is not always followed.  If you 
see 1:9, chances are the author means 1:10, and if you see 1:1, chances ar e the author
means 1:2.  You have to use your judgment in interpr eting such ratios.  Because of
this confusion, it is always better to r eport concentrations rather than recipes.

DILUTION DEFINITION

1:x means 1 part concentrate in (x – 1) parts diluent
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SOLUTIONS – TRY IT OUT

EXERCISE I

Note: as you work through this exercise, you will be practicing progressively more of
the technique, so it is important to work thr ough the entire exercise.

You are preparing to use an antibody against the pr otein E-cadherin to find out
where it is located in a cell.  You do not know what concentration will be just enough
but not too much, so you ar e going to prepare five solutions of different concentra-
tions.  Five mL of the antibody already in solution arrives from the company. The
antibody is at a concentration of 1 mg/mL.  What is the concentration of the follow-
ing solutions?

A. Solution A is 10.0 µL of antibody plus 90.0 µL of solvent buffer.  What is the con-
centration in mg/mL of antibody in solution A?

1. Draw a picture.

2. Describe the picture.

Put 10.0 µL of 1.00 mg/mL into 100 µL total.

3. Translate.

10 0 100.  L 1.00
mg
mL

  Lµ ×



 ÷ µ

90.0 µL
100 µL10.0 µL of

1.00 mg/mL
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4. Calculate mg/mL.
5. What information would you need to calculate the molarity of this 

solution?

B. Solution B is 10.0 µL of solution A plus 90.0 µL of solvent buffer. What is the con-
centration in mg/mL of antibody in solution B?

1. Draw a picture.
2. Describe the picture.

Put 10.0 µL of 1.00 × 10–1 mg/mL into 100 µL total.

3. Translate.

4. Calculate mg/mL.

C. Solution C is 20.0 µL of solution B plus 80.0 µL of solvent buffer.  What is the con-
centration in mg/mL of antibody in solution C?

1. Draw a picture.

2. Describe the picture.

3. Translate.

4. Calculate mg/mL.

10.0 µL of
1.00 × 10–1 
mg/mL

90.0 µL
100 µL
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D. Solution D is 50.0 µL of solution C plus 275 µL of solvent buffer. What is the con-
centration in mg/mL of antibody in solution D?

1. Draw a picture.

2. Describe the picture.

3. Translate.

4. Calculate mg/mL.

E. Solution E should be 100 µL of antibody solution at a concentration of 1.50 × 10–3

mg/mL.  How would you make solution E using solution B and solvent?

1. Draw a picture.

2. Describe the picture.

3. Calculate the amount of solution B to add.

4. Calculate the amount of solvent to add.

EXERCISE II 

The following is a recipe for agar:

3.00g NaCl  (F.W. 58.44 g/mol)
17.0g agar
2.50 g peptone
5.00 mg cholesterol (F.W. 386.7 g/mol)
Bring to a final volume of 1.00 ×103 mL

A. What is the concentration of NaCl (in mg/mL?)

B. What is the concentration of NaCl (in mM?)

C. What is the molarity of cholesterol in this solution? 
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D. How much water would you add to 1.00 mL of this solution to make the
molarity of cholesterol 6.45 µM? 

EXERCISE III

The result of a Formosan Banded Krait Bungarus multicinctus bite is paralysis caused
by a toxin known as α−bungarotoxin.  α−bungarotoxin can be purchased in lots of
1.00 mg of crystalline venom. You wish to observe the effect of this toxin on cultured
muscle cells at a concentration of 1.24 × 10–5 M.  

A. Create a 1.00 mM stock solution of toxin, then make further dilutions of the stock
to make a test solution of the appr opriate concentration.  Assume this protein has
a molecular weight of 6421.  All of your numbers should have thr ee significant
digits. 

1. Draw a picture.

2. Calculate how much solvent to add to make the stock solution. 

3. Calculate the amounts of stock and solvent to mix to make 1.00 × 101 mL
of 1.24 × 10–5M solution; call this solution A.

Amount of stock = 

Amount of solvent =

B. Solution A killed all your cultured cells, so you decide to dilute it.
You add 3.00 mL of solvent to 1.00 mL of solution A.  What is the
molarity of this new dilution, solution B?

1. Draw a picture.

2. Describe the picture.

3. Translate.
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4. Calculate molarity.

5. Convert to mg/mL.

6. Shortcut:  You are diluting solution A 1:4; therefore, the final molarity of
solution B will be 1/4 the molarity of the solution A. Recalculate the
molarity this way.

7. How many mL of solution B do you have?

C. Using solution B, calculate how much solution and solvent to mix to make
25.0 mL of a solution C that is 6.20 × 10–7M.

1. What volume do you have and what volume do you want? 

2. Calculate the volume of solution to add.

3. Calculate the volume of solvent to add.

4. Do you have enough of solution B to make this final dilution?

5. What is the maximum amount of 6.20 × 10–7M solution that you could
make from the solution B you already have?

6. What is the maximum amount of 6.20 × 10–7M solution that you could make if
you used the entire amount of venom that you pur chased?

7. What reminder can be drawn from this exercise? 
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LINKS TO ANSWERS

EXERCISE I – The antibody solutions

A.
B.
C.
D.
E.

EXERCISE II

EXERCISE III – The Formosan Banded Krait toxin

A.
B.
C.
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TRY IT OUT: SOLUTIONS

I.A.  Solution A is 10.0 µL of antibody plus 90.0 µL of solvent buffer.

4. Calculate mg/mL.

5. What information would you need to calculate the molarity of this solution?

1 00 10 1. × − mg
mL
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TRY IT OUT: SOLUTIONS

I.B. Solution B is 10.0 µL of solution A plus 90.0 µL of solvent buffer.

3. Translate.

4. Calculate mg/mL.

1 00 10 2. × − mg
mL

( . )( . )10 0 1 00 10

100

1µ

µ

L
mg
mL

L

× −
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TRY IT OUT: SOLUTIONS

I.C. Solution C is 20.0 µL of solution B plus 80.0 µL of solvent buffer.

1. Draw a picture

2. Describe the picture.

Put 20.0 µL of 1.00 ×10– 2 mg/mL into 100 µL total.

3. Translate.

4. Calculate mg/mL.

2 00 10 3. × − mg
mL

( . )( . )20 0 1 00 10

100

3µ

µ

L
mg
mL

L

× −

20.0 µL of
1.00 × 10–2

mg/mL

80.0 µL
100 µL
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TRY IT OUT: SOLUTIONS

I.D. Solution D: 50.0 µL of solution C plus 275 µL of solvent buffer?

1. Draw a picture.

2. Describe the picture.

Put 50.0 µL of 2.00 × 10– 3 mg/mL into 325 µL total

3. Translate.

4. Calculate mg/mL.

3 08 10 4. × − mg
mL

( . )( . )

.

50 0 2 00 10

3 25 10

3

2

µ

µ

L
mg
mL

L

×

×

−

50.0 µL of
2.00 × 10–3

mg/mL
275 µL

325 µL
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TRY IT OUT: SOLUTIONS

I.E. Solution E should be 100µL of antibody solution at a concentration of 1.50 × 10–3

mg/mL.  How would you make Solution E using Solution B and solvent?

1. Draw a picture.

2. Describe the picture.

I want 1.50 × 10–3 mg/mL.
I have 1.00 × 10–2 mg/mL.
I want a final volume (FV) of 100 µL.

3. Calculate the amount of solution B to add.

4. Calculate the amount of solvent to add.

100 µL – 1.50 × 101 µL = 85 µL (see the section on adding and subtracting
with significant digits)

1 50 10

1 00 10
100 1 50 10

3

2

1
.

.
.

×

×
× = ×

−

−

mg
mL
mg
mL

L Lµ µ
W
H

FV A× =

? µL of
1.00 × 10–2 
mg/mL

? µL
100 µL of
1.50  × 103 
mg/mL
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TRY IT OUT: SOLUTIONS

II. The agar recipe

A. What is the concentration of NaCl in mg/mL?

B. What is the concentration of NaCl in mM?

C. What is the molarity of cholesterol in this solution?

D. How much water would you add to 1.00 mL of this solution to make the
molarity of cholesterol 6.45 µM?

 

1 00 10 5.  mL 1.29 M
6.45 10 M

2.00 mL; 2.00 mL 1.00 mL = 1.00 mL6
× ×
×

= −
−

−

 

W
H

FV A  then A H
W

FV  and FV A = water to add× = × = −











( )

5 00
1

386 7
1

10
1 29 103

5.
.

.
mg
L

mol
g

g
mg

M× × = × −

3 00
1

58 44
1

10
10 10

5 13 103

3 3
1.

.
.

mg
mL

mol
g

g
mg

mL
L

mmol
mol

mM× × × × = ×

3 00
10

1 00 10
3 00

3

3

.

.
.

g
mg

g
mL

mg
mL

×

×
=
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TRY IT OUT: SOLUTIONS

III. The Formosan Banded Krait

A.
1. Draw a picture.

2. Calculate how much solvent to add to make the stock solution.

3. Calculate the amounts of stock and solvent to mix to make 1.00 × 101 mL of
1.24 × 10–5M solution (Solution A).  

Amount of stock = 1.24 ×10–1 mL

Amount of solvent = 10.0 mL – 1.24 × 10–1 mL = 9.9 mL

 

W
H

FV A    1.24 10 M
1.00 10 M

 mL = 1.24 10  mL
5

3
1× = ×

×
× × ×

−

−
−1 00 101.

 

1 00 1 56 10 4. . mg

10 mol
L

1 mol
6421 g

1 g
10  mg

L
3

3
−

−× × = ×

 

1 00
10 3.

?
 mg

?L
M   rearranges to   

1.00 mg
10 M

L3= =−
−

1.00 mL of
1.24 × 10–5M

? µL? mL of
1.00 mM

1.00 mg

? µL

TOPIC 4: MAKING SOLUTIONS / Page 71Math for Life



TRY IT OUT: SOLUTIONS

III.B. Venom dilution (A → B)

B. 
1. Draw a picture

2. Describe the picture.

Put 1.00 mL of 1.24 × 10–5 M into 4.00 mL total.

3. Translate.

4. Calculate molarity.

3.10 × 10–6M

5. Convert to mg/mL.

3 10 10
10 6421 10

1 99 106
3 3

2. .× × × × = ×−
−

−mol
L

L
mL

g
mol

mg
g

mg
mL

1 00 1 24 10
4 00

5. .
.

mL M
mL

× × −

1.00 mL of
1.24 × 10–5M 3.00 µL

4.00 µL
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6. Shortcut:  You are diluting solution A 1:4; therefore, the molarity of solution B
will be 1/4 the molarity of solution A. Recalculate the molarity this way.

7. How many mL of solution B do you have?

1.00 mL + 3.00 mL = 4.00 mL

1 24 10
4

3 10 10
5

6.
.

× = ×
−

−M
M

TOPIC 4: MAKING SOLUTIONS / Page 73Math for Life



TRY IT OUT: SOLUTIONS

III.C.  Using solution B, calculate how much solution and solvent to mix to make 25.0
mL of a solution C that is 6.20 × 10–7 M.

C.
1. What do you have and what do you want?

I want 6.20 × 10–7 M.
I have 3.10 × 10–6 M.
I want a final volume of 25.0 mL.

2. Calculate the volume of solution to add.

3. Calculate the volume of solvent to add.

25.0 mL – 5.00 mL = 20.0 mL

4. Do you have enough of solution B to make this final dilution?

No.

5. What is the maximum amount of 6.20 ×10–7 M solution that you could make
from the solution B you already have?

or, alternatively:

6. What is the maximum amount of 6.20 × 10–7 M solution that you could make if
you used the entire amount of venom that you pur chased?

x =
4.00 25.0

5.00
× = 20 0. mL

5 00
25 0

4 00.
.

.mL
mL

mL=
xmL

4 00 3 10 10
6 20 10

20 0
6

7

. .
.

.
mL M

M
mL

× ×
×

=
−

−
A H

W
FV

× =

6 20 10
3 10 10

25 0 5 00
7

6

.

.
. .

×
×

× =
−

−
M
M

mL mL
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7. What reminder can you draw from this exercise?

Do all the calculations before you begin to mix reagents.

1

6 20 10

10 1
6421

2 51 10
7

3
2mg

mol
L

g
mg

mol
g

mL
.

.
×

× × = ×
−

−
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TOPIC 5: pH AND BUFFERS

pH AND BUFFERS 5.1: Definition and Measurement of pH

A molecule can be described as an acid or a base:

• An acid is a molecule that can donate (give up) a proton (a hydrogen ion, H+).

• A base is a molecule that can donate a hydroxide ion (OH−).

• The pH scale quantifies acidity.

• The pH scale runs from 1 to 14, with pH = 7, the pH of pure water, considered
neutral.

• Lower pH means more acid; higher pH means more basic (that is, more alkaline).  

pH is the negative of the log of the hydrogen ion concentration (concentration must
be in units of moles per liter, i.e. M).

pH = −log[H+]

In fact, “p” in front of any substance means “the negative of the log of the 
concentration of” that substance.

For example, pCa= −log[Ca2+]

Because of that “negative”:

• The lower the pH, the higher the concentration of H+.

• The higher the pH, the lower the concentration of H+.

Because of that “log”: 

• A change in pH of 1 means a 101× or 10× change in [H+].
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• A change in pH of 2 means a 10 2× or 100× change in [H+].

• A change in pH of 3 means a 10 3× or 1000× change in [H+].

and so on, where × means “times.”

pH is not usually calculated; it is usually measur ed directly.

To measure pH you use indicator dyes, litmus paper, or a pH meter.  Here is a brief
description of how they work:

1. Indicator dyes change color when pH changes.  They ar e calibrated so that
you can look at the color of the solution with the dye in it, and, by compar-
ing that color to a chart, r ead off the pH value.  This pH measuring method
is the one that most pet stor es sell for measuring the acidity and alkalinity
of fish tanks.  Many biological media contain indicator dyes, like phenol
red, so that the user can tell at a glance whether the pH is corr ect. 

