Annual Drinking Water Quality Report

Consumer Confidence Report (CCR)

PWS Name: CITY OF WINNSBORO PWS ID Number: TX2500004

to December 31, 2011 Annual Water Quality Report for the period of January 1

This report is intended to provide you with important made by the water system to provide safe drinking water. information about your drinking water and the efforts

contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More be expected to contain at least small amounts of some effects can be obtained by calling the EPAs Safe Drinking information about contaminants and potential health Drinking water, including bottled water, may reasonably Water Hotline at (800) 426-4791.

For more information regarding this report contact:

Phone	Name
903-342-3543.	_MikeJohns_
2-3543_)hns

sobre el agua que usted bebe. Tradúzcalo ó hable con alguien que lo entienda bien. Este informe contiene información muy importante

Special Notice

Community Public Water Systems Required Language for ALL

transplants, people with HIV/AIDS or other immune system disorders, some elderly and infants can be particularly at risk undergoing chemotherapy, persons who have undergone organ available from the Safe Drinking Water Hotline by Cryptosporidium and other microbial contaminants are guidelines on appropriate means to lessen the risk of infection drinking water from their health care providers. EPA/CDC from infections. These people should seek advice about Immuno-compromised persons such as persons with cancer

Safe Drinking Water Hotline or at steps you can take to minimize exposure is available from the water for drinking or cooking. If you are concerned about lead flushing your tap for 30 seconds to 2 minutes before using components. When your water has been sitting for several We cannot control the variety of materials used in plumbing components associated with service lines and home plumbing problems, especially for pregnant women and young children. If present, elevated levels of lead can cause serious health http://www.epa.gov/safewater/lead. in your water, you may wish to have your water tested hours, you can minimize the potential for lead exposure by Information on lead in drinking water, testing methods, and Lead in drinking water is primarily from materials and

Information on Sources of Water;

The source of drinking water used by

CITY OF WINNSBORO is Surface Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can from human activity. pickup substances resulting from the presence of animals or

Contaminants that may be present in source water include:

- may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. Microbial contaminants, such as viruses and bacteria, which
- be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. Inorganic contaminants, such as salts and metals, which can
- sources such as agriculture, urban storm water runoff, and residential uses. Pesticides and herbicides, which may come from a variety of
- gas stations, urban storm water runoff, and septic systems. processes and petroleum production, and can also come from volatile organic chemicals, which are by-products of industrial Organic chemical contaminants, including synthetic and
- naturally-occurring or be the result of oil and gas production and mining activities. Radioactive contaminants, which can be

nformation about Secondary Contaminants

odor problems. The taste and odor constituents are called secondary constituents and are regulated by the State of Many constituents (such as calcium, sodium, or iron) which are often found in drinking water, can cause taste, color, and reported in this document but they may greatly affect the appearance and taste of your water Texas, not the EPA. These constituents are not causes for health concern. Therefore, secondaries are not required to be

Information about Source Water Assessments

conditions. The information contained in the assessment allows us to focus source water protection strategies information describes the suceptibility and types of constituents that may come into contact with your drinking water source based on human activities and natural 'A Source Water Susceptibility Assessment for your drinking water sources(s) is currently being updated by the Texas Commission on Environmental Quality. This

http://gis3.tceq.state.tx.us/swav/Controller/index.jsp?wtrsrc= For more information about your sources of water, please refer to the Source Water Assessment Viewer available at the following URL:

http://dww.tceq.texas.gov/DWW/ Furthder details about sources and sourcewater assessments are available in Drinking Water Watch at the following URL:

Water Quality Test Results

Maximum Contaminant Level Goal or MCLG:

Maximum Contaminant Level or MCL:

Maximum residual disinfectant level goal or

Maximum residual disinfectant level or MRDL:

Avg

ppm:

:qdd

na:

Definitions:

The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

treatment technology. The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available

The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants

Regulatory compliance with some MCLs are based on running annual average of monthly samples

milligrams per liter or parts per million - or one ounce in 7,350 gallons of water

micrograms per liter or parts per billion - or one ounce in 7,350,000 gallons of water

not applicable.

The following tables contain scientific terms and measures, some of which may require explanation.

