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Abstract

We show that if G is any nilpotent, finite group, and the commutator subgroup of G is
cyclic, then every connected Cayley graph on G has a hamiltonian cycle.
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1 Introduction
It has been conjectured that every connected Cayley graph has a hamiltonian cycle. See
[4, 10, 11, 14, 15, 17] for references to some of the numerous results on this problem
that have been proved in the past forty years, including the following theorem that is the
culmination of papers by Marušič [12], Durnberger [5, 6], and Keating-Witte [9]:

Theorem 1.1 (D. Marušič, E. Durnberger, K. Keating, and D. Witte, 1985). Let G be a
nontrivial, finite group. If the commutator subgroup [G,G] of G is cyclic of prime-power
order, then every connected Cayley graph on G has a hamiltonian cycle.

It is natural to try to prove a generalization that only assumes the commutator subgroup
is cyclic, without making any restriction on its order, but that seems to be an extremely
difficult problem: at present, it is not even known whether all connected Cayley graphs on
dihedral groups have hamiltonian cycles. (See [1, 2] and [15, Cor. 5.2] for the main results
that have been proved for dihedral groups.) In this paper, we replace the assumption on the
order of [G,G] with the rather strong assumption that G is nilpotent:

Theorem 1.2. Let G be a nontrivial, finite group. If G is nilpotent, and the commutator
subgroup of G is cyclic, then every connected Cayley graph on G has a hamiltonian cycle.
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The proof of this theorem is based on a variant of the method of D. Marušič [12] that
established theorem 1.1 (cf. [9, Lem. 3.1]).

Remark 1.3. Here are some previous results on the hamiltonicity of the Cayley graph
Cay(G;S) when G is nilpotent:

1. Assume G is nilpotent, the commutator subgroup of G is cyclic, and S has only
two elements. Then a hamiltonian cycle in Cay(G;S) was found in [9, §6] (see
proposition 3.16). The present paper generalizes this by eliminating the restriction
on the cardinality of the generating set S.

2. For Cayley graphs on nilpotent groups (without any assumption on the commutator
subgroup) it was recently shown that if the valence is at most 4, then there is a
hamiltonian path (see [13]).

3. Every nilpotent group is a direct product of p-groups. For p-groups, it is known that
every Cayley graph has a hamiltonian cycle ([16], see theorem 3.13). Unfortunately,
we do not know how to extend this to direct products.

4. Every abelian group is nilpotent. It is well known (and easy to prove) that Cayley
graphs on abelian groups always have hamiltonian cycles. In fact, there is usually a
hamiltonian path from any vertex to any other vertex (see [3]).

Acknowledgments. We thank Dragan Marušič and Mohammad Reza Salarian for their
comments that encouraged this line of research. We also thank an anonymous referee for
reading an earlier version of the paper very carefully, and providing many corrections and
helpful comments.

2 Assumptions and notation
We begin with some standard notation:

Notation 2.1. Let G be a group, and let S be a subset of G.

• Cay(G;S) denotes the Cayley graph of G with respect to S. Its vertices are the
elements of G, and there is an edge joining g to gs for every g ∈ G and s ∈ S.

• G′ = [G,G] denotes the commutator subgroup of G.

• Sr = { sr | s ∈ S } for any r ∈ Z. (Similarly, Gr = { gr | g ∈ G }.)
• S±1 = S ∪ S−1.

• #S is the cardinality of S.

Note that if S happens to be a cyclic subgroup of G, then Sr is a subgroup of S.

We now fix notation designed specifically for our proof of theorem 1.2:

Notation 2.2.

• G is a nilpotent, finite group,

• N is a cyclic, normal subgroup of G that contains G′,

• g 7→ g is the natural homomorphism from G to G/N = G,

• S = {σ1, σ2, . . . , σ`} is a subset of G, such that
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◦ S is a minimal generating set for G, and
◦ ` = #S = #S ≥ 2,

The minimality of S implies that e /∈ S, and that if s ∈ S and |s| ≥ 3, then s−1 /∈ S.