2. Litmus paper is coated with an indicator dye that changes color when pH
changes.  It is calibrated so that a certain color r esults when you put the
paper into your solution.  By comparing that color to the chart pr ovided,
you can read off the pH value.

3. A pH meter works by measuring the voltage acr oss a thin glass membrane
that conducts electricity.  On one side of the membrane is a known concen-
tration of H3O

+; on the other side is the solution of unknown pH.  The volt-
age across that membrane is proportional to the pH; the meter converts
that voltage to a measure of pH by comparing the voltage to a r eference
electrode.

To keep pH stable, use buffers.

pH AND BUFFERS 5.2: Definition and Action of Buffers

Buffers are chemicals that prevent pH from changing easily.  

A buffer is a weak acid that is chosen such that a key value (see the discussion on K
below) is approximately equal to the pH of inter est.  It prevents changes in pH by
substituting changes in the relative concentrations of the weak acid and its conjugate
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base, (the conjugate base of an acid is the base that is formed when the acid gives up
its proton).

Compare the following scenarios:

1. You add NaOH to a solution.  Result: the pH goes up.  This is because the
NaOH dissociates into Na+ and OH–.  The OH– combines with the H+’s
already in the solution, thus making water.  Because the H+ concentration
went down, the pH goes up.

2. You add NaOH to a solution with a buf fer in it: Result: The acid component
of the buffer gives up H+ ions to combine with the OH − ions from the
NaOH and the pH does not change.  What does change is the relative
amount of acid and base in the solution.

So, a buffer works by replacing a change in [H+] with a change in relative amounts of
the acid and its conjugate base.  

• When you add acid to a buf fered solution, the pH stays the same, the amount of
buffer goes down, and the amount of its conjugate base goes up.

• When you add base to a buf fered solution, the pH stays the same, the amount of
buffer goes up, and the amount of its conjugate base goes down.

pH AND BUFFERS 5.3: Calculating pH and Buffer Strength

To understand the equations that describe buf fers, you have to think about acids and
bases.  Every acid base reaction looks like this generic formula:

This reaction is sometimes written as

where HA is an acid and H2O is the base it reacts with to form H3O
+ (or H+), the 

conjugate acid of H2O, and A− is the conjugate base of HA.

HA H A⇔ ++ −

HA H O H O A+ ⇔ + −
2 3
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This generic reaction is quantified by K, the dissociation constant (which is the 
acid−base equivalent of an equilibrium constant):

K is a dimensionless quantity that measures the proton (i.e., H+) affinity of the HA/A−

pair relative to the proton affinity of the H3O
+/H2O pair; that is, it tells you whether

you are more likely to have HA or H3O
+.  Another way to say this is that K tells you

whether the generic reaction is more likely to go to the left or to the right.  

If K is greater than 1.0, the reaction goes to the right, and HA is a strong acid. 
If K is less than 1.0, the reaction goes to the left, and HA is a weak acid.

Because most biologically important solutions are relatively dilutethat is, they 
are mostly waterthe concentration of H 2O is, for all practical purposes, constant 
at 55.5M.

Rearranging the equation defining K gives

which leads to the defining of Ka, which is K[H2O] as

Be careful: Sometimes the subscript is not used, causing confusion.

pH AND BUFFERS 5.4: Why pH = 7 Is Neutral

H2O is an acid (albeit a weak one), so it has a dissociation constant:

Ka

H OH

H O

H OH

M
= [ ][ ]

[ ] = [ ][ ]+ − + −

2 55 5.

Ka

H O A

HA

H A

HA
= [ ][ ]

[ ]
= [ ][ ]

[ ]

+ − + −
3

K H O
H O A

HA2
3[ ] = [ ][ ]
[ ]

+ −

K = [ ][ ]
[ ][ ]

+ −H O A

HA H O
3

2
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which leads to defining Kw as

At 25°C, Kw = 10−14 M2 .  In pure water the concentration of H+ must equal the concen-
tration of OH− (because they are present in equimolar amounts in H2O), so [H+] must
equal the square root of Kw, that is, 10−7M.  If [H+]=10−7M, then pH = 7.  Hence, the
pH of pure water is 7, and that is defined as neutral.

• A solution with pH > 7 is basic.

• A solution with pH < 7 is acidic.

pH AND BUFFERS 5.5: pH and the Concentration of Acids
and Bases (The Henderson–Hasselbalch Equation)

Rearranging the definition of Ka shows the relationship between pH and the concen-
tration of an acid and its conjugate base.

becomes

If you now combine this equation with the definition of pH (by taking the negative
of the log of both sides), you get:

− ⎡⎣ ⎤⎦ = − +
⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

⎛ ⎞
+

−

log log logH
A

HAaK

− ⎡⎣ ⎤⎦ = − + −
⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

⎛

⎝
⎜

⎞

⎠
⎟

⎛
+

−
log log logH

HA

AaK
⎠⎠

H⎡⎣
+ ⎤⎤⎦ =

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

⎛

⎝
⎜

⎞

⎠
⎟−

K a

HA

A

K a

H A

HA
=

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

+ −

K Kw a H O H OH= [ ] = [ ][ ]+ −
2
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Now, if you substitute p for –log you get:

This is the Henderson–Hasselbalch equation. It tells you the r elationship between the
concentration of the acid, [HA], the concentration of the conjugate base, [A –], and pH.

The Henderson–Hasselbalch equation also tells you that if [A –] = [HA], then 
pH = pKa (because the log of 1 is 0).

pH AND BUFFERS 5.6: Choosing a Buffer

Because the pH of a solution can go down or up, you want your buf fer to be able to
respond equally well to an increase or a decrease in [H+].  Because of the way buf fers
work, you want the concentration of your buf fer (which can donate H+ thus preventing
a rise in pH) to be the same as the concentration of your buf fer’s conjugate base (which
can pick up H+, thus preventing a lowering of pH).  The Henderson–Hasselbalch equa-
tion tells you that when those two concentrations ar e equal, pKa = pH.

So, when picking a buffer, choose an acid with  p Ka equal to the desired pH.  This is
not always possible; the rule of thumb is to pick an acid with a p Ka within the range
pH ± 1.  By using this guideline, you ensur e that the buffer and its conjugate base
will be present in approximately equimolar amounts in your solution.

Note: Biological solutions frequently become acidic over time.  So, when choosing a
buffer to use in a biological application, try to select a buf fer with a pKa that is slightly
lower than the desired pH.  That way, as the pH of the solution begins to change, the
buffer is still working over the range at which it is best at buf fering.

The Buffers section in the Reference topics lists the pKa of some acids that are com-
monly used as buffers.  Chemical company catalogues also list the p Ka of acids they
sell.

Some acids are “polyprotic;” that is, they can donate mor e than one proton.  That
means that there is more than one pKa.  When this is the case, p K will have a sub-
scripted number (e.g., pK2) telling you which proton it donates in the pH range of
interest.

 pH = p
A

HAaK + [ ]
[ ]







−

log

TOPIC 5: pH AND BUFFERS / Page 81Math for Life



pH AND BUFFERS 5.7: Deciding How Much Buffer to Add 
to a Solution

There are no firm rules for deciding how much buffer to add to a solution, but ther e
are some facts to consider. 

The concentrations of various buffers in humans are as follows:

[HCO3
– ] = 24 mM

[HPO4
2– ] = 1 mM

[SO4
2– ] = 0.5 mM

For solutions to be used in biological applications, buf fer concentrations are usually
between 10 mM and 100 mM.  Some catalogues indicate corr ect concentration for the
buffers they sell.

The higher the concentration of buffer, the more you should be concerned about the
effect the buffer may have on the ionic strength and/or the osmolarity of your solution.
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pH AND BUFFERS – Try It Out

EXERCISE I:

A. What is the molarity of hydrogen ions for a system with the following pH?

1. 2.00

2. 3.00

3. 7.00

4. 7.50

5. 10.50

6. 10.80

B. What is the pH of the system whose concentration of H + is as follows?

1. 1.0 × 10−6 M

2. 1.0 × 10−3 M

3. 1.0 × 10−2 M

4. 5.0 × 10−13 M

5. 2.5 × 10−11 M

6. 8.5 × 10−11M
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EXERCISE II:

Most biological systems are at a pH close to 7.0; human blood, for example, is
carefully buffered at pH 7.4 by a carbonic acid—bicarbonate buf fering system.
Biofluids must be carefully buffered because most biological reactions can only
happen at the correct pH.  Are you likely to find the following agents buf fering a
solution in a biology lab?  (Give a yes or no answer for each.)

Citric acid (pKa = 3.13) 

MOPS (pKa = 7.15)     

Piperidine (pKa = 11.12)

HEPES (pKa = 7.31) 

TRIZMA (pKa = 7.8)

LINKS TO ANSWERS

EXERCISE I

A.
B.

EXERCISE II
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TRY IT OUT: ANSWERS

EXERCISE I:

A.
1. 0.010 M

2. 0.0010 M or 1 mM

3. 1.0 × 10−7 M 

4. 3.2 × 10−8 M 

5. 3.2 ×10−11 M

6. 1.6 × 10−11 M

EXERCISE I:

B.
1. 6.00

2. 3.00

3. 2.00

4. 12.30

5. 10.60

6. 10.070
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TRY IT OUT: ANSWERS

EXERCISE II:

Citric acid – no

MOPS – yes

Piperidine – no

HEPES – yes

TRIZMA – yes
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TOPIC 6: RATES, REACTION RATES, AND Q10

RATES 6.1: What Is a Rate and How Do You Measure It?

Usually, the word “rate” refers to the amount of time it takes for something to 
happen.  It has dimensions of something over time (whatever is being measured).
So, kilometers per hour is a rate with dimensions L T–1.  Kilograms of chocolate per
semester is another rate, with simensions M T–1.  What rates have in common is the
T–1.  (Aside: the difference between a rate and a velocity is that rate is a scalar while
velocity is a vector; that is, rate has magnitude, velocity has magnitude and direc-
tion).  

More generally, when we compare any two quantities that have different units—40
miles in 1 hour (comparing distance and time) or 500 miles on 20 gallons (comparing
distance and capacity—we have used a rate.

A rate can be written as a fraction:

or expressed in words; 5km per hour, 3 mm per day.

To determine a rate, graph the measured variable on the vertical axis and time on the
horizontal axis. Then determine the slope of the line.  What you are doing when you
find the slope is measuring the change in measured variable, over the change in
time. (This is sometimes called “rise over run.”)  The change in y over the change in
time is the rate.

EXAMPLE: You measure the height of a plant every day for three weeks.  Now, you
want to know the rate of growth.
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The data:

Day  Height [mm]
1 2 
2 3
3 6
4 7
5 10
6 12
7 14
8 15
9 18

10 20
11 22
12 22
13 24
14 27
15 29
16 30
17 31
18 33
19 35
20 35
21 36

The graph:
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The slope of the line, or or the “rise” over the “run,” is 1.8 mm day–1

so, the growth rate is 1.8 mm per day.  

The Point: If time is graphed on the x axis, the slope of the line is the rate.

RATES 6.2: Inconstant Rates

Frequently, rates are not constant over time.  Many pr ocesses slow down or speed up
as time passes.  If that happens, then the curve that describes your data will not be a
line.  If the curve is not a line (that is, the slope of the curve is not constant), you need
to measure the slope at the time point of inter est.  One way to do that is to find a func-
tion that describes the data, then take the derivative of the function; the derivative gives
the slope, which is the rate.  The other way to find the slope at the time point of inter est is
to draw a line tangent to the curve at that point, and find the slope of that tangent line.

EXAMPLE: You measure the diameter of a plant stem every day for thr ee weeks.
Now, you want to know the rate of gr owth.

∆
∆

y

x






y y

x x
2 1

2 1

−
−






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The data:

Day  Height [mm]
1 2 
2 3
3 6
4 7
5 10
6 12
7 14
8 15
9 18

10 20
11 22
12 22
13 24
14 27
15 29
16 30
17 31
18 33
19 35
20 35
21 36

The graph:
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In this example, the diameter of the plant gr ows quickly for the first 9 days, but then
it slows down. This is represented by two lines—one for the diameters measur ed on
days 1 through 9, and a second for the diameters measur ed on days 10 through 21.
The slope of the first line is 0.10 mm day −1, the slope of the second line is 0.030 mm
day–1.  So, the growth rate for days 1 to 9 is 0.10 mm per day; the gr owth rate for
days 10 through 21 is 0.030 mm per day.

RATES 6.3: Reaction Rates

A reaction rate is the amount of time it takes for a chemical r eaction to happen.
Reaction rates are usually measured in dimensions, mass, or amount per volume 
per time; the units of a r eaction rate are usually: moles per liter per second or M/s.

Like any other rate, you determine a r eaction rate by graphing concentration on the y
axis and time on the x axis, then take the slope.  The slope of the curve describing
those data is the reaction rate.

Reactions can be summarized as a very simple equation that says “r eactants become
products”:

Reactants → Products

Products must be appearing at the same rate that r eactants are disappearing (other-
wise matter would be disappearing into thin air or appearing out of thin air).  So, if
you are interested in a reaction rate, you can measure either the concentration of reac-
tants (which will be disappearing at the r eaction rate) or the concentration of prod-
ucts (which will be appearing at the r eaction rate).  In practice, it can be better to
measure something that is appearing; that is, it is better to measur e the concentration
of the product. Once you have the data, you graph the concentration of the pr oduct
versus time so that you can take the slope, which is the r eaction rate.

RATES 6.4: Temperature and Reaction Rate

As indicated above, rates sometimes vary, and this is certainly true of reaction rates.
The rate of the reaction can vary over time.  Reaction rates can also vary with tem-
perature.  

To see if the reaction rate of interest varies with temperature, you have to make the
same observations—that is, you have to measur e concentration of product at several
different times—and you have to make those same measur ements again at a different
temperature, then again at a third temperature, and so on.
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Let’s say you measure concentration over time at six dif ferent temperatures.  At the
end of all that measuring, you will have to make six dif ferent graphs, each represent-
ing how concentration (y axis) changed with time (x axis) at one given temperature.  