Regulated Contaminants

By-product of drinking water chlorination.	Z	qđđ	60	No goal for the total	0-0	Levels lower than detect level	8-2011	Haloacetic Acids (HAA5)*
Violation Likely Source of Contamination	Violation	Units	MCL	MCLG	Range of Levels Detected	Highest Level Detected	Collection Date	Disinfectants and Disinfection By-Products

compliance sampling should occur in the future Not all sample results may have been used for calculating the Highest Level Detected because some results may be part of an evaluation to determine where

	Total Trihalomethanes (TThm)*
	8-2011
	40
	40.4 - 40.4
	No goal for the total
	80
]	qđđ
1	z
The second secon	By-product of drinking water chlorination.

compliance sampling should occur in the future Not all sample results may have been used for calculating the Highest Level Detected because some results may be part of an evaluation to determine where

Range of Levels MCLG MCL Units Violation Likely Source of Contamination Detected an 0-0 6 6 ppb N Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder; test addition.	33						
0-0 6 6 ppb N	1-	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
	lan		6	6	qđđ	Z	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder; test addition.

anummum ractorics.								
Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and	z	mdď	4.0	4	0.08 - 0.08	1.0	3-2011	Fluoride
Discharge from steel and pulp mills; Erosion of natural deposits.	Z	dqq	100	100	0.479 - 0.479	0.479	3-2011	Chromium
Corrosion of galvanized pipes; Erosion of natural deposits; Discharge from metal refineries; runoff from waste batteries and paints.	Ŋ	ppb	ຫ	5	0 - 0	Levels lower than detect level	3-2011	Cadmium
Discharge from metal refineries and coal-burning factories; Discharge from electrical, aerospace, and defense industries.	Z	वृत्येत्	4	4	0-0	Levels lower than detect level	3-2011	Beryllium
Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits.	z	mďď	N	ю	0.05 - 0.05	0.05	3-2011	Barium
Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes.	, Z	वृर्वेद	10	0	0.981 - 0.981	0.981	3-2011	Arsenic
Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder; test addition.	Z	व्वेत	6	6	0-0	Levels lower than detect level	3-2011	Antimony
Likely Source of Contamination	Violation	Units	MCL	MCLG	Range of Levels Detected	Highest Level Detected	Collection Date	Inorganic Contaminants

Nitrate Advisory - Nitrate in drinking water at levels shove 10 num is a health risk for infants of less than six months of any wish nitrate levels shove 10 num is a health risk for infants of less than six months of any wish nitrate levels shove 10 num is a health risk for infants of less than six months of any with nitrate levels.	orthe of an	e than cive	rinfants of les	health rick for	ove 10 num is a	water at levels ab	te in drinking	Nitrate Advisory - Nitra
Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits.	Z	ppm	10	10	0.21 - 0.21	0.21	3-2011	Nitrate [measured as Nitrogen]
Erosion of natural deposits; Discharge from refineries and factories; Runoff from landfills; Runoff from cropland.	z	qđđ	Ν	N	0-0	Levels lower than detect level	3-2011	Mercury

cause blue baby syndrome. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant you should ask advice from your health care provider.

Runoff from herbicide used on row crops.	z	dqq	ω	ω	0 - 0	Levels lower than detect level	3-2011	Atrazine
Runoff from herbicide used on row crops.	Z	qdđ	2	O	0-0	Levels lower than detect level	3-2011	Alachlor
Runoff from herbicide used on row crops.	Z	qđđ	70	70	0 - 0	Levels lower than detect level	3-2011	2,4-D
Residue of banned herbicide.	z	ppb	50	50	0-0	Levels lower than detect level	3-2011	z,4,5-TP (Silvex)
Likely Source of Contamination	Violation	Units	MCL	MCLG	Range of Levels Detected	Highest Level Detected	Collection Date	Synthetic organic contaminants including pesticides and herbicides
Erosion of natural deposits.	Z	pCi/L	15	o	0-0	Levels lower than detect level	02/19/2009	Gross alpha excluding radon and uranium
Decay of natural and man-made deposits.	Z	mrem/yr	4	0	4.8 - 4.8	4.8	02/19/2009	Beta/photon emitters
Likely Source of Contamination	Violation	Units	MCL	MCLG	Range of Levels Detected	Highest Level Detected	Collection Date	Radioactive Contaminants
Discharge from electronics, glass, and Leaching from ore-processing sites; drug factories.	Z	ppb	ы	0.5	0.056 - 0.056	0.056	3-2011	Thallium
Discharge from petroleum and metal refineries; Erosio of natural deposits; Discharge from mines.	Z	qđđ	50	50	1.68 - 1.68	1.68	3-2011	Selenium

