Climate Change for Engineers

AIAA – Houston Annual Technical Symposium

Hal Doiron
Jack Knight
Carolynn Conley

The Right Climate Stuff Research Team www.therightclimatestuff.com

June 5, 2015

The Right Climate Stuff Research Team

- Volunteer group of primarily retired NASA scientists and engineers veterans of the Apollo Program.
 - ➤ More than 25 active members
- Formed in February 2012 as an independent, objective, research team with no funding
 - **►INITIAL GOAL:** Determine the extent to which burning fossil fuels can cause harmful global warming
- The Bottom Line We are going to run out of fossil fuels before atmospheric CO2 can rise to levels that could cause harmful warming of the planet

The Right Climate Stuff Research Team

- We aren't climate scientists
- We do have education, training, and experience in the same scientific disciplines that climate scientists use
- We have expertise in identifying and mitigating Threats from exploring the unknowns of manned space flight
 - > We define Problems in terms of a deviation from "Normal"
 - ➤ Global temperatures are not deviating from Normal limits of the last 10,000 years!
- We have bounded the warming that atmospheric CO2 and other GHG can have
 - Not a serious nor immediate Threat requiring Global Action

The Right Climate Stuff Research Team

- CONCLUSIONS: Due to world-wide rising energy demand and rising fossil fuel prices, as fossil fuel reserves are consumed,
 - ➤ A market-driven transition to alternative fuels will be required before any climate problems can occur
 - > A USA national energy plan is needed to ensure our energy future
 - > Climate alarmism is causing irrational energy-related decisions
 - > Climate alarmism results from complex climate simulation models; not from data!
 - Models are not sufficiently accurate to guide public policy decision-making regarding CO2 emissions
 - O Models are not validated!

Current Climate Models Not-Validated

Fig. from John Christy, Univ. of Alabama-Huntsville, Dec 2013 Testimony to US House of Representatives

-0.3 · 1975 1985 1995 2005 2015 2025

IPCC Metrics for GHG Climate Sensitivity

- Equilibrium Climate Sensitivity (ECS)
 - ➤ Loosely defined as global average temp rise that will eventually result from doubling CO2 level in the atmosphere
 - ➤ Computed by complex, un-validated computer models simulating climate changes over more than 1000 years!
- Mainstream Climate Science (IPCC) Position
 - \geq 1.5 < ECS < 4.5 deg C (IPCC 2013 AR5 Report)
 - Uncertainty range has not changed in 35 years and \$billions spent on "study" of this issue!
 - > Was reduction of uncertainty range ever the research goal?

IPCC Metrics for GHG Climate Sensitivity

- Transient Climate Response (TCR)
 - ➤ Climate model simulation of Global Warming that would result from
 - OIncreasing atmospheric CO2 levels at a rate of 1% per year until doubled CO2 level is reached
 - **Ourrent rate of increase is about 0.5% per year**
 - TCR climate model simulation more realistic than an ECS simulation
 - **OBut still hypothetical!!**

Transient Climate Sensitivity (TCS)

- To obtain a verifiable GHG climate sensitivity metric, our research team defined a new metric:
 - ➤ Transient Climate Sensitivity (TCS) The rise in global average surface temperature due to the actual gradual rise of CO2 in our atmosphere until CO2 levels are doubled
 - \triangleright Effects of all GHG are approx. = 1.5x(CO2-only effects)
- TCS is a verifiable quantity using actual data
 - > We determined conservative value of TCS from climate data based on
 - **→ 40 percent rise in atmospheric CO2 since 1850**
 - > < 0.8K rise in Global Average Temperature since 1850
- TCS = 1.2K, K = deg. Kelvin

CO2 Level In Atmosphere

TRCS

CO2 ATMOSPHERIC CONCENTRATION, PPM

CO2 TRENDS IN ATMOSPHERE

TRCS

CO2 ATMOSPHERIC CONCENTRATION, PPM

How Does Atm. CO2 Warm the Earth?

TRCS =

Earth Surface Energy Balance

TRCS

aS = 101.9 S = 341.3 W/m²

Stephan – Boltzman Eq. for energy radiated from a surface

 $e\sigma T^4 = 238.5$

S = incoming radiation from the Sun a = the earth's albedo reflecting sunlight from atm. and earth surface Q = heat transport below ocean

Q = 0.9

Atm. is a thin coating of Earth surface affecting emissivity

surface

Conservation of Energy

 $e(W, C, G)\sigma T^4 = (1 - a)S - Q$

W, C and G are atm. concentrations of water vapor, CO₂ and other GHG, respectively