But you aren’t done yet.  What you want to know is if ther e is a relationship
between reaction rate and temperature.  To see if there is a relationship between
two variables, you graph them and look at the visual information. 

EXAMPLE: Suppose you want to know if the rate of photor espiration is tempera-
ture dependent.  This example starts with five separate graphs of con-
centration versus time.  We want to have one graph of r eaction rate 
versus temperature.  To get that one graph, we’ll take the slopes (rates)
from each of the five graphs, then make a new graph with the rates
(slopes) on the y axis and the temperature on the x axis.  Then, we’ll
look at this new graph of rate versus temperature to see if there is a 
relationship between temperature and rate.

Step one: You decide to measure the rate of the reaction by monitoring the pro-
duction of CO2.

Step two: You measure CO2 concentration every three minutes for 30 minutes
at 24°C, 26°C, 28°C, 30°C, and 32°C.

Step three: You graph your data on five separate graphs of concentration versus
time:

Step four: You calculate the five reaction rates by measuring the slopes of the
five graphs.
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Temperature [°C] Rate (slope) [M/s] 
24 Slow 
26 Slow  
28 Medium  
30 Fast  
32 Fast  

Step five: You graph rate versus temperature.

Voila! Yes, the rate of photorespiration is temperature dependent.  At lower tempera-
tures, the photorespiration rate is lower; at higher temperatur es the photorespiration
rate is higher.

RATES 6.5: Q10

Q10 is a number that sums up the ef fect of temperature on the rate of a r eaction.

Q10 tells you how much faster a r eaction will go if the temperature is raised 10°C
(that’s where the 10 comes from).

Q10 is a quotient (that’s where the Q comes from) that is calculated as follows:

where RT is the rate at some temperature T and RT−10 is the rate at 10°C below T.

Q
R

R
T

T
10

10

=
−
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EXAMPLE: If a reaction rate at 26°C is 20 moles per liter per second, and the r eac-
tion rate at 36°C is 50 moles per liter per second, 

.

in Life. 

Q
50

10 20
2 5= = .
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RATES, REACTION RATES, AND Q10 – TRY IT OUT

EXERCISE I: You have done a 12-year study of a coral r eef.  You have collected
these data every January:

Year of study Area of reef [m2]
1 2.58 × 102

2 3.57 × 102

3 4.55 × 102

4 5.57 × 102

5 6.58 × 102

6 7.56 × 102

7 8.58 × 102

8 4.00 × 101

9 2.43 × 102

10 4.42 × 102

11 5.40 × 102

12 6.43 × 102

In August of year 7 a hurricane moved thr ough, destroying much of the reef.  After
the hurricane, while you are SCUBA diving on the reef to take your data, you get the
feeling that the reef is growing faster than before.

To determine whether your intuition is supported by the data, you decide to look at
growth rate.
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You graph the data, and you look at the rates.  Her e is the graph, first, with the data,
then with the lines you think describe the data:

A. Approximately what is the growth rate before the hurricane? 

B. Approximately what is the growth rate after the hurricane?

C. Was your intuition correct?

[m
2 ]

[m
2 ]
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EXERCISE II: You are studying the rate at which Polymerase II transcribes DNA
into mRNA.  You do the following:

1.  Collect mRNA length data at three different temperatures.

2.  Graph length versus time at each of the thr ee temperatures.

3.  Graph the reaction rate versus temperature.

The data looks like this:
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What is the Q10 for this reaction? 

EXERCISE III: What steps do you need to take to get a measur e of Q10? 

LINKS TO ANSWERS

EXERCISE I

EXERCISE II

EXERCISE III
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TRY IT OUT: ANSWERS

EXERCISE I

A.  About 1.00 × 102 m2 per year

B.  About 1.50 × 102 m2 per year

C.  Yes
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TRY IT OUT: ANSWERS

EXERCISE II

Q
R

R
T

T
10

10

1 1

1 1

1 1

1 1

32
16

16
8

2= = °
°

= °
°

=
−

− −

− −

− −

− −
s C
s C

s C
s C
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TRY IT OUT: ANSWERS

EXERCISE III

1. Measure the amount of product at a number of dif ferent times at a number of
temperatures that differ by a multiple of 10°C.

2. Graph amount or concentration of product versus time at each of the dif ferent
temperatures and draw lines through the data.

3. Calculate the reaction rate at each of the dif ferent temperatures by taking the
slope of each of the lines.

4. Divide the rate at one temperature by the rate at 10°C below that temperatur e.
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TOPIC 7: MAPPING GENES

MAPPING GENES 7.1: Turning Crossover Frequencies 
into Maps

Making a genetic map comprises three processes:

1.  Counting the number of crossover events between two genes

2.  Converting crossover events into distances

3.  Figuring out where the genes are situated relative to each other

Suppose two genes are described.  You want to make a genetic map.  We study each
of these three processes in turn in order to make the genetic map.

Process 1: How many crossover events were there?

You are trying to figure out the positions of two genes relative to one another.  The
two alleles of one gene, gene R, are referred to as R and r.  The two alleles of the
other gene, gene T, are referred to as T and t.

You cross an RRTT to an rrtt, and all the progeny will be RrTt. 

Now, you cross the RrTt to an rrtt (a backcross).

Was there crossing over?  The following diagrams show the situations of no crossing
over and of crossing over.
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MEIOSIS I

MEIOSIS I

MEIOSIS II

MEIOSIS II
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If no crossing occurred over during gametogenesis, then the heter ozygote has made
gametes that are either RT or rt, while the homozygote has made only rt gametes.
Therefore, the genotypes that result when a gamete from the heterozygote meets a
gamete from the homozygote (if crossing over has not happened) are RrTt and rrtt.

If crossing over did occur during gametogenesis, then the heterozygote also made
some gametes that are either Rt or rT.  The homozygote still made rt gametes only.
So, the genotypes that result when these gametes meet (if cr ossing over has occurred)
are Rrtt and rrTt, in addition to RrTt and rrtt.

Diploid Adult

r t

RR
TT

Rr
T t

Tr

r r

t t

CROSSING OVER
OCCURED DURING
THE FORMATION

OF THESE
GAMETES

Haploid Gametes

Diploid Adult

r r
t t

TR TR TRTR

r t

TR t Rr t

Rr
T t

r r
t t

Rr
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r r
T t

r tr tr t

r tr tr t
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To calculate the frequency of crossovers, you add the number of Rrtt’s plus the num-
ber of rrTt’s then divide by the total number of of fspring.

EXAMPLE: 

Genotype Number of offspring of that genotype 
RrTt 39  
rrtt 48  
Rrtt 12  
rrTt 16  

The number of offspring in which crossing over occurred is the number of Rrtt’s plus
the number of rrTt’s, or 12 + 16 = 28.

The total number of offspring is 39+48+12+16 = 115.

The frequency of crossing over is

Process 2: How far apart are the two genes?

It may seem strange, but to figur e out the distances between pairs of genes, you use
frequency data to determine length.  The units in the computation ar e also unusual.

The good news is that the pr ocedure is exactly the same as converting between
any  two dimensions.  You set up your conversion equation then solve it. 

In this situation, the frequency you measure is the number of recombination events
per number of offspring, and the units of length ar e Morgans [M], or, more usually,
centimorgans [cM].

Here is the conversions shortcut, again, as a reminder. 

28 events
115 offspring

= 0.24 events
offspring
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CONVERSIONS SHORTCUT

1. Write an equation.
2. Count units.
3. Insert that many fractions.
4. Make units cancelable.
5. Make fractions =1, then calculate.

So, to convert number of recombination events per offspring to cM,  you follow the
same directions:

1.  

2.  three different units

3.  

4.  

Here is where it gets tricky.  How do you make these fractions equal to one? What is
the relationship between the units?

The relationship between the units is given in the definition of the centimor gan:

1 cM = 1 event per 100 of fspring = 

Rearranging that definition we find that 1
1 cM 100 offspring

1 event
= × =

1 event
100 offspring

number of events
offspring

    
number of events

  offspring      × × × =

















cM cM?

number of events
offspring

            × × × =




























 ?cM

number of events
offspring

= ?cM
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That is the relationship among the units.  Returning to step 5 of the conversion short-
cut, we write:

5.

As you can see, all you ar e doing is multiplying the frequency by 102 while convert-
ing units.  It’s actually quite simple once you know the r ule.

EXAMPLE: Consider the same genes R and T as in the example above.  If ther e were
28 crossover events out of 115 offspring, how many cM apart are the two
genes?

The T gene is 24 cM away from the R gene.

Process 3: Where are the alleles located?

This question comes up when you ar e mapping more than two genes.

To figure gene positions relative to each other, you figure the distances between each
pair (which means doing three backcrosses), then look to see what or der is consistent
with all three distances.

Let’s add gene A, with its two alleles, A and a. 

Here are the results of the backcrosses:

Genes Crossovers Total number of offspring Crossover frequency cM 
R to T 28 1 15 0.24 24  
A to T 55 134 0.41 41  
R to A 26 151 0.17 17  

28 events
115 offspring

1 cM 100 offspring
event

= 24 cM × ×

number of events
offspring

1 cM 100 offspring
event

= ? cM × ×
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From this chart, you can tell the distances between each pair of genes.

To go from the chart to a map takes two steps:

Step one: Start the map using the two genes that ar e separated by the greatest
distance.

Step two: Put the third gene between the other two, the corr ect distance from
either (both) of the first two.

That is your genetic map.

41

24
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MAPPING GENES – TRY IT OUT

EXERCISE I: The genes ATP7B,  BRCA2, and RB1 are found on human chromo-
some 13.  Map them using these data (the data ar e completely
imaginary, the map will be relatively accurate): 

Genes Events Total number of offspring
ATP7B and BRCA2 5 24
ATP7B and RB1 3 32
BRCA2 and RB1 2 17  

EXERCISE II: Map the imaginary genes Hlr, Oria, Prvs, and Sdva

Genes Events Total number of offspring
Hlr and Oria 17 119 
Hlr and Prvs 40 121
Hlr and Sdva 8 130
Oria and Prvs 26 138
Oria and Sdva 25 125
Prvs and Sdva 55 141  

LINKS TO ANSWERS

EXERCISE I

EXERCISE II
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TRY IT OUT: ANSWERS

EXERCISE I: The genes ATPTB, BRCA2, and RB1 are found on human chromosome
13.  Map them using these data.
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TRY IT OUT: ANSWERS

EXERCISE II: Map the imaginary genes Hlr, Oria, Prvs, and Sdva.
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TOPIC 8:  PUNNETT SQUARES

PUNNETT SQUARES 8.1: Definition

A Punnett square is a device to help you predict the possible genotypes of the off-
spring if you know the genotypes of the parents.

Because it tells you how many of each phenotype to expect if all the genes are assort-
ing independently, a Punnett square gives you a standard with which to compare the
results of your cross so that you can determine whether or not your genes are, in fact,
assorting independently.

First, you have to look at the genotype of each parent, predict what will happen
when gametes are formed, then predict what could happen when two gametes 
combine.

PUNNETT SQUARES 8.2: Crossing Over and Genetic
Variation

During meiosis I, when there are four copies of each chromosome, the four copies are
held close together by a structure called the synaptonemal complex; the whole struc-
ture is called a tetrad.

Within the tetrad, one copy of each homolog can trade stretches of DNA with one
copy of the other homolog by the process of crossing over.

Because each of the two homologs was donated by a different parent (of the organism
in whose gonad this meiosis is taking place),  the two homologs are not necessarily
identical.  So, when crossing over happens, each of the participating homologs can
end up different from when it started.

That means that the gametes that result from this meiosis can all end up with slightly
different versions of each chromosome.
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Thus meiosis, in addition to reducing chromosome number from two to one, also
shuffles the genetic information.  This is one very important mechanism by which
genetic variation is generated.

By the way, this is why offspring are not identical to their parents or to their siblings.
This is also why siblings can be mor e similar genetically to each other than they ar e
to either of their parents: offspring are genetically related exactly 50% to each parent
(half of their genes come from dad, half from mom), but are genetically related to
each other 50% on average, meaning they can be over (or under) 50% r elated to each
other. 

PUNNETT SQUARES 8.3: Using Punnett Squares for
Possible Genotypes

EXAMPLE I: How many possible genotypes can be generated fr om mating a male to
a female, both of which are heterozygous at the green locus?
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Two alleles of the Green gene –G    and g

A germ cell
developing into 
sperm

Any one of these
might meet up
with any one of 
these

four

four four

Homozygous

Heterozygous

four

Heterozygous

Homozygous

The possible results;
there are 16 possible
combinations of egg and
sperm, but only 4 different
genotypes that can result.

All of which 
contracts to
this Punnett
square �

Gg Gg×

Gg
GG

G G
g g

gg
gG

A germ cell
developing into

eggs

Meiosis I

Meiosis II
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If you are trying to figure out the possible genotype at a single locus ( one gene, two
alleles), then each parent has 21 or 2 alleles (two versions of that gene) to of fer,  so the
possible combinations are 2 × 2 = 4.  4 is 2 2, and if you draw a r ectangle that is 2 by 2,
it will be a square.  Hence, the “square” in a Punnett square.

EXAMPLE II: What if you are interested in more than one gene?

If you are trying to figure out the possible genotype at two loci ( two genes, two alle-
les) then each parent has 22 or 4 possible alleles to offer, so the possible combinations
are 4 × 4 = 16.  16 is 4 2, and if you draw a r ectangle that is 4 by 4, it will be a squar e.
Hence, you will have another Punnett squar e.