Discharge from chemical factories.	z	ppb	50	50	0-0	Levels lower than detect level	3-2011	Hexachlorocyclopentadie ne
Discharge from metal refineries and agricultural chemical factories.	z	qđđ	1-4	0	0-0	Levels lower than detect level	3-2011	Hexachlorobenzene
Breakdown of heptachlor.	Z	ppt	200	0	0-0	Levels lower than detect level	3-2011	Heptachlor epoxide
Residue of banned termiticide.	Z	ppt	400	O	0-0	Levels lower than detect level	3-2011	Heptachlor
Discharge from petroleum refineries	Z	ppt	50	0	0-0	Levels lower than detect level	3-2011	Ethylene dibromide
Residue of banned insecticide	z	वृतेत	и	a	0-0	Levels lower than detect level	3-2011	Endrin
Runoff from herbicide used on soybeans and vegetables.	Z	वृतेत्	7	7	, 0-0	Levels lower than detect level	3-2011	Dinoseb
Runoff/leaching from soil furnigant used on soybeans, cotton, pineapples, and orchards.	Z	ţďď	0	0	0-0	Levels lower than detect level	3-2011	Dibromochloropropane (DBCP)
Discharge from rubber and chemical factories	Z	ppb	σ.	0	0-0	Levels lower than detect level	3-2011	Di (2-ethylhexyl) phthalate
Discharge from chemical factories.	Z	ррb	400	400	0-0	Levels lower than detect level	3-2011	Di (2-ethylhexyl) adipate
Runoff from herbicide used on rights of way.	Z	qďď	200	200	0-0	Levels lower than detect level	3-2011	Dalapon
Residue of banned termiticide	Z	विव	ю	0	0-0	Levels lower than detect level	3-2011	Chlordane
Leaching of soil furnigant used on rice and alfalfa	Z	qďď	40	40	0 - 0	Levels lower than detect level	3-2011	Carbofuran
Leaching from linings of water storage tanks and distribution lines.	, Z	ppt	200	0	0-0	Levels lower than detect level	3-2011	Benzo(a)pyrene

Discharge from industrial chemical factories.	Z	वंदेत	ហ	0	0-0	Levels lower than detect level	3-2011	1,2-Dichloropropane
Discharge from industrial chemical factories.	Z	ąđđ	ហ	0	0-0	Levels lower than detect level	3-2011	1,2-Dichloroethane
Discharge from textile-finishing factories.	z	qđđ	70	70	0-0	Levels lower than detect level	3-2011	1,2,4-Trichlorobenzene
Discharge from industrial chemical factories.	Z	qďď	7	7	0-0	Levels lower than detect level	3-2011	1,1-Dichloroethylene
Discharge from industrial chemical factories.	Z	ppb	ປາ	ယ	0-0	Levels lower than detect level	3-2011	1,1,2-Trichloroethane
Discharge from metal degreasing sites and other factories.	z	qđđ	200	200	0-0	Levels lower than detect level	3-2011	1,1,1-Trichloroethane
Likely Source of Contamination	Violation	Units	MCL	MCLG	Range of Levels Detected	Highest Level Detected	Collection Date	Volatile Organic Contaminants
Runoff/leaching from insecticide used on cotton and cattle.	Z	ppb	ω	0	0-0	Levels lower than detect level	3-2011	Toxaphene
Herbicide runoff.	z	qđď	.4	4	0-0	Levels lower than detect level	3-2011	Simazine
Herbicide runoff.	Z	ppb	500	500	0-0	Levels lower than detect level	3-2011	Picloram
Discharge from wood preserving factories.	Z	qád	Д	0	0-0	Levels lower than detect level	3-2011	Pentachlorophenol
Runoff/leaching from insecticide used on apples, potatoes and tomatoes.	Z	qđđ	200	200	0-0	Levels lower than detect level	3-2011	Oxamyl [Vydate]
Runoff/leaching from insecticide used on fruits, vegetables, alfalfa, livestock.	Z	ppb	40	40	0-0	Levels lower than detect level	3-2011	Methoxychlor
Runoff/leaching from insecticide used on cattle, lumber, gardens.	, z	ppt	200	200	0-0	Levels lower than detect level	3-2011	Lindane