A Simple Model For Temperature Changes

- Using calculus to form a differential of the Earth Surface Energy Balance Equation

$$\left[\left(\frac{\partial e}{\partial W}\frac{\partial W}{\partial C} + \frac{\partial e}{\partial C}\right)dC + \left(\frac{\partial e}{\partial W}\frac{\partial W}{\partial G} + \frac{\partial e}{\partial G}\right)dG\right]\sigma T^{4} + 4e(W,C,G)\sigma T^{3}dT = (1-a)dS - Sda - dQ$$

 $\sigma = 5.67(10)^{-8} \text{ W/m}^2/\text{K}^4$

For T = 288K and $e = 238.5/(\sigma T^4) = 0.611$, $4e\sigma T^3 = 1/0.302$

 $dT = [0.302]\{-[changes in e(W, C, G)] \sigma T^4 + (1-a)dS - Sda - dQ \}$

[changes in e(W, C, G)] σ T⁴ are called Radiative Forcing from GHG including water vapor (W) feedback effects

A Simple Model For Temperature Changes

Radiative Forcing changes from CO2 concentration in atmosphere relative to the 284.7 ppm concentration in 1850 can be modeled as:

$$\left[\frac{\partial e}{\partial C}dC(year)\right] \sigma T^4 = 3.71\{LOG[C(year)/284.7]/LOG[2]\}$$
 W/m²

Radiative Forcing changes from other GHG concentration rise in atmosphere relative to 1850 can be modeled as a fraction, β , of CO2 radiative forcing

$$\left[\frac{\partial e}{\partial G}dG(year)\right] \sigma T^4 = (\beta)3.71\{LOG[C(year)/284.7]/LOG[2]\}$$
 W/m²

A Simple Model For Temperature Changes

Radiative Force changes due to water vapor feedback effects can be modeled as a fraction, w, of CO2 and other GHG forcing

$$\left[\left(\frac{\partial e}{\partial W}\frac{\partial W}{\partial C}\right)dC + \left(\frac{\partial e}{\partial W}\frac{\partial W}{\partial G}\right)dG\right]\sigma T^{4} = w(1+\beta)LOG[C(year)/284.7]/LOG[2]$$

Using our expressions for radiative force changes since 1850 due to CO2, other GHG and water vapor feedback

 $dT(year) = [0.302]\{(1+w)(1+\beta)(3.71)LOG[C(year)/284.7]/LOG[2] + (1-a)dS - Sda - dQ \}$

Using our definition for TCS = [0.302](1+w)3.71 deg K

 $dT(year) = TCS(1+\beta)LOG[C(year)/284.7]/LOG[2] + 0.302{(1-a)dS - Sda - dQ}$

Note: In definition of TCS, w accounts for water vapor feedback and all other feedbacks to CO₂, other GHG, and aerosol radiative forcing

Recent Global Average Temp Variation

TRCS

HADCRUT4 GLOBAL YEARLY AVG TEMPERATURE

Ljungqvist Temp Reconstruction

Simple Climate Model Fit To Temp Data

HadCRUT4 Temp(Year) = (1850 value)

```
\frac{\text{Models}}{+ (\text{TCS})(1+\beta)} \{ \text{Log}[\text{CO2}(\text{year})/284.7]/\text{Log}[2] \}  (All GHG) + 0.021(\text{year} - 1850)/155  (Solar, dS)
```

$$+ A_L Sin[2\pi (Year-1850)/1000 yr.]$$
 (da, dQ)

$$+ A_{s} Sin[2\pi (Year-1988)/62 yr.]$$
 (da, dQ)

TCS(1+ β) is a constant determined from function fit to Temp time history data; Nominal value of $\beta = 0.5$ used to determine TCS

HadCRUT4 GLOBAL AVERAGE TEMPERATURE ANOMALY Case 1: No 1000 Year Temperature Cycle, TCS = 1.0 Deg K

With 1000 Year Climate Cycle – TCS = 0.75K

HadCRUT4 GLOBAL AVERAGE TEMPERATURE ANOMALY CASE 2: With 1000 Year Temp Cycle and TCS = 0.75K

■ HADCRUT4 —Hi Fit w/TCS = 0.75K —Low Fit w/TCS = 0.75K

Extracting Most Conservative TCS Value

TRCS

Determining A Conservative Value For Transient Climate Sensitivity (TCS)

Bounding Future Warming

Our ECS Compared to Recent Research

EPA Probability Distribution for ECS

Conclusions

- Climate models are not sufficiently accurate for use in critical public policy decision-making regarding AGW
- AGW can be bounded using available data
 - > Should expect a modest amount of continued warming
 - ➤ Maximum expected warming may be beneficial, not necessarily harmful
 - ➤ More CO2 in the atmosphere is definitely beneficial as a powerful plant fertilizer
- Current AGW "pause" should continue for about 20 years
- Economic justification for EPA and DoE CO2 emissions control regulations based on gross distortions of AGW science

Temperature of Planet Earth? – 500 Million years

https://commons.wikimedia.org/wiki/File:All_palaeotemps.svg