Gr Gr

GR GR

gr gr

gR gR
grgRgRgr

GRgr

Grgr

GrgR

GRgR

GRGr

grgr

gRgR

GrGr

GRGR

GrGR

gRGR

grGR

grGr

gRGr

Two alleles of the Green gene –G    and g
Two alleles of the Red gene –R    and r

A germ cell 
developing into
eggs

Crossing
over

GrRr

A Punnett square tells you the
possible combinations (not
what you'd necessarily get).
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If you are trying to figure out the possible genotype at thr ee loci (three genes, two
alleles) then each parent has 23 or 8 alleles to offer, so the possible combinations are 
8 × 8 = 64.  

The rule:  The number of gametes with different genotypes that an individual can
produce equals HL where L is the number of loci under investigation, and H = 1 or 2,
depending on whether those loci are homozygous (H = 1) or heterozygous (H = 2).
The number of combinations possible in the of fspring equals the number the mother
can produce times the number the father can pr oduce.

The diagrams in examples I and II illustrate some of the points made above: 

1.  Germ cells are 2N, then undergo two meiotic divisions to produce 1N
gametes (both illustrations).

2.  Meiosis I separates homologues; meiosis II separates sisters (both 
illustrations).

3.  During meiosis I, one copy of each homolog can participate in a cr ossing
over event; the result is that the chromosomes found in the resulting
gametes can be different from each other and from the chromosomes of 
the germ cell (second illustration).

PUNNETT SQUARES 8.4:  Using Punnett Squares to
Determine Linkage

If the genes under investigation are assorting independently (that is, if they ar e on
different chromosomes), then, as illustrated by the Punnett squar e, the possible geno-
types will be present in particular ratios relative to each other.

EXAMPLE

If you are looking at two genes, and they ar e on different chromosomes there will be
16 possible combinations.

These result in 9 different genotypes (assuming that, for example, GgRr = gGrR =
GgrR = gGRr, which is usually the case).

If you are referring to loci where G and R are dominant and g and r ar e recessive,
then those 9 different genotypes can result in only 4 different phenotypes.
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And those 4 different phenotypes will be represented in the ratio 9:3:3:1.

To see why, look at the Punnett square:

So, if you do a cross, and find the phenotypes present in a ratio of 9:3:3:1, then the
two genes were independently assorted.  

You may have to do some statistics to determine whether the ratio is 9:3:3:1 or not;
nonetheless, the Punnett square gives you a prediction with which to compare your
actual results.

GR

  Gr

gR

gr

GR

  Gr

gR

gr
gr gr

gR gr gr gR

Gr gr gR gR gr Gr

GR GR

GR Gr

GR gR

GR gr

Gr GR

Gr Gr

Gr gR gR Gr

gR GR

gr GR

There are 16 possible genotypes

There are 9 with this phenotype

There are 3 with this phenotype

There are 3 with this phenotype

There is 1 with this phenotype

9:3:3:1
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PUNNETT SQUARES – TRY IT OUT

EXERCISE I: You are crossing two individual plants that are heterozygous at the
Leafy locus; the gene found there determines how many leaves the
plant will have.  The dominant allele makes the plant that has it very
leafy; the recessive allele leads to few leaves.

A. Draw the Punnett square using L for the dominant allele and l for the recessive
allele.

B. What ratio of genotypes do you expect?

C. What ratio of phenotypes, leafy and/or not leafy, do you expect?  

EXERCISE II: You are crossing two sea urchins, one of which is purple because it is
homozygous dominant at the locus for its purple color ( PP); the other
is pink because it is homozygous r ecessive at the purple locus (pp).

A. Draw the Punnett square representing this cross.

B. What ratio of genotypes do you expect?

C. What ratio of phenotypes, purple and/or pink, do you expect?

EXERCISE III: You are crossing two plants, one of which is heter ozygous at the
tasty roots locus (Tt); the other is homozygous recessive at the tasty
roots locus (tt).

A. Draw the Punnett square representing this cross.

B. What ratio of genotypes do you expect?

C. What ratio of phenotypes, tasty and/or not tasty, do you expect?
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EXERCISE IV: You are crossing flies that are heterozygous at the White locus (Ww);
their eyes are red.  They are also heterozygous at the Curly locus (Cc);
they have normal wings.  Flies that ar e homozygous recessive at both
of those loci have white eyes and curly wings.

A. Draw the Punnett square representing this cross.

B. How many genotypes do you expect?

C. What will the ratio of phenotypes be if the loci ar e independent?

D. Here are the data from that cross:

Phenotype Number of offspring
Red eyes, normal wings 130
White eyes, normal wings 40
White eyes, curly wings 15
Red eyes, curly wings 43  

Is the White gene on the same chromosome as the Curly gene?
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TRY IT OUT: ANSWERS

EXERCISE I:

A.

B. LL:Ll:lL:ll = 1:1:1:1.  If Ll = lL, then LL:Ll:ll = 1:2:1

C. Leafy : not leafy = 3:1 because LL, Ll, and lL will be leafy, ll will be not leafy.

L L

LL

ll

lL Ll

l lOne locus, two alleles
so 21 alleles per parent
a 2 × 2 Punnett square.

TOPIC 8: PUNNETT SQUARES / Page 120Math for Life



TRY IT OUT: ANSWERS

EXERCISE II:

A.

B. This one isn’t fair—it’s a trick question.  All of the offspring will be Pp, so there
isn’t really a ratio.  You could say that the ratio is 0:1:0, but that description
isn’t commonly used.

C. All the offspring will be purple.

Pp

pPOne locus, two alleles
so 21 alleles per parent
a 2 × 2 Punnett square.
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TRY IT OUT: ANSWERS

EXERCISE III:

A. This one isn’t really a square.

B. Tt:tt = 1:1

C. Tasty : not tasty = 1:1

t

t

T

tt

TtParent 1: one locus, two alleles. 2 possible
Parent 2: one locus, one allele. 1 possible,
so a 2 × 1 Punnett square.
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TRY IT OUT: ANSWERS

EXERCISE IV:

A.

B. If Cc = cC and Ww = wW there can be 9; if not, ther e can be 16.

C. 9:3:3:1

D. No. The ratio of phenotypes is appr oximately 9:3:3:1, so the two genes ar e
assorting independently.

WC WC

wwcC wwCc

wwCC

WWCcWWcC

WWCC

wwcc

wWcC

wWcc

wWCc WwcC

WWccwWCC WwCC

WwCc

Wwcc

wC wC

wc wc

Wc Wc

Two loci, two alleles so
22 possible from each
parent, yields a 1 × 1
Punnett Square 
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Math for Life
TOPIC 9:  RADIOACTIVE DATING

DATING 9.1: How to Keep Time

If you want to know how old something is, you need an appropriately scaled device
for measuring the passage of time.

EXAMPLE: How old are you?  

To answer that question, you use a calendar that keeps track of the pas-
sage of years; you subtract the year you were born from the current year
to find out how many years have passed since you were born; that’s
your age.

EXAMPLE: How fresh is the milk in my refrigerator?

To answer that question, you use a calendar that keeps track of the pas-
sage of days; you subtract the last date of freshness from today’s date to
determine how many days (or weeks) have passed since your milk was
last fresh.

EXAMPLE: How long until we get there?

To answer that question you usually use a clock that keeps track of the
passage of minutes; you subtract the time it is now from the estimated
time of arrival to predict the minutes remaining.  

The above examples use familiar time pieces: calendars and clocks.   To make those
measuring devices, humans divided time into equal-sized, repeating intervals of
time, (based ultimately on the rotation of Earth about its axis and the revolution of
Earth around the sun).

Note: That’s how you make any measuring device: You take the dimension under
consideration (e.g., length, time, mass) and divide it up into equal-sized portions.



The size of the portion is defined as a standard against which you can measure what-
ever you want.  Having a standar d that everybody agrees on allows you to say “the
pod is 5 units long and will float for 8 time units” and everyone will know what
sizes you mean.  (Historical note: The meter, a unit of length, was defined in 1790 as
10–7 the earth’s quadrant passing through Paris. In 1960 it was r edefined as
1,650,763.73 wavelengths of the radiation of krypton 86.)

So, we use meter sticks to measur e lengths in units of millimeters, centimeters and
meters; we use clocks to measure time in units of seconds, minutes, and hours; we
use calendars to measure time in units of days, weeks, months, and years; we use
radioactive decay to measure time in units of thousands of years up to billions of years.

DATING 9.2: Radioactive Decay

For the first 4.5 billion years of Earth’s existence, ther e were no calendars.  However,
a certain number of radioactive isotopes of elements wer e present when the earth
began, and radioactive decay keeps regular time.  Here is how: 

Each radioisotope loses its radioactivity at a specific, well-defined rate.  That is, the
radioactivity decays at a rate characterisitc for that element.

EXAMPLE: It takes 4.46×109 years for 50 percent of an amount of 238U to decay.

EXAMPLE: It takes 5.715×103 years for 50 percent of an amount of 14C to decay.

Those characteristic rates (units are: number per time, or T −1) can be used to convert
the number of radioisotopes (which is measurable) into units of time. 

To use radioactive decay to measure time duration, that is, to use it as a calendar , all
you need to know is the conversion factor. The conversion factor is the characteristic
rate of decay.

What is the half-life of a radioisotope?

The half-life, frequently abbreviated t1/2, is the amount of time it takes for 50 per cent
of the radioisotope to decay.  That means that the rate of decay depends on the
amount of radioisotope present.

EXAMPLE: 4.5×109 years is said to be the half-life of 238U, because that’s how long it
takes for half of it (50 per cent) to decay.
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Radioactive decay as a calendar

Because the decay rate depends on the amount of radioisotope pr esent,  the rate of
radioactive decay is not linear; that is, if you start out with 1.0 kg of 238U, after the
passage of 4.5×109 years, there will be 0.50 kg of 238U and 0.50 kg of 206Pb.  After
another 4.5×109 years pass, another 50 percent of the 238U will have decayed, so there
will be 0.25 kg of 238U and 0.75 kg of 206Pb.

A graph of radioactive decay looks like this:

Note: Although theoretically this curve never reaches zero, in reality, the last radioac-
tive atom from the original amount will decay eventually.  When it does, (and when
depends on how many atoms there were to begin with), there will be no radioisotope
left.  

So, if you want to measure the age of an item using radioactivity as a clock, you can
look at your item and determine what per centage of a relevant radioisotope is gone,
then calculate how much time it must have taken for that amount to decay .   It is 
easier to see how that works if we inter change the axes of the above graph:
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The information is exactly the same in the two graphs shown; the orientation of the
axes has simply been changed.  You can use this graph as a clock.  Find the per cent-
age of radioisotope remaining on the horizontal axis and r ead the number of half-
lives passed from the vertical axis.  That pr ovides one method of dating a fossil.

To find the half-life of a particular radioisotope, you can r efer to the CRC Handbook 
of Physics and Chemistry; the half-lives of some radioisotopes used by life scientists 
are listed here:

Radioisotope Half-Life  
238Uranium (238U) 4.46 ×109 years  
40Potassium (40K) 1.26 ×109 years  
235Uranium (235U) 7.04 ×108 years  
239Plutonium (239Pu) 2.44 ×104 years  
14Carbon (14C) 5715 years  
3Hydrogen (3H, also called tritium, T) 12.32 years  
35Sulfur (35S) 87.2 days  
32Phosphorus (32P) 14.28 days  
131Iodine (131I) 8.040 days  

To determine how much of your radioisotope has decayed, you need to know how
much was there to begin with.  This answer depends on what radioisotope you ar e
interested in. And each isotope provides a different kind of calendar.  If you are 
interested in determining the age of a fossil (i.e., something that was a living or gan-
ism sometime within the last 30,000 years), 14C dating is commonly used.
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DATING 9.3: 14C Decay as a Calendar

The 14C that was present when Earth was created has long since decayed.  However,
new 14C is produced in the atmosphere at the same rate it decays on Earth, so, ther e
is always the same amount on this planet; that is, for every 10 12 atoms of 12C there is
one atom of 14C.  Put another way, for every mole of 12C atoms, there are about 6×1011

atoms of 14C.  

Because living organisms constantly exchange carbon with the envir onment,
the proportion in any living organism is also one 14C for every 1012 12C isotopes.

Once an organism dies, however, it no longer exchanges carbon with its envir on-
ment.  So, starting from the moment of death, the pr oportion of 14C relative to 12C
inside the organism starts to decrease.  And it starts to decrease at a characteristic
decay rate, that is, the half-life of 5,715 years.  

So, if we recreate the graph above, filling in the appr opriate numbers for 14C, we get
the following relationship that allows us to convert the ratio of 14C to 12C in a fossil
into time since death of the or ganism:

To determine how long an organism has been dead using this graph, all you need do
is measure the ratio of 14C to 12C, then see how that corresponds on the graph to the
number of years that has passed; that is the age of the fossil.
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An alternative to using the graph is to use an equation that r elates the percentage of
radioisotope remaining to time passed.  The equation is:

where x is the number of half-lives that have passed.  (Note: this is the equation of
the curve in the graph.)

Rearranging the above equation gives:

Taking the log2 of both sides gives:

And, x times the half life in years tells you the number of years that have passed
since the organism was alive.

14C FOSSIL DATING SHORTCUT

1. Multiply the current ratio of 14C to 12C by 1012.

2. Multiply that quotient by 100 to calculate % remaining.

3. Take the log2 of that percentage.

4. Subtract that number from 6.644.

5. Multiply the difference by 5715.

You cannot use 14C to date anything older than 30,000 years because after about 5
half lives (3×104 years) there is too little 14C to measure accurately.

x = −log ( ) log (%2 2100   remaining)radioisotope

x = −log ( ) log (%2 2100   remaining)radioisotope

2
100x =

Percentage of radioisotope remaining

percentage
C
C

 of radioisotope remaining =
14

12
1210

100
2

× = x
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RADIOACTIVE DATING – TRY IT OUT

EXERCISE I: You find a fossil and discover that the ratio of 14C to 12C is 1:12.5×1012.
How old is the fossil?

EXERCISE II: You find a bone and measure the ratio of 14C to 12C and find it to be
1:4×1012.  How old is the fossil?