• Sk = {σi | i ≤ k } for 1 ≤ k ≤ `,
• Gk = 〈Sk〉N , and

• mk = |Gk : Gk−1|.

Definition 2.3.

• If (si)
n
i=1 is a sequence of elements of S±1 and g ∈ G, we use g(si)

n
i=1 to denote

the walk in Cay(G;S) that visits (in order) the vertices

g, gs1, gs1s2, . . . , , gs1s2 · · · sn.

• If C = g(si)
n
i=1 is any oriented cycle in Cay(G;S), its voltage is

∏n
i=1 si. This is

an element of N , and it may be denoted ΠC.

• For S0 ⊂ S, we say the walk g(si)
n
i=1 covers S±1

0 if it contains an oriented edge
labeled s and a (different) oriented edge labeled s−1, for every s ∈ S0. (That is,
there exist i, j with i 6= j, such that si = s and sj = s−1. When |s| = 2, this means
si = sj = s.)

• Vk is the set of voltages of oriented hamiltonian cycles in the graph Cay(Gk;Sk)
that cover S±1

k .

Notation 2.4. For k ∈ Z+, we use (s1, . . . , sn)k to denote the concatenation of k copies
of the sequence (s1, . . . , sn). Abusing notation, we often write sk and s−k for

(s)k = (s, s, . . . , s) and (s−1)k = (s−1, s−1, . . . , s−1),

respectively. Furthermore, we often write
(
(s1, . . . , sm), (t1, . . . , tn)

)
to denote the con-

catenation (s1, . . . , sm, t1, . . . , tn). For example, we have(
(a3, b)2, c−2

)2
= (a, a, a, b, a, a, a, b, c−1, c−1, a, a, a, b, a, a, a, b, c−1, c−1).

The following well-known, elementary observation is the foundation of our proof:

Lemma 2.5 (“Factor Group Lemma” [17, §2.2]). Suppose

• N is a cyclic, normal subgroup of G,

• C = g(si)
n
i=1 is a hamiltonian cycle in Cay(G;S), and

• the voltage ΠC generates N .

Then (s1, . . . , sn)|N | is a hamiltonian cycle in Cay(G;S).

With this in mind, we let N = G′, and we would like to find a hamiltonian cycle in
Cay(G;S) whose voltage generates N . In almost all cases, we will do this by induction on
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` = #S, after substantially strengthening the induction hypothesis. Namely, we consider
the following assertion (αεk) for 2 ≤ k ≤ ` and ε ∈ {1, 2}:

there exists hk ∈ N , such that, for every x ∈ N ,(
Vk ∩ hk(G′k)ε

)
x contains a generator of

a subgroup of N that contains (G′k)ε.
(αεk)

For ε = 2, we also consider the following slightly stronger condition, which we call α2+
k :

α2
k holds, and 〈hk, (G′k)2〉 contains G′k. (α2+

k )

Lemma 2.6. Let N = G′. If either α1
` or α2+

` holds, then there is a hamiltonian cycle in
Cay(G;S) whose voltage generates N .

Proof. Note that G′` = G′ = N . Since V` consists of voltages of hamiltonian cycles in
Cay(G;S), it suffices to find an element of V` that generates G′`.

If we assume α1
` , then the desired conclusion is immediate, by taking x = e in that

assertion.
Similarly, if we assume α2+

` , then taking x = e in α2
` tells us that some element γ of

V` ∩ h`(G
′
`)

2 generates a subgroup of N that contains (G′`)
2. Then, since γ ∈ (G′`)

2h`,
and 〈h`, (G′`)2〉 contains G′`, we have

N ⊃ 〈γ〉 = 〈γ, (G′`)2〉 = 〈h`, (G′`)2〉 ⊃ G′` = N.

Remark 2.7.

1. If |G′k| is odd, then (G′k)2 = G′k, so we have α1
k ⇔ α2

k ⇔ α2+
k in this case. Thus,

the parameter ε is only of interest when |G′| is even.

2. It is not difficult to see that α1
k ⇒ α2+

k , but we do not need this fact.