Discharge from industrial chemical factories.	Z	वंदि	75	75	0-0	Levels lower than detect level	3-2011	p-Dichlorobenzene
Discharge from industrial chemical factories.	Z	qđđ	600	600	0-0	Levels lower than detect level	3-2011	o-Dichlorobenzene
Discharge from industrial chemical factories.	Z	वृर्वेत	70	70	0-0	Levels lower than detect level	3-2011	cis-1,2-Dichloroethylene
Discharge from petroleum factories; Discharge from chemical factories.	Z	mdđ	10	10	0-0	Levels lower than detect level	3-2011	Xylenes
Leaching from PVC piping; Discharge from plastics factories.	Z	ppb	o	0	0-0	Levels lower than detect level	3-2011	Vinyl Chloride
Discharge from metal degreasing sites and other factories.	Z	qđđ	51	0	0-0	Levels lower than detect level	3-2011	Trichloroethylene
Discharge from petroleum factories.	z	tuđđ	J -A	,	0-0	Levels lower than detect level	3-2011	Toluene
Discharge from factories and dry cleaners.	Z	ppb	ຽາ	0	0-0	Levels lower than detect level	3-2011	Tetrachloroethylene
Discharge from rubber and plastic factories; Leaching from landfills.	Z	वर्वेद	100	100	0-0	Levels lower than detect level	3-2011	Styrene
Discharge from petroleum refineries.	Z	qđđ	700	700	0-0	Levels lower than detect level	3-2011	Ethylbenzene
Discharge from pharmaceutical and chemical factories.	Ľ	qďď	Cri	0	0-0	Levels lower than detect level	3-2011	Dichloromethane
Discharge from chemical and agricultural chemical factories.	Z	वर्वेत	100	100	0-0	Levels lower than detect level	3-2011	Chlorobenzene
Discharge from chemical plants and other industrial activities.	Z,	ąďď	ن ن	0	0-0	Levels lower than detect level	3-2011	Carbon Tetrachloride
Discharge from factories; Leaching from gas storage tanks and landfills.	Z	वृत्यू	Cr	0	0-0	Levels lower than detect level	3-2011	Benzene

Turbidity

	Limit (Treatment Level Detected Technique)	Level Detected	Violation	Likely Source of Contamination
Highest single measurement	1 NTU	0.29 NTU	N	Soil runoff.
Lowest monthly % meeting limit	0.3 NTU	100%	N	Soil runoff.

2011 **Regulated Contaminants Detected**

Coliform Bacteria

0	Maximum Contaminant Level Goal
1 positive monthly sample.	Total Coliform Maximum Contaminant Level
1 positive There were no TCR monthly sample. detections for this system in this CCR period	Highest No. of Positive
	Fecal Coliform or E. Coli Maximum Contaminant Level
o	Total No. of Positive E. Coli or Fecal Coliform Samples
z	Violation
Naturally present in the environment.	Likely Source of Contamination
O Z	Coli Maximum Contaminant Level

Lead and Copper

Definitions:
Action Level Goal (ALG): The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safet Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Lead and Copper	Date Sampled	MCTG	Action Level	90th Percentile	# Sites Over AL	Units	Violation	Likely Source of Contamination
Copper	09/03/2010	1.3	1.3	0.092	o	ppm	Z	Erosion of natural deposits; Leaching fr wood preservatives; Corrosion of
Lead	09/03/2010	0	15	2.5	o	qdd	Z	Corrosion of household plumbing system Erosion of natural deposits.

Lev	Level		
Mini	Average	Disinfectant	Year
vel	Disinfectant Level	Residual	Maximum

		B
3.8	Level	Maximum

2.6

4.0

<4.0