LINKS TO ANSWERS

EXERCISE I

EXERCISE II
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TRY IT OUT: ANSWERS

EXERCISE I: You find a fossil and discover that the ratio of 14C to 12C is 1:12.5×1012.
How old is the fossil?

Step one:

Step two: 8.0% is left

Step three: log2(8.0) = 3.0  (because 2 3 = 8).

Step four: x =  6.644-3.0 = 3.6

Step five: 3.6×5715 = 2.1×105 years old.

Check:  Does this look right?  Well, 3.6 is between 3 and 4 half-lives.  If 3 half-lives
had passed, then there would be 12.5% left; if 4 had passed, ther e would be 6.25%
left.  8% does indeed fall between 12.5% and 6.25%.  So, yes, the answer looks right.
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TRY IT OUT: ANSWERS

EXERCISE II: You find a bone and measure the ratio of 14C to 12C and find it to be
1:4×1012.  How old is the fossil?

Step one:

Step two: 25% is left

Step three: log2(25) = 4.644

Step four: x = 6.644 – 4.644 = 2.0

Step five: 2.0 × 5715 = 1.1×104 years old

You might have noticed that 25% is found after 2 half lives.  If you did, you could
have jumped right from step 2 to step 5.
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THE GREEK ALPHABET/SYMBOLS

Greek letter Greek name Key (Pronunciation); Common usage

Α α alpha A a
Β β beta B b
Γ γ gamma G g
Δ δ delta D d symbol for “change in”
Ε ε epsilon E e
Ζ ζ zeta Z z (zate-ah)
Η η eta H h (ate-ah); symbol for viscosity
Θ θ theta Q q (thate-ah)
Ι ι iota I i
Κ κ kappa K k
Λ λ lambda L l microliters; symbol for wavelength
Μ μ mu M m (myoo) micro-; symbol for population mean
Ν ν nu N n symbol for frequency
Ξ ξ xi X x (zi or k-sigh)
Ο ο omicron O o
Π π pi P p approximately 3.1416; the circumference of

a circle divided by its diameter
Ρ ρ rho R r symbol for density
Σ σ sigma S s symbol for population standard deviation
Τ τ tau T t
Υ υ upsilon U u
Φ φ phi F f (fee)
Χ χ chi C c (ki)
Ψ ψ psi Y y (sigh)
Ω ω omega W w symbol for ohms, for angular frequency  

Math for Life
REFERENCE TABLES



NUMERICAL PREFIXES

Prefixes for units

Prefix Abbreviation Multiplier

tera- T 1012

giga- G 10 9

mega- M 10 6

kilo- k 10 3

hecto- h 10 2

deca- da 10 1

deci- d 10 −1

centi- c 10 −2

milli- m 10 −3

micro- µ 10−6

nano- n 10 −9

pico- p 10 −12

femto- f 10 −15

atto- a 10 −18

zepto- z 10 −21

Example: a nanometer = 10−9 meters

Prefixes for nomenclature

Prefix Multiplier

hemi- 1/2

mono- 1
di- bi- bis- 2
tri- 3
tetra- 4
penta- 5
hexa- 6
hepta- 7
octa- 8
nona- 9
deca- 10

Examples: carbon monoxide is 
CO; dinitrogen tetraoxide is N2O4
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UNITS

International System of Units (S. I. Units)

Property Dimensions S.I. Units Abbreviation

Amount, Number
Angle radians rad
Temperature                                           Kelvins                                   K
Length, Distance Length (L) meters m
Time Time (T) seconds s
Mass Mass (M) kilograms kg
Electrical current Amperes (A) amperes I
Area L2 square meters m2

Volume L3 cubic meters m3

Volume L3 liters L
Molarity L−3 moles per liter M
Frequency T −1 Hertz Hz [s−1]
Radioactivity T −1 Becquerel Bq
Rate, Speed, Velocity L T −1 meters per second m/s−1

Acceleration L T −2 meters per second m/s−2

squared
Density M L−3 kilograms per cubic kg m−3

meter
Concentration M L−3 kilograms per liter kg L−1

Force, Weight M L T −2 Newtons N [kg m s−2]
Pressure M L−1 T −2 Pascals Pa [N m−2]
Energy, Work M L2 T −2 Joules J [N m]
Power M L2 T −3 Watts W [J s−1]
Intensity M L4 T −3 Watts per square meter I [W m−2]
Loudness bels (or decibels) β (or dB)[10 log(I/Io)]
Electrical charge T A Coulombs C [A s]
Electrical potential M L2 T −3 A−1 Volts V
Electrical resistance M L2 T −3 A−2 ohms •, R
Electrical capacitance M−1L−2T 4A2 Farads F

Note:  The differences in capitalization in the third column are not an error—some of them
are people’s names and thus are capitalized.
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Other Common Units (Not S.I.)

Property Unit Abbreviation To convert to S.I.

Amount, Number moles mol Number = mol × 6.02 × 1023

Angle degrees ° rad = 2π ×(degrees ÷ 360) 
Temperature degrees Celsius °C                       K = °C + 273.15
Molecular mass Daltons Da kg = Da ÷ 6.022 × 1026

Area hectare ha m2 = ha ÷ 104

Volume cubic centimeters cc L = cc ÷ 103

Force dyne dyn N = dyn × 105

Pressure atmospheres atm Pa = atm × 1.0133 × 105

Energy, Work calorie cal J = cal × 4.1868
Energy, Work erg erg J = erg × 107
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CONSTANTS

Constant Symbol Value

Angstrom Å 10−10 m
Avogadro’s number  6.023 × 1023

Base of natural log (ln) e 2.71828
Boltzmann’s constant k 1.3805 × 10−23 J K −1

Complex numbers i i = ;  i 2 = −1
Electronic charge e 1.602 × 10−19 C
Faraday constant F 9.6487 × 104 C/mol 

of electrons
Gravitational acceleration g 9.8067 m s−2

Mass of an electron me 9.1083 × 10−31 kg
Mass of a proton mp 1.67252 × 10−27 kg
Mole mol 6.023 × 1023

Pi π 3.1416
Planck’s constant h 6.6256 × 10−34 J s
Speed of light in a vacuum c 2.99795 × 108 m s−1

Standard temperature and pressure STP 273 K and 1.01 × 10 5 Pa
Universal or molar gas constant R 8.314 J mol −1  K −1

Volume of 1 mole of ideal gas at STP 22.4 L

–1
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USEFUL FORMULAS

Geometry
Triangle

Area of a triangle:

Sides of a right triangle:

Parallelogram

Area of a parallelogram: l × h

Volume of a cube: l × w × h

Circle

Circumference of a circle: 2πr

Area of a circle: πr2

Volume of a sphere:
4

3
3πr

c a b2 2 2= +

1

2
bh
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Right Circular Cylinder

Surface area of a cylinder: 2πrh

Volume of a cylinder:

Half Cone

Surface of a cone: πrs

Volume of a cone:

Algebra
Distance

To find the distance (d) between two points (x1,y1) and (x2,y2) :

Pythagorean theorem:

Polynomial Roots
The roots of a polynomial of the form y = ax2 + bx + c :

Quadratic equation: (note: a≠0)

Logarithms

Definition: logk x = m such that km = x.  (For common logarithms, k = 10.)

y x
b b ac

a
= = − + −

0
4

2

2

,  where 

d y y x x= −( ) + −( )2 1 2 1

πr h2

3

πr h2
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Function Abbr. Definition

Sine α Sin α

Cosine α Cos α

Tangent α Tan α

Cotangent α Ctn α

Secant α Sec α

Cosecant α Csc α Hypoteneuse
Opposite

 or,  
1

Sin

Hypoteneuse
Adjacent

 or,  
1

Cos

Adjacent
Opposite

 or,        
Cos
Sin

Opposite
Adjacent

 or,        
Sin
Cos

Adjacent
Hypoteneuse

 

Opposite
Hypoteneuse
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Important relationships: log ab = log a + log b
log a/b = log a – log b
log a/b = – log b/a
log aν = n log a

Definition: ln x (the natural log of x) = m such that eμ = x.

Important relationship: ln e = 1

Trigonometry
Right Triangle Definitions

For a right triangle:



A mnemonic device for remembering the first three lines of this table: SOH CAH
TOA: Sine is Opposite over Hypoteneuse; Cosine is Adjacent over Hypoteneuse;
Tangent is Opposite over Adjacent.

Trionometric Relationships

Some important trigonometric equations:

sin2α + cos2α = 1
sin(–α) = –(sin α)
cos) = –(cos α)

sin(180° – α) = sin α
cos(180° – α) = –cos α

sin(90° – α) = cos α
cos(90° – α) = –sin α

sin(90° + α) = cos α
cos(90° + α) = –sin α

Physics

Electricity

The relationship between voltage (V), current (I), and resistance (R) :

Ohm’s law: V = I R

Pressure, Volume, Temperature

The relationship between pressure (P), volume (V), temperature (T), and number of
moles of a gas (n) where R = molar gas constant:

PV = nRT
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THE ELECTROMAGNETIC SPECTRUM

Type of radiation Frequency range [Hz] Wavelength range [m]
(lowest to highest energy) ν = c/λ λ = c/ν

Radio waves <1011 >10− 3

AM 0.55 × 106 − 1.60 × 106 545 − 188
FM 88 × 106 − 108 × 106 3.40 − 2.78
TV 54 × 106 − 890 × 106 5.55 − 0.34
Radar 109 − 1011 3 × 10− 1 − 3 × 10− 3

Infrared (heat) 1011 − 3.8 × 1014 3 × 10− 3 − 8 × 10− 7

Visible light 3.8 × 1014 − 7.5 × 1014 8 × 10− 7 − 4 × 10− 7

Red 3.95 × 1014 − 4.76 × 1014 7.6 × 10− 7 − 6.3 × 10− 7

Orange 4.76 × 1014 − 5.08 × 1014 6.3 × 10− 7 − 5.9 × 10− 7

Yellow 5.08 × 1014 − 5.36 × 1014 5.9 × 10− 7 − 5.6 × 10− 7

Green 5.36 × 1014 − 6.12 × 1014 5.6 × 10− 7 − 4.9 × 10− 7

Blue 6.12 × 1014 − 6.67 × 1014 4.9 × 10− 7 − 4.5 × 10− 7

Violet 6.67 × 1014 − 7.89 × 1014 4.5 × 10− 7 − 3.8 × 10− 7

Ultraviolet 7.5 × 1014 − 3 × 1017 4 × 10− 7 − 10− 9

X rays 3 × 1017 − 3 × 1019 10− 9 − 10− 11

Gamma rays >3 × 1019 <10− 11

→
→

In
creasin

g E
n

ergy
→

→
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Shorter wavelengths are
more energetic.

Longer wavelengths are
less energetic.

X rays

Cosmic rays
Gamma rays

Ultraviolet (UV) 

Infrared (IR)

Microwaves
Radio waves

Visible 
light

1

10

102

103

104

105

106

Wavelength (nm)

700

400

600

500

Violet

Blue

Blue-green

Green

Yellow-green

Yellow

Orange

Red
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Chlorophyll a

250 300 350 400 450 500 550 600 650
VioletUV IRBlue

Wavelength (nm)

A
bs

or
pt

io
n

Green Yellow Red
700

PhycocyaninPhycoerythrin

Visible spectrum

β-Carotene

Chlorophyll b

Notice how much of the visible 
spectrum would go to waste if 
chlorophyll a were the only pigment 
absorbing light for photosynthesis.
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MICROSCOPY MATH

The resolution (R) of a microscope lens is the smallest distance by which two objects
can be separated and still be seen as two separate objects.  So, the smaller the R the
more you can see. To calculate R, you use Abbe’s law:

Abbe’s law:

where λ is wavelength, N.A. is numerical aperture, n is the refractive index of the
medium, and θ is one-half the angle of the cone of light entering the objective lens.
So, to improve resolution, you can make λ smaller or you can make N.A., n, or sin θ
larger.

 
R

n
= =

×
0 612 0 612. .

( sin )
 

(N.A.)
 λ λ
θ

Condenser lens

To ocular and your eye

Objective lens

Medium of refractive index n

Cover slip

Slide
Stage

Sample (surrounded by fluid)

Blue filter

White
light
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Improving R

λ is determined by the color of the light entering the specimen.  Filters can be used to
allow in light of a particular λ; frequently, microscopes come with blue filters. (Green
is also a common filter because human eyes see gr een well.)  Electron microscopes
have better resolution than light microscopes because λ is so much smaller.

The numerical aperture of a lens is printed on the side of the lens itself.  When you
buy the lens, you choose the numerical aperatur e from among the available lenses.

n is a characteristic of a medium, so to change n, you change media.  Because the
objective lens will be submerged in that medium, individual lenses ar e made to be
used in one particular type of medium.  Only thr ee media are commonly used: air,
water, and immersion oil.  The lens will carry a written indication if it is made to
work in water or oil.

Medium n
Air 1.000 
Water 1.330
Immersion oil 1.515  

Sin θ is a function of the microscope. 

In practice, R is limited:

Microscope type Practical best R
Light microscope 0.2 µm  
Electron microscope(EM) 0.2 nm (2 nm for 

biological specimens)  
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THE LAWS OF THERMODYNAMICS

Laws of nature are useful because you know ahead of time that your system must
follow them.  They allow you to calculate the value of an unknown if you know the
value(s) of other variables, and they allow you to pr edict how your system might
behave.  When you are interested in the energy of a system, you can consult the laws
of thermodynamics.

First law of thermodynamics

Formal statements:

• Energy is neither created nor destroyed.
• Energy can be converted from one form to another, but it cannot be created or

destroyed.
• The total energy of the universe is a constant.
• The energy change in any system is equal to the heat absorbed fr om the surround-

ings plus the work done on the system.
• All the heat energy added to a closed system can be accounted for as mechanical

work, an increase in internal energy, or both.

Informal statement:

• You can’t win or lose, you can only br eak even.

Equations:

When using the first law as a guide to understanding the ener gy in a system, you do
not actually deal with the total amount of ener gy in the universe (it’s not possible).
Instead, you deal with the change in ener gy (∆E) in your system.