Our proof of α1
` or α2+

` is by induction on k. Here is the outline:

I. We prove a base case of the induction: α2
2 is usually true (see proposition 4.1).

II. We prove an induction step: under certain conditions, α1
k ⇒ α1

k+1 and α2+
k ⇒ α2+

k+1

(see proposition 5.4).

III. We prove α1
` or α2+

` is usually true, by bridging the gap between α2
2 and either α1

3 or
α2+

3 , and then applying the induction step (see corollary 6.1 and proposition 6.2).

3 Preliminaries
3A Remarks on voltage

Remark 3.1. By definition, it is clear that all translates of an oriented cycleC in Cay(G;S)
have the same voltage. That is,

Π
(
g(si)

n
i=1

)
= Π

(
(si)

n
i=1

)
.

Remark 3.2. If |N | is square-free (which is usually the case in this paper), then N is
contained in the center ofG (because N is the direct product of normal subgroups of prime
order, and it is well known that those are all in the center [8, Thm. 4.3.4]). In this situation,
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the voltage of a cycle in Cay(G;S) is independent of the starting point that is chosen
for its representation. That is, if (ti)

n
i=1 is a cyclic rotation of (si)

n
i=1, so there is some

r ∈ {0, 1, 2, . . . , n} with ti = si+r for all i (where subscripts are read modulo n), then

Π(ti)
n
i=1 = sr+1sr+2 · · · sn s1s2 · · · sr = (s1 · · · sr)−1

(
Π(si)

n
i=1

)
s1 · · · sr = Π(si)

n
i=1,

because Π(si)
n
i=1 ∈ N ⊂ Z(G).

The following observation is useful for calculating voltages:

Lemma 3.3. If a, b ∈ G, G′ ⊂ Z(G), and p1, q1, . . . , pr, qr ∈ Z, then

ap1bq1ap2bq2 · · · aprbqr = ap1+···+prbq1+···+qr [a, b]−Σ,

where Σ =
∑
i>j piqj .

Proof. The desired conclusion is easily proved by induction on r, using the fact that, since
G′ ⊂ Z(G), we have [ap, bq] = [a, b]pq for p, q ∈ Z [7, Lem. 2.2(i)].

3B Facts from group theory

Lemma 3.4. If |G′k| is square-free, then |G′k/G′k−1| is a divisor of both |Gk−1| and
|Gk/Gk−1|.

Proof. We may assume k = `, so G = Gk. Let p be a prime factor of |G′/G′k−1|, let P
be the Sylow p-subgroup of G, and let ϕ : G → P be the natural projection. Since |G′| is
square-free, it suffices to show that |Gk−1| and |Gk/Gk−1| are divisible by p.

We may assume |G′| = p and G′k−1 = {e}, by modding out the unique subgroup
of index p in G′. Therefore ϕ(Gk−1) is abelian, so it is a proper subgroup of P . Since
G′ = P ′ ⊂ Φ(P ), this implies ϕ(Gk−1)G′ is a proper subgroup of P , so its index is
divisible by p. Hence |G/Gk−1| is divisible by p.

There must be some t ∈ Sk−1, such that [σk, t] is nontrivial. Hence ϕ(t) /∈ Z(G) ⊃ G′,
so p is a divisor of |ϕ(t)|, which is a divisor of |Gk−1|.

The following fact is well known and elementary, but we do not know of a reference in
the literature. It relies on our assumption that G′ is cyclic.

Lemma 3.5. We have 〈 [s, t] | s, t ∈ S 〉 = G′ if N ⊂ Z(G).

Proof. Let H = 〈 [s, t] | s, t ∈ S 〉. Then H is a normal subgroup of G, because every
subgroup of a cyclic, normal subgroup is normal. In G/H , every element of S commutes
with all of the other elements of S (and with all of N ), so G/H is abelian. Hence G′ ⊂
H .

