Mark scheme

Section A

Question	Part	Sub part	Marking guidance	Marks

		1 mark for basic sketch with little or no relevant annotation of how the case is made. 2 marks for a clear sketch and some detailed annotation of case construction. 3 marks for a coherent sketch, clearly communicated with good detail in annotations. A full and comprehensive design showing development from the ideas stage.	
d	i	Reference to the use of a microcontroller, programmed to create a more complex and interesting output -up to 2 marks 1 mark for reference to programming. 1 mark for creating a more complex output. e.g. Several LEDs flashing in a sequence Sounder playing a tune Sounder playing 'sound effects' Vibrations	Total (2 marks)
d	ii	1 mark for naming "Process". 1 mark for each specific component named Input components could include PTM switch, reed switch, LDR, or other suitable response. Output components could include LED, bulb or lamp, buzzer, piezo transducer, sounder, bell, or similar.	Total (5 marks)
${ }^{\text {e }}$		Up to 4 marks for circuit diagram and notes. 1 mark for a basic sketch showing some symbols for microcontroller or output components. No notes worthy of credit. 2 marks for a circuit diagram showing a microcontroller and output component(s), where parts of the circuit are correctly connected. 3 marks for a coherent circuit diagram with correct connections for outputs. 4 marks for circuit with both sound and light outputs connected to the outputs of a microcontroller.	Total (4 marks)
f		Explanation of features such as: - Battery access - Easy to clean - Removable parts for easy repair Award 2 marks for each justified point made. Award 1 mark for a simple, unjustified point.	Total (2 marks)

Section B

2	a	i	Any relevant, suitable product named	Total (1 marks)
		ii	Up to 3 marks 1 mark each for reference to - Can be reprogrammed - Can be used in place of multiple ICs - Can result in smaller PCB - Can be programmed to perform different functions in different products Or similar suitable response.	Total (3 marks)
	b	i	1 mark for an answer in the range 3 to 5 volts.	Total (1 mark)
		ii	1 mark for an answer naming a voltage regulator	$\begin{aligned} & \text { Total } \\ & (1 \text { mark }) \end{aligned}$
	c		Up to seven marks 1 for recognition of an input (decision box, if-then) 1 for outputs on 1 for wait 0.25 seconds For a frequency of 1 for outputs off 1 for wait 0.25 seconds 1 for repeating the sequence twice more 1 for loop back to start Basic or other program systems acceptable (simple re-writes of the question, giving no evidence of a programming system - no marks)	Total (7 marks)

3	a	i	1 mark for each suitable description Astable - a system with no stable states; can be used to generate a pulse Monostable - a system with one stable state which, when triggered can be be used to produce a time delay Bistable - a system with two stable states that needs a trigger to switch between each state	Total $(3$ marks $)$
	b		I mark for each correct answer IC: Integrated circuit DIL: Dual in line	Total $(2$ marks $)$

	c	i	Award marks as follows, up to a maximum of 6 marks 1 mark for correct LED symbols 1 mark for correct LED orientation 1 mark for LED protective resistors 1 mark for connections that will cause the LEDs to flash alternately (one sinking and one sourcing pin 3 of the 555) 1 mark for positive supply rail 1 mark for 0 volt rail	Total (6 marks)
	c	ii	1 mark for correct answer Pulse	Total (1 mark)
	d		1 mark for each of the following correct points 1 mark for drawing a pulse 1 mark for indicating a period of 1 second 1 mark for drawing having equal mark-space ratio 1 mark for indicating mark and space	Total (4 marks)

$\mathbf{4}$	\mathbf{a}		l mark for each correct answer Answers relating to: CAD Advantages: Quick and easy to modify Files can be saved, stored and retrieved Files can be emailed Wide range of components available Can see if circuit works without buying components Disadvantages: Expensive to set up Software may not have all components Takes time to learn software Hardware/software faults can cause work to be lost Breadboard Advantages: Uses real components Gives indication of size of circuit

			Components easily replaced Disadvantages: Many components may need purchasing Damage to components not always evident Can be relatively slow to build a circuit Can be difficult to fault find on a large, complex circuit Accept any suitable answers	
	b		Photo-etch method 1 mark awarded for each correct stage. 1. Design the PCB and produce a mask (CAD or hand drawn) 2. Expose photo etch board to ultra violet light 3. Develop the image 4. Etch the board in a bubble-etch tank 5. Wash the etched board 6. Clean and drill ready to be populated CNC method 1 mark awarded for any stages from: 1. Design the using CAD 2. Convert to PCB / autoroute 3. Create CNC CAM file 4. Clamp copper clad board in position 5. Set Z position 6. Route using CNC router 7. Drill holes using CNC drill	Total (6 marks)
	c	i	2 marks available for each QC check 1 mark for simple answer 2 marks for explanation Suggested answers: Continuity of tracks: visual check or using a multimeter Size of holes so that pins/wires will fit No tracks/pads missing Tracks and pads have been cleaned to help create solder joints / prevent dry joints	Total (4 marks)

	c	ii	Award 1 mark for each correct addition Position on PCB can vary but must be correct relative to other components and circuit diagram	Total (4 marks)

5	a	${ }^{\text {i }}$	1 mark for correctly naming the type of gate AND gate	Total (1 marks)
	a	ii	1 mark for each correct output; 1 mark for the correct input combination	Total (4 marks)
	b	i	OR gate drawn in correct position	Total (1 marks)
	b	ii	1 mark for correctly named OR gate	$\begin{aligned} & \text { Total } \\ & \text { (1 marks) } \end{aligned}$

6	a	1 mark for each point made, up to 3 marks Suggested answers: Identical products Very accurate / high tolerance Very little waste Waste material can be recycled Manufacture can be automated, allowing for continuous production Possible to make in a range of colours Accept any suitable answer	Total (3marks)
	b	1 mark for each point made, up to 3 marks Relatively inexpensive so can be done in schools Easy to shape formers using hand tools Can be made using different colours Former can be reused Easy to cut and finish materials Equipment can be operated by student Accept any suitable answer	Total (3 marks)
	c	1 mark for appropriate features, up to 3 marks Features to include: Draft angle on sides Flat base Rounded corners Vent holes (counterbored) Smooth surface	Total (3 marks)

7	a	i	1 mark for correctly naming the arrangement Darlington pair	Total (1 marks)
	a	ii	1 mark for correctly naming each leg Base	Total (2 marks)
	b		1 mark for formula $V_{\text {out }}=\frac{R_{2}}{R_{1}+R_{2}} \times V_{s}$ 1 mark for substitution $V_{\text {out }}=\frac{3700}{6300+3700} \times 12$ 1 mark for correct answer 4.44 volts	Total (3 marks)

	\mathbf{c}	\mathbf{i}	1 mark for diode connected between Darlington collector connection and positive supply rail 1 mark for correct orientation		
					Total $(2$ marks $)$
	c				Total $(11$ marks $)$

8	a		1 mark for a resistor connected between the switch and 0 V rail 1 mark for connecting switch to +V rail and connecting switch to clock input of IC 1 mark for connecting IC output pin 5 to reset pin	Total (3 marks)
	b		1 mark for simple answer 2 marks for explanation When a mechanical switch is pressed the switch contacts may bounce against each other, turning the switch on and off rapidly, creating several unwanted input pulses.	Total (2 marks)

$\mathbf{9}$		QWC question Looking for examples of the impact of sustainability and sustainable design that apply during the life cycle of a product. Discussion could include: Renewable materials Use of renewable energy in manufacture, processing, distribution, etc. Maintenance Recycling Planned obsolescence Disposal Pollution Environmental impact	Total (8 marks)