The following equations and their verbal meanings ar e all ways of understanding the
first law of thermodynamics.

∆E = E2−E1 The change in energy is equal to the energy at the end (E2) minus
the energy at the beginning (E1).

E2 < E1 ∴ ∆ E < 1 E2 is less than E1; therefore, ∆E is a negative quantity.  That
means that the system has lost ener gy (usually in the form of
heat) to its surroundings.

−∆Esys = ∆Esur The energy lost by the system, −∆Esys, equals the energy gained
by the surroundings, ∆Esur.
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∆E = Q + W This version of the equation describing the first law is useful if
you know about heat and work.  It r efers specifically to the ener-
gy of the system so the subscript “sys” can be dr opped.  It says
that the change in internal energy of the system is equal to the
amount of heat (Q) added to the system plus the amount of
work (W) done by the system.  The units of E, Q, and W are
joules.

Second law of thermodynamics

Formal statements:

• Not all energy can be used, and disorder tends to increase.
• When energy is converted from one form to another, some of the energy becomes

unavailable to do work.
• The entropy of the universe increases.  It can never decrease.
• Disorder tends to increase in the universe or in a closed system.
• The entropy of the universe never decreases.  During any process, the entropy

remains constant or it increases.
• It is impossible to have a pr ocess whose only result is the transfer of energy from a

cold place to a warm place.

Informal statement:

• You can’t win or break even, you can only lose.

Equations:

H = G + TS The total energy of the system (the enthalpy, H [J]) comprises
two parts: energy that can do work (the fr ee energy G [J]), and
energy that can not do work (the entr opy, S [J K −1], multiplied
by the absolute temperature, T [K]).  Entropy is a measure of
disorder in a system.

G = H−TS This equation is just a rearrangement of the first equation.  This
form is useful when it is the fr ee energy that you are interested
in.  This is usually the case in biology.
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∆G = ∆H−T∆S As with the energy of the universe, the total ener gy of this sys-
tem is not measurable in practice; however, you can measure the
changes.  So, the equation is r ewritten in a form for which we
can measure values.  This equation says that the change in fr ee
energy is the change in total ener gy minus the change in entropy.
If ∆G is negative, it means that the r eaction releases energy (the
negative sign means energy is leaving the system) and the r eac-
tion will occur spontaneously; if ∆G is positive, it means that
energy has to be put in to the system to make the r eaction go.

Note: There is a third law which states that the entr opy of a perfect crystalline sub-
stance is zero at a temperature of absolute zero.  This law has no practical
application in biology.
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A BIOLOGIST’S PERIODIC TABLE

Patterns in the periodic table:

Periods (rows): As you move across a period, the chemical properties of the
elements change gradually.

Groups (columns): Elements in the same group have similar configurations of
electrons in their outer shells and thus have similar chemical
properties.
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The six elements highlighted in 

yellow make up 98% of the 

mass of most living organisms.

Elements highlighted in 

orange are present in small 

amounts in many organisms.

Masses in parentheses indicate unstable elements 

that decay rapidly to form other elements. 

Elements without a chemical 

symbol are as yet unnamed.

Vertical columns contain 

elements with similar properties.

1
H

1.0079

3
Li

6.941

4
Be

9.012

11
Na

22.990

12
Mg

24.305

20
Ca

40.08

19
K

39.098

21
Sc

44.956

22
Ti

47.88

23
V

50.942

24
Cr

51.996

25
Mn

54.938

26
Fe

55.847

2
He

4.003

7
N

14.007

8
O

15.999

15
P

30.974

16
S

32.06

29
Cu

63.546

30
Zn

65.38

31
Ga

69.72

32
Ge

72.59

33
As

74.922

34
Se

78.96

35
Br

79.909

36
Kr

83.80

9
F

18.998

10
Ne

20.179

17
Cl

35.453

18
Ar

39.948

27
Co

58.933

28
Ni

58.69

5
B

10.81

6
C

12.011

13
Al

26.982

14
Si

28.086 

37
Rb

85.4778

38
Sr

87.62

39
Y

88.906

40
Zr

91.22

41
Nb

92.906

42
Mo

95.94

43
Tc

(99)

44
Ru

101.07  

47
Ag

107.870

48
Cd

112.41

49
In

114.82

50
Sn

118.69

51
Sb

121.75

52
Te

127.60

53
I

126.904

54
Xe

131.30

45
Rh

102.906

46
Pd

106.4

55
Cs

132.905

56
Ba

137.34

72
Hf

178.49

73
Ta

180.948

74
W

183.85

104
Rf

(261)

105
Db

(262)

106
Sg

(266)

107
Bh

(264)

108
Hs

(269)

109
Mt

(268)

110

(269)

111

(272)

112

(277)

113 114

(285)

115

(289)

116 117 118

(293)

75
Re

186.207

76
Os

190.2

79
Au

196.967

80
Hg

200.59

81
Tl

204.37

82
Pb

207.19

83
Bi

208.980

84
Po

(209)

85
At

(210)

86
Rn

(222)

77
Ir

192.2

78
Pt

195.08

87
Fr

(223)

88
Ra

226.025

58
Ce

140.12

59
Pr

140.9077

60
Nd

144.24

61
Pm

(145)

64
Gd

157.25

65
Tb

158.924

66
Dy

162.50

67
Ho

164.930

68
Er

167.26

69
Tm

168.934

70
Yb

173.04

62
Sm

150.36

63
Eu

151.96

90
Th

232.038

57
La

138.906

89
Ac

227.028

91
Pa

231.0359

92
U

238.02

93
Np

  237.0482  

96
Cm

(247)

97
Bk

(247)

98
Cf

(251)

99
Es

(252)

100
Fm

(257)

101
Md

(258)

102
No

(259)

71
Lu

174.97

94
Pu

(244)

95
Am

(243)

Lanthanide series

Actinide series

103
Lr

(260)

2

He

4.003

Atomic number 
(number of protons)

Chemical symbol 
(for helium)

Atomic mass 
(number of protons plus
number of neutrons 
averaged over all isotopes)

–

–

+
+



Selected groups:
1A: The alkali metals (does not include H); these ar e highly reactive.
2A: The alkaline earth metals; reactive, but not as highly as 1A.
1B: The coinage metals; nonreactive metals.
7A: The halogens; highly reactive, nonmetallic.
8A: The noble gases; very stable.

Series (or families): 
A: The representative elements.
B: The transition elements.
La to Lu is the lanthanide or rar e earth series.
Ac to Lr is the actinide series.
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BIOLOGICALLY IMPORTANT ELEMENTS

Atomic Oxidation No. of 
Element Symbol mass [Da] states covalent bonds

Calcium Ca 40.08 +2 2
Carbon C 12.01115 +4, +2, −4 4
Chlorine Cl 35.453 +7, +5, +3, +1, −1 1
Cobalt Co 58.9332 +3, +2 2
Copper Cu (cuprum) 63.54 +2, +1 1
Hydrogen H 1.00797 +1, −1 1
Iron Fe (ferrum) 55.847 +3, +2 2
Magnesium Mg 24.312 +2 2
Manganese Mn 54.9380 +7, +6, +4, +3, +2 2
Nitrogen N 14.0067 +5, +4, +3, +2, +1, −3 5
Oxygen O 15.9994 +2, −1, −2 2
Phosphorus P 30.9738 +5, +3, −3 5
Potassium K (kalium) 39.102 +1 1
Silicon Si 28.086 +4, −4 4
Sodium Na (natrium) 22.9898 +1 1
Sulfur S 32.064 +6, +4, +2, −2 2
Zinc Zn 65.37 +2 2
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MOLECULAR WEIGHT AND FORMULA WEIGHT

Molecular weight and formula weight tell you the mass of a mole of a particular
chemical.

The units of molecular and formula weight ar e g mol− 1 and, because these units are
used throughout, they are not usually written.

What is the difference between molecular and formula weight?

Molecular weight, (M.W.; also called the molecular molar mass) r efers to the mass of
the molecular formula.  It tells you both the number of atoms of each element and
their relative proportions in the molecule. 

Formula weight (F.W.; also called the empirical molar mass) r efers to the mass of the
empirical formula.  It tells you only the r elative proportions of each atom.  

For example, glucose (C6H12O6) has a M.W. = 180.2 and a F.W. (for CH2O) = 30.0.

Ionic compounds, such as NaCl (table salt) don’t r eally exist as individual molecules.
It is their F.W. that is reported, because you can know only the r elative proportions of
each element.  

Nowadays most people just say “M.W.”  Careful, chemical companies put “F.W.” on
their labels.  In that case, the designation means the weight of the formula as listed on
the label. So, for example, if it is a hydrated compound, the F .W. includes the mass of
the water molecules.

REFERENCE TABLES / Page 153Math for Life



BUFFERS

Desired pH range Buffer pKa at 25°C pH range at 37°C

Low Oxalic acid (pK1) 1.27
H3PO4 (pK1) 2.15
Citric acid (pK1) 3.13
Oxalate– (pK2) 4.27
Acetic acid 4.76

Near neutral NaHCO3 6.35 5.4–6.9
PIPES 6.76 6.1–7.5
MOPS 7.15 6.5–7.9
HEPES 7.47 6.8–8.2
TRIZMA 8.08 7.0 –9.0

High Bicine 8.26 7.6–9.0
NH4

+ 9.25
Glycine 9.78
HCO3

– (pK2) 10.33
Piperidine 11.12
HPO4

2– (pK3) 12.38 
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FUNCTIONAL GROUPS

Name Formula Comment

Aldehyde RCHO Functional group is carbonyl; R is an H, 
alkyl, or aryl group

Alkane CnH2n+2 Aliphatic hydrocarbons
Alkene CnH2n Compounds with C=C functional groups
Alkyl CnH2n+1 A group derived from an alkane minus 

one H
Alkyne CnH2n−2 Compounds with C=C functional group
Amino —NH2

Aryl Any group containing one or more fused 
benzene rings, less one H

Benzene C6H6 Cyclic, with delocalized electrons
Bromo —Br Halogen
Carbonyl —C=O Functional group of aldehydes and ketones
Carboxyl —COOH Acids containing carboxyls, called car-
boxylic

acids
Chloro —Cl Halogen
Ester —COOR R is an H, alkyl, or aryl gr oup
Ethanol CH3—CH2—OH Produced by fermentation
Ethyl —CH2—CH3 Alkyl
Fluoro —F Halogen
Hydroxyl —OH When part of C-containing molecule,
defines 

an alcohol
Iodo —I Halogen
Ketone RCOR′ Functional group is carbonyl; R and R ′ are 

alkyl and/or aryl groups
Methanol CH3OH
Methyl —CH3 Alkyl
n-Butyl —CH2—CH2—CH2—CH3 Alkyl
n-Propyl —CH2—CH2—CH3 Alkyl
Nitro —NO2

Phospho —PO4
2−

Sulfhydryl —SH Can form disulfide bonds
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Some Functional Groups Important to Living Systems
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Phosphate Organic
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AMINO ACIDS AND THEIR PROPERTIES

Grouped according to side-chain properties

Amino acid Side chain Abbreviation Genetic code Comments

Hydrophilic

Aspartic acid Acidic Asp D GAU, GAC
Glutamic acid Acidic Glu E GAA, GAG

Arginine Basic Arg R CGU, CGC, CGA, CGG, AGA, AGG
Histidine Basic His H CAU, CAC
Lysine Basic Lys K AAA, AAG

Asparagine Polar,  uncharged Asn N AAU, AAC
Glutamine Polar, uncharged Gln Q CAA, CAG
Serine Polar, uncharged Ser S UCU, UCC, UCA, UCG, AGU, AGC
Threonine Polar,  uncharged Thr T ACU, ACC, ACA, ACG
Tyrosine Polar, uncharged Tyr Y UAU, UAC

Hydrophobic
Alanine Nonpolar Ala A GCU, GCC, GCA, GCG
Cysteine Nonpolar Cys C UGU, UGC Can form disulfide bonds
Glycine Nonpolar Gly G GGU, GGC, GGA, GGG Side chain is single H atom
Isoleucine Nonpolar Ile I AUU, AUC, AUA
Leucine Nonpolar Leu L UUA, UUG, CUU, CUC, CUA, CUG
Methionine Nonpolar Met M AUG Is also the START codon
Phenylalanine Nonpolar Phe F UUU, UUC
Proline Nonpolar Pro P CCU, CCC, CCA, CCG Contorted side chain distorts

secondary protein structure
Tryptophan Nonpolar Trp W UGG

Valine Nonpolar Val V GUU, GUC, GUA, GUG
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Alphabetical by single-letter abbreviation

Amino Side  
acid chain Abbreviation Genetic code Comments

Alanine Nonpolar Ala A GCU, GCC, GCA, GCG
Cysteine Nonpolar Cys C UGU, UGC disulfide bonds
Aspartic acid Acidic Asp D GAU, GAC
Glutamic acid Acidic Glu E GAA, GAG
Phenylalanine Nonpolar Phe F UUU, UUC
Glycine Nonpolar Gly G GGU, GGC, GGA, GGG
Histidine Basic His H CAU, CAC
Isoleucine Nonpolar Ile I AUU, AUC, AUA
Lysine Basic Lys K AAA, AAG
Leucine Nonpolar Leu L UUA, UUG, CUU, CUC, CUA, CUG
Methionine Nonpolar Met M AUG Met and START
Asparagine Polar,  uncharged Asn N AAU, AAC
Proline Nonpolar Pro P CCU, CCC, CCA, CCG 2° structure 

breaker 
Glutamine Polar, uncharged Gln Q CAA, CAG
Arginine Basic Arg R CGU, CGC, CGA, CGG, AGA, AGG
Serine Polar, uncharged Ser S UCU, UCC, UCA, UCG, AGU, AGC
Threonine Polar,  uncharged Thr T ACU, ACC, ACA, ACG
Valine Nonpolar Val V GUU, GUC, GUA, GUG
Tryptophan Nonpolar Trp W UGG
Tyrosine Polar,  uncharged Tyr Y UAU, UAC dityrosine bonds

UAA, UAG, UGA STOP

Math for Life



BIOLOGICAL MACROMOLECULES

LIPIDS:

Fatty acids

Triglycerides

Phospholipids

Steroids

CARBOHYDRATES:

Mono and Disaccharides

Polysaccharides

Derivative carbohydrates

PROTEINS:

Amino acids

Proteins

NUCLEIC ACIDS:

RNA subunits

DNA subunits

RNA and DNA strands

REFERENCE TABLES / Page 159Math for Life



REFERENCE TABLES / Page 160Math for Life

LIPIDS: Fatty Acids

Key Points Long nonpolar
hydrocarbon tails, polar carboxyl
group.  Come in saturated and
unsaturated forms; unsaturated
fatty acids have kinks that pre-
vent them from packing closely
together. Component of triglyc-
erides and phospholipids.

CO

OH

CH2

CH2

H2C

CH2

H2C

CH2

H2C

CH2

H2C

CO

OH

CH2

CH2

CH2

CH2

CH2

CH2

CH2

CH2

     CH3

CH2

CH2

CH2

CH2

HC

HC

HC

HC

CH2

H2C

CH2

H2C

CH3

H2C

All bonds between 

carbon atoms are single in 

a saturated fatty acid 

(carbon chain is straight).

Double bonds between 

two carbons make an 

unsaturated fatty acid 

(carbon chain has kinks). 

The straight chain allows a molecule to 

pack tightly among other similar 

molecules. Kinks prevent close packing.

(A)

(B)

Palmitic acid

Linoleic acid

Oxygen

Hydrogen
Carbon
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LIPIDS: Triglycerides
 

Key Points Three fatty acid tails plus a glycer ol.  Those that are solid at room
temperature (because the fatty acids are largely saturated thus allowing the mole-
cules to pack closely together) are fats; those that are liquid at room temperature
(because unsaturated fatty acid tails prevent the molecules from packing closely
together) are called oils.  Both fats and oils stor e energy.

O H

H2C

O H

CH2

O H

C

3CO

OH

CH2

CH2

H2C

CH2

H2C

CH2

H2C

CH2

H2C

CH2

H2C

CH2

H2C

CH3

H2C

CH2

CH2

H2C

CH2

H2C

CH2

H2C

CH2

H2C

CH2

H2C

CH2

H2C

CH3

H2C

CH2

CH2

H2C

CH2

H2C

CH2

H2C

CH2

H2C

CH2

H2C

CH2

H2C

CH3

H2C

CH2

CH2

H2C

CH2

H2C

CH2

H2C

CH2

H2C

CH2

H2C

CH2

H2C

CH3

H2C

CH2

CH2

H2C

CH2

H2C

CH2

H2C

CH2

H2C

CH2

H2C

CH2

H2C

CH3

H2C

CH2

CH2

H2C

CH2

H2C

CH2

H2C

CH2

H2C

CH2

H2C

CH2

H2C

CH3

H2C

CO

OH

CO

OH CO

H

O

H2C CH2C

O O

H

CO CO

H2O

The synthesis 

of an ester 

linkage is a 

condensation 

reaction.

+ 

Glycerol
(an alcohol)

3 
Fatty acid
molecules

 

Triglyceride 

Ester 
linkage
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LIPIDS: Phospholipids
  

Key Points Two fatty acid tails (non-polar) attached to a glycer ol that is attached
to a phosphate containing compound (polar). Biological membranes ar e largely
made up of phospholipid bilayers. 

LIPIDS: Steroids
 

Key Points Compounds whose multiple rings share carbons. Steroids function in
membranes (e.g. cholesterol) and as signaling molecules (e.g. hormones).

P O-
O

O

CHH2C

H3C N
+

CH2

CH2

O

CH2

CH2

O

C O

CH3

CH2

C O

O

CH3

The hydrophilic “head” is 

attracted to water, which is polar.

In an aqueous environment, “tails” 

stay away from water, and “heads” 

interact with water, forming a bilayer.

The hydrophobic “tails” are

not attracted to water.

Choline

Hydrophilic
head

Phosphate

Glycerol

Hydrocarbon
chains

Positive
charge

Negative
charge

Hydrophobic
tail

Hydrophilic
“heads” 

Hydrophilic
“heads” 

Hydrophobic
fatty acid “tails”

Water

Water

+
–

+
–

(A)  Phosphatidylcholine

(B)  Phospholipid bilayer

O

OH

H3C

H3COH

O

O CH2OH

C

HO

H3C

H3C

Cortisol is a hormone secreted  
by the adrenal glands.

Testosterone is a male sex 
hormone.

HO

H3C

H3C

H3C

CH3

CH3

CH3

HO

H3C

H3C

H3C

CH3

CH3

Cholesterol is a constituent 
of membranes and is the 
source of steroid hormones.

Vitamin D2 can be produced 
in the skin by the action of light 
on a cholesterol derivative.
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CARBOHYDRATES: Mono and Disaccharides (Sugars)

Key Points

6H12O6, but the atoms are arranged dif-
ferently. Glucose, a hexose, is in all living cells; its ener gy is released in the process
of glycolysis. Disaccharides are made up of two monosaccharides joined by glyco-
sidic linkages. Oligosaccharides are made up of a few monosaccharides joined by
glycosidic linkages.  Some oligosaccharides have additional functional gr oups
attached; for example, some are attached to cell surface lipids that face the outside
of the cell.  These oligosaccharides act as cell r ecognition signals; the collection of
all of those cell surface oligosaccharides is sometimes called the glycocalyx.

OH

H

H

H O

OH

HO H

H

H

OHH

OH

H

O

or

H2OH

H H

OH

H

H

H OH

OH

HO

H2OH

H
H

H

H OH

OH

HO

H2OH

H OH

H

H

H

H OH

OH

HO

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

CC

C

C

C

C

CC

C

1

2

3

4

5

6
3

4

6

5

1

2 3

4

5

2

1

6

3

4

5

2

1

6

HO O O

The dark line indicates that the edge of 

the molecule extends toward you; the 

thin line extends back away from you.

The numbers in red indicate the standard 

convention for numbering the carbons.

Aldehyde
group

Straight-chain form α-D-Glucose β-D-GlucoseIntermediate form

The straight-chain form of 
glucose has an aldehyde 

oup at carbon 1.

A reaction between this aldehyde 
group and the hydroxyl group at 
carbon 5 gives rise to a ring form.

Depending on the orientation of the aldehyde group when 
the ring closes, either of two molecules—α-D-glucose or 
β-D-glucose—forms. 

Hydroxyl group

Text Figure 3.13, 3.14, & 3.15

(

Energy source. Distinguished by the number of carbons. Trioses (3C) include 
glyceraldehyde, a component of GAP. Pentoses (5C) include compounds found in plant 

 C
cell walls; ribose and deoxyribose, the sugars found in nucleotides (see below), ar e both
pentoses. Hexoses (6C) all have the formula 

Jason Dirks
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11
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H
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H
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H

OH

H
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C
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CC

C C

C

Three-carbon sugar

Five-carbon sugars (pentoses)

Six-carbon sugars (hexoses)

α-Mannose α-Galactose Fructose

Ribose

Glyceraldehyde

Deoxyribose

Ribose and deoxyribose 
each have five carbons,
but very different chemical 
properties and biological 
roles.

Glyceraldehyde is the 
smallest monosaccharide
and exists only as the 
straight-chain form.

4 41 1 4 4

4 1
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+
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+
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H

H
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CH2OH

O

The presence of a carbon atom (C) 

at a junction such as this is implied.

Formation
of α linkage

α-D-Glucose β-D-Glucose

α-1,4 glycosidic linkage

β-1,4 glycosidic linkage

α-D-Glucose β-D-Glucose

Maltose

Formation
of β linkage

β-D-Glucose

β-D-Glucose β-D-Glucoseβ-D-Glucose
Cellobiose

Maltose is produced when an α-1,4 
glycosidic linkage forms between
two glucose molecules. The hydroxyl 
group on carbon 1 of one D-glucose
in the α (down) position reacts with the 
hydroxyl group on carbon 4 of the 
other glucose.

In cellobiose, two glucoses are linked 
by a β-1,4 glycosidic linkage.



CARBOHYDRATES: Polysaccharides
 

Key Points Polysaccharides are giant chains of  monosaccharides joined by gly-
cosidic linkages. Cellulose, the most common or ganic compound on the planet, is
a polysaccharide. Starch and glycogen, both of which ar e built up from glucose,
are energy storing compounds.
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O
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CH2OH
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CH2OH CH2OH
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Hydrogen bonding to other cellulose 

molecules can occur at these points.

Branching occurs here.

Cellulose is an unbranched polymer of glucose with 
β-1,4 glycosidic linkages that are chemically very stable.

Glycogen and starch are polymers of glucose with α-1,4 glycosidic 
linkages. α-1,6 glycosidic linkages produce branching at carbon 6.

Starch and glycogen

Cellulose



CARBOHYDRATES: Derivative carbohydrates
 

Key Points Compounds comprising a carbohydrate covalently linked to a func-
tional group, such as a phosphate (e.g. sugar phosphate), an amino gr oup (the
amino sugars), or an N-acetyl group (e.g. chitin).  Sugar phosphates can be inter-
mediates in energy reactions, amino sugars can be structural.
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Fructose

Phosphate groups

GalactosamineGlucosamine

Amino 
group

N-acetyl group

Glucosamine

Chitin

Fructose 1,6 bisphosphate

N-acetylglucosamine

(A)  Sugar phosphate

(B)  Amino sugars

(C)  Chitin

Fructose 1,6 bisphosphate is 
involved in the reactions that 
liberate energy from glucose.
(The numbers in its name 
refer to the carbon sites
of phosphate bonding;
bis- indicates that two 
phosphates are present.)

The monosaccharides 
glucosamine and 
galactosamine are amino 
sugars with an amino group 
in place of a hydroxyl group. 

Chitin is a polymer of
N-acetylglucosamine;
N-acetyl groups provide 
additional sites for 
hydrogen bonding 
between the polymers. 
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The Twenty Amino Acids

TA B L E  3 . 2

H2N
+

CH2

CH2

H2C
CH2

H3N
+

C

CH2

CH3

H3N
+

H3C CH3
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+
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+
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+
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+
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+
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+
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+
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+
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+
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+
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+
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+
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+
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H 
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Proline
(Pro; P)

Tyrosine
(Tyr; Y)

Glutamine
(Gln; Q)

Amino acids with electrically charged hydrophilic side chains 

Amino acids with polar but uncharged side chains (hydrophilic)

Amino acids with nonpolar hydrophobic side chains

Special cases

Leucine 
(Leu; L)

Serine
(Ser; S)

Glycine
(Gly; G)

Glutamic acid
(Glu; E)

Aspartic acid
(Asp; D)

Asparagine
(Asn; N)

Valine
(Val; V)

Methionine
(Met; M)

Arginine
(Arg; R)

Lysine
(Lys; K) 

Threonine
(Thr; T)

Cysteine
(Cys; C)

Histidine 
(His; H)

Positive Negative

Phenylalanine
(Phe; F)

Tryptophan
(Trp; W)

–+

Alanine
(Ala; A)

Isoleucine
(Ile; I) 

The general 

structure of all 

amino acids is 

the same… 

…but each 

has a different 

side chain. 

Amino acids 

have both 

three-letter and 

single-letter 

abbreviations.
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PROTEINS: The Universal Genetic Code

Key Points Genetic information is encoded in mRNA in three-letter units—
codons—made up of the bases uracil (U), cytosine (C), adenine (A), and guanine
(G). To decode a codon, find its first letter in the left column, then r ead across the
top to its second letter, then read down the right column to its thir d letter. The
amino acid the codon specifies is given in the corr esponding row. For example,
AUG codes for methionine, and GUA codes for valine.

REFERENCE TABLES / Page 168Math for Life

UAG
UAA UGA

AUG

Second letter
U C A G

U
UCC
UCU

UCG
UCA

Phenyl-
alanine

Leucine

UUC
UUU

UUG
UUA

Serine
UAC
UAU

Tyrosine

Stop codon
Stop codon

UGC
UGU

UGG

Cysteine

Stop codon

Tryptophan

U

C

A
G

C Leucine
CUC
CUU

CUG
CUA

CCC
CCU

CCG
CCA

Proline
CAC
CAU

CAG
CAA

Glutamine

Histidine
CGC
CGU

CGG
CGA

Arginine

U

C

A
G

A
IsoleucineAUC

AUU

AUA

Methionine;
start codon

ACC
ACU

ACG
ACA

Threonine
AAC
AAU

AAG
AAA

Lysine

Asparagine AGC
AGU

AGG
AGA

Serine

Arginine

U

C

A
G

G Valine
GUC
GUU

GUG
GUA

GCC
GCU

GCG
GCA

Alanine
GAC
GAU

GAG
GAA Glutamic

acid

Aspartic 
acid GGC

GGU

GGG
GGA

Glycine

U

C

A
G

F
ir

st
 le

tt
er

T
hird

 letter
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PROTEINS: Proteins

Key Points One or more polypeptides, that is, polymers of amino acids linked
together by peptide linkages.  The or der of amino acids of a pr otein is determined
by the sequence of nucleotides in the gene encoding that polypeptide. 
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Quaternary structure

Two or more polypeptides assemble to form larger 

protein molecules. The hypothetical molecule here is 

a tetramer, made up of four polypeptide subunits.

Tertiary structure

Polypeptides fold, forming specific shapes.

Folds are stabilized by bonds, including

hydrogen bonds and disulfide bridges.  

Primary structure

Amino acid monomers are joined, 

forming polypeptide chains.

Polypeptide chains may form 

α helices or β pleated sheets.

Secondary structure
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Peptide bondAmino acid monomers

(B)

α Helix

(A)

(D)
(E)

(C)

β Pleated sheet

Subunit 1 Subunit 2

Subunit 4Subunit 3

Disulfide bridge

Hydrogen bond

Hydrogen bond

Hydrogen bond

C C

C C

R

O

O

R

N

N

H

H

H

H

α Helix β Pleated sheet 
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Key Points DNA is the genetic material. That is, the genetic instr uctions for all of
the proteins in the organism are encoded in its DNA. DNA is transcribed into
RNA by proteins called polymerases; RNA can be transcribed into DNA by a pro-
tein called a reverse transcriptase. Messenger RNA (mRNA) is translated into
protein with the help of ribosomes; ribosomal RNAs (rRNAs) ar e not translated,
they are part of the ribosome; transfer RNAs (tRNAs) ar e not translated, they par-
ticipate in translation by bringing amino acids to the ribosome.
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NUCLEIC ACIDS: RNA & DNA strands
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The numbering 

of ribose carbons 

is the basis for 

identification of 5′ 
and 3′ ends of 

DNA and RNA 

strands.

O

3′ 

5′

DNA (double-stranded)

Purine base

RNA (single-stranded)

Phosphodiester
linkage

Deoxyribose
Pyrimidine base

Phosphate

Ribose
Phosphate

3′ end 

5′ end

3′ end 

5′ end 

3′ end 

5′ end 

Hydrogen 
bond

In RNA, the bases are attached to ribose. The bases 
in RNA are the purines adenine (A) and guanine (G) 
and the pyrimidines cytosine (C) and uracil (U).

In DNA, the bases are attached to deoxyribose, and the base 
thymine (T) is found instead of uracil. Hydrogen bonds between 
purines and pyrimidines hold the two strands of DNA together.



NUCLEIC ACIDS: RNA subunits

Key Points Ribonucleotides are made up of a base plus a ribose plus 1, 2, or 3
phosphates. The bases are either purines or pyrimidines. A base plus a ribose
makes a nucleoside; a nucleoside plus 1, 2, or 3 phosphates makes a nucleotide.
The ribonucleotides are the components of RNA. In addition to being one of the
nucleotides found in RNA, the ribonucleotide ATP is very important for energy
storage in cells. The ribonucleotide GTP is also an important source of energy for
various cell processes.
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NUCLEIC ACIDS: DNA subunits

Key Points Deoxyribonucleotides are made up of a base plus a deoxyribose plus
1, 2, or 3 phosphates. The bases ar e either purines or pyrimidines. A base plus a
deoxyribose makes a nucleoside; a nucleoside plus 1, 2, or 3 phosphates makes a
nucleotide. The deoxyribonucleotides are the components of DNA.

REFERENCE TABLES / Page 172Math for Life



BIOCHEMICAL REACTIONS

General reactions

A reaction wherein an enzyme converts a substrate into a pr oduct:

E + S → ES → E + P

E = enzyme
S = substrate
ES = enzyme substrate complex
P = product

Notes: 1. The enzyme is unchanged by the r eaction.
2. The enzyme lowers the activation ener gy of the reaction; the enzyme does

not affect ∆G of the reaction.

Oxidation—reduction (redox) reactions:

AH2 + B → BH2 + A

A = molecule being oxidized,  (losing electr ons or losing hydrogen atoms)
H2 = hydrogen atoms (not ions). 
B = molecule being reduced (gaining electrons or  hydrogen atoms)

Hydrolysis:

AB + H2O → AOH + BH

AB = the molecule being broken apart by water
H2O = water
AOH = product of the reaction
BH = product of the reaction

Notes:1. Hydrolysis is the breaking (lysis) of a compound by water (hydr o).

Specific Reactions

The reduction of NAD+:

NAD+ + 2H → NADH + H+

NAD+ = oxidized nicotinamide adenine dinucleotide
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H = hydrogen atom
NADH = reduced nicotinamide adenine dinucleotide
H+ = hydrogen ion (proton)

Notes: 1. NAD+ is an intracellular carrier of reducing agents (electrons).
2. The reduction of NAD+ is a component of glycolysis, the tricarboxylic acid 

cycle,  oxidative phosphorylation,  fermentation, and other cellular pr ocesses.

The oxidation of NADH:

2 NADH + 2 H+ + O2 → 2 NAD+ + 2 H2O

NADH = reduced nicotinamide adenine dinucleotide
H+ = hydrogen ion (proton)
O2 = oxygen
NAD+ = oxidized nicotinamide adenine dinucleotide
H2O = water
∆G = −219 kJ mol−1

The conversion of ATP to ADP, inorganic phosphate, and free energy:

ATP + H2O → ADP + Pi + energy

ATP = adenosine triphosphate
H2O = water
ADP = adenosine diphosphate
Pi = HPO4

2−, inorganic phosphate

∆G =−50 kJ mol−1

The aerobic metabolism of glucose:

C6H12O6 + 38 ADP + 38 Pi + 6 O2 → 6 CO2 + 44 H2O + 38 ATP

C6H12O6 = glucose
ADP = adenosine diphosphate
Pi = HPO4

2−, inorganic phosphate 
O2 = oxygen
CO2 = carbon dioxide
H2O = water
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ATP = adenosine triphosphate

∆G = −2870 kJ mol−1

Notes: 1. ATP packages free energy in bundles of about 30.5 kJ per mole; ther efore, it
is thought that about 1.2 × 103 kJ, or 40% of the ∆G is captured in ATP; this
may be an underestimate.  

2. The aerobic metabolism of glucose comprises three separate sets of reac-
tions: glycolysis {link “glycolysis” to glycolysis below}, which takes place in
the cytoplasm; the citric acid cycle (link “citric acid cycle” to same below},
which takes place in the mitochondrion; oxidative phosphorylation, {link
“oxidative phosphorylation” to same below} which takes place in the mito-
chondrion.

3. In the absence of O 2, glycolysis can still occur by the pr ocess of fermenta-
tion. {link “fermentation” to both lactate and alcoholic fermentation below}

4. The metabolism of glucose is a r edox reaction. {link “redox” to redox under
general reactions above}.

5. Because the creation of ATP from ADP + Pi releases one molecule of H 2O,
the net production of H20 is actually 44 H 2O, not 6 as you would pr edict
from balancing the equation.

6. This equation describes the theoretical maximal production of ATP from
the aerobic metabolism of glucose. To achieve this yield, all of the energy of
the proton gradient across the inner mitochondrial membrane would have
to go toward synthesizing ATP; in a real cell, some of that energy goes else-
where.

7. In some cells (e.g., liver, kidney, heart), the theoretical maximum is 38 moles
of ATP per mole of glucose, in other cell types (e.g., skeletal muscle, brain),
the theoretical maximum is 36 moles; this is because in some cells, certain
electrons bypass the first energy-conserving site of the electron transport
system.

Glycolysis (metabolism of glucose part I):

C6H12O6 + 2 NAD+ + 2 ADP + 2Pi → 2 pyruvate + 2 NADH + 2 H+ + 2 ATP + 2
H2O

C6H12O6 = glucose
NAD+ = oxidized nicotinamide adenine dinucleotide
ADP = adenosine diphosphate
Pi = HPO4

2−, inorganic phosphate
Pyruvate = 3-carbon sugar (triose)
NADH = reduced nicotinamide adenine dinucleotide
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H+ = hydrogen ion (proton)
ATP = adenosine triphosphate
H2O = water

∆G = −84 kJ mol−1

Conversion of pyruvate to Acetyl CoA (oxidative decarboxylation):

2 pyruvate + 2 CoA-SH + 2 NAD+ → 2 NADH + 2 H+ + 2 Acetyl CoA + 2 CO2

Pyruvate = 3-carbon sugar (triose)
CoA-SH = coenzyme A-SH; Acyl group carrying coenzyme with sulfhydryl
NAD+ = oxidized nicotinamide adenine dinucleotide
NADH = reduced nicotinamide adenine dinucleotide
H+ = hydrogen ion (proton)
Acetyl CoA = 2-carbon acetate group linked to coenzyme A
CO2 = carbon dioxide

Citric acid cycle (tricarboxylic acid or TCA cycle; Krebs cycle; metabolism of glucose,
part II):

2 Acetyl CoA + 6 H2O + 6 NAD+ + 2 FAD + 2 ADP + 2 Pi →
4 CO2 + 6 NADH + 6 H+ + 2 FADH2 + 2 CoA-SH + 2 ATP + 2 H2O

Acetyl CoA = 2-carbon acetate group linked to coenzyme A
H2O = water
NAD+ = oxidized nicotinamide adenine dinucleotide
FAD = oxidized flavin adenine dinucleotide
ADP = adenosine diphosphate
Pi = HPO4

2−, inorganic phosphate
CO2 = carbon dioxide
NADH = reduced nicotinamide adenine dinucleotide
H+ = hydrogen ion (proton)
FADH2 = reduced flavin adenine dinucleotide
CoA-SH = acyl group carrying coenzyme with sulfhydryl group
ATP = adenosine triphosphate
H2O = water

Notes:  Like NAD+, FAD is an intracellular carrier of r educing agents (electrons).  It

REFERENCE TABLES / Page 176Math for Life



can accept two electrons and two protons, so, the reduced form is FADH2.

Oxidative phosphorylation (metabolism of glucose, part III):

10 NADH + 10 H+ + 2 FADH2 + 6 O2 + 34 ADP + 34 Pi →
10 NAD+ + 2 FAD + 34 ATP + 46 H2O

10 NADH = reduced nicotinamide adenine dinucleotide; 2 from glycolysis, 2 from
the oxidative decarboxylation of pyruvate, 6 from the citric acid cycle. 

H+ = hydrogen ion (proton)
2 FADH2 = reduced flavin adenine dinucleotide; from citric acid cycle

O2 = oxygen
ADP = adenosine diphosphate
Pi = HPO4

2 −, inorganic phosphate
NAD+ = oxidized nicotinamide adenine dinucleotide
FAD = oxidized flavin adenine dinucleotide
ATP = adenosine triphosphate
H2O = water

Note:  Because the creation of ATP from ADP + Pi releases one molecule of H 2O, the
net production of H2O is 46 H2O,  not 12 H 2O as you would predict from bal-
ancing the equation.

Lactate Fermentation (homolactic fermentation and reaction 11 of glycolysis):

C6H12O6 + 2 ADP + Pi + 2 NAD+ → 2 NADH + 2 H+ + 2 ATP + 2 H2O + 2 pyruvate 
2 pyruvate + 2 NADH + 2 H+ → 2 lactate + 2 NAD+

C6H12O6 = glucose
ADP = adenosine diphosphate
Pi = HPO4

2−, inorganic phosphate
NAD+ = oxidized nicotinamide adenine dinucleotide
NADH = reduced nicotinamide adenine dinucleotide
H+ = hydrogen ion (proton)
ATP = adenosine triphosphate
H2O = water
Pyruvate = 3-carbon sugar (triose); CH 3COCOO−

Lactate = lactic acid; CH 3CHOHCOO−

REFERENCE TABLES / Page 177Math for Life



∆G =−196kJ mol−1 of glucose

Alcoholic fermentation:

C6H12O6 + 2 ADP + Pi + 2 NAD+ → 2 NADH + 2 H+ + 2ATP + 2 H2O+ 2 pyruvate 
2 pyruvate → 2 acetaldehyde +  2 CO2

2 acetaldehyde + 2 NADH + 2 H+ → 2 ethanol + 2 NAD+

C6H12O6 = glucose
ADP = adenosine diphosphate
Pi = HPO4

2−, inorganic phosphate
NAD+ = oxidized nicotinamide adenine dinucleotide
NADH = reduced nicotinamide adenine dinucleotide
H+ = hydrogen ion (proton)
ATP = adenosine triphosphate
H2O = water
Pyruvate = 3 carbon sugar (triose); CH 3COCOO−

Acetaldehyde = CH3CHO
CO2 = carbon dioxide
Ethanol = CH3CH2OH

∆G =−235kJ mol−1 of glucose

Photosynthesis:

CO2 = Carbon dioxide
H2O = water
C6H12O6 = carbohydrate
O2 = oxygen
∆G = 2867 kJ mol−1

Notes: 1. Photosynthesis takes place in chloroplasts.
2. Photosynthesis comprises two separate sets of r eactions: photophosphoryla-

tion (the light reactions) and the Calvin–Benson cycle (the dark r eactions).
3. The dark reactions do not take place in the dark.

Photosynthesis, light reactions (photosynthetic electron-transfer reactions):

  12 NADP  12 H O 12 NADPH +  18 O  +  12 H+
2

light
2

++  →  
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NADP+ = oxidized nicotinamide adenine dinucleotide phosphate
H2O = water
m = light
NADPH = reduced nicotinamide adenine dinucleotide phosphate
O2 = oxygen
H+ = hydrogen ion (proton)

Photosynthesis, dark reactions (carbon-fixation reactions or Calvin–Benson cycle):

6 CO2 + 18 ATP + 12 NADPH → 2 GAP + 18 ADP + 16 Pi +  12 NADP+

2 GAP → → → C6H12O6

CO2 = carbon dioxide
ATP = adenosine triphosphate
NADPH = reduced nicotinamide adenine dinucleotide phosphate
GAP = glyceraldehyde 3-phosphate, CHOCH(OH)CH2OPO3

ADP = adenosine diphosphate
Pi = HPO4

2−, inorganic phosphate
NADP+ = oxidized nicotinamide adenine dinucleotide phosphate
C6H12O6 = carbohydrate

Notes: 1. GAP is the precursor of the carbohydrates characteristic of higher plants;
these carbohydrates include sucrose, starch, and cellulose.

2. 2 GAP contribute to making one hexose, e.g., glucose.

12 NADP 12 H O 12 NADPH 18 O 12 H2 2
+ ++  → + +µ
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EVOLUTIONARY TIME
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This reaction rate 
doubles with each 10°C 
rise in temperature
(Q10 = 2).

This reaction is not 
temperature-sensitive (Q10 = 1).

The rates of most 
biochemical reactions and 
physiological processes fall 
within this range.

This reaction rate 
triples with each 10°C 
rise in temperature
(Q10 = 3).
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