3C Elementary facts about cyclic groups of square-free order

Lemma 3.6. Assume |N | is square-free, and H and K are two subgroups of N . Then:

1. There is a unique subgroup K⊥ of N , such that N = K ×K⊥.

2. K⊥ is a normal subgroup of G.

3. K ⊆ H iff H = N in G = G/K⊥.
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Proof. (1) Since N is cyclic, it has a unique subgroup of any order dividing |N |; let K⊥

be the subgroup of order |N/K|. Since |N | is square-free, we have gcd
(
|K|, |K⊥|

)
= 1,

so N = K ×K⊥.
(2) It is well known that every subgroup of a cyclic, normal subgroup is normal (because

no other subgroup of N has the same order).
(3) We prove only the nontrivial direction. Since H = N , we know that |K| = |N | is

a divisor of |H|. So |H| has a subgroup whose order is |K|. Since K is the only subgroup
of N with this order, we must have K ⊆ H .

Remark 3.7. When we want to show that some subgroup H of N contains some other
subgroup K, Lemma 3.6 often allows us to assume K = N (by modding out K⊥), which
means we wish to prove H = N .

Lemma 3.8. Suppose

• γ is a generator of N ,

• x ∈ N , and

• a ≥ max
(
|N |, 5

)
.

Then, for some i with 1 ≤ i ≤ b(a− 1)/2c, we have N2 ⊆ 〈γ−2ix〉.

Proof. Write x = γh, where 1 ≤ h ≤ |N |, choose r ∈ {1, 2} such that h− r is even, and
let

i =

{
r if h ∈ {1, 2},

(h− r)/2 if h > 2.

Then h− 2i ∈ {±r} ⊂ {±1,±2}, so N2 ⊆ 〈γh−2i〉 = 〈γ−2ix〉.

Lemma 3.9. If

• N is a cyclic group of square-free order,

• m ≥ |N |,
• k ≥ 2,

• T = {γ1, . . . , γk} generates N ,

• h ∈ N , and

• Cay(N ;T ) is not bipartite,

then we may choose a sequence (ji)
m−1
i=1 of elements of {1, 2, . . . , k}, and γ∗i ∈ {γ

±1
ji
} for

each i, such that γ∗i+1 = γ∗i whenever ji+1 = ji, and

〈hγ∗1γ∗2 · · · γ∗m−1〉 = N. (3.10)

Proof. Let us assume |N | > 3. (The smaller cases are very easy to address individually.)
We begin by finding γ∗1 , γ

∗
2 , . . . , γ

∗
m−1 ∈ T±1, such that 〈hγ∗1γ∗2 · · · γ∗m−1〉 containsN2

(or N , if appropriate), but without worrying about the requirement that γ∗i+1 = γ∗i when-
ever ji+1 = ji.

Let γ be a generator of N , and assume h−1γ 6= e (by replacing γ with its inverse, if
necessary). Since Cay(N ;T ) is not bipartite, there is a walk (γ∗i )ri=1 from e to h−1γ, such
that r ≡ m− 1 (mod 2).
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We now show the walk can be chosen to satisfy the additional constraint that r < |N |
(so r ≤ m− 1). We know that Cay(N ;T ) has a hamiltonian cycle C (since N is abelian).
Since Cay(N ;T ) is not bipartite, C must have a chord L of even length. We may assume
one endpoint of L is e, since Cay(N ;T ) is vertex transitive. Let z be the other endpoint
of L. Being a hamiltonian cycle, C can be written as the union of two edge-disjoint paths
from e to h−1γ. Let P be the one of these paths that contains a subpath of even length
from e to z, and let P̂ be obtained from P by replacing this subpath with the edge L. Then
P and P̂ are two paths from e to h−1γ. Both have length less than |N |, and their lengths
are of opposite parity.

Now
hγ∗1γ

∗
2 · · · γ∗r (γ1γ

−1
1 )(m−1−r)/2 = γ generates N ,

as desired.

To complete the proof of the lemma, we modify the above sequence γ∗1 , γ
∗
2 , . . . , γ

∗
m−1

to satisfy the condition that γ∗i+1 = γ∗i whenever ji+1 = ji. First of all, since N is
commutative, we may collect like terms, and thereby write

γ∗1γ
∗
2 · · · γ∗m−1 = γm1

1 γm2
2 · · · γmk

k γ−n1
1 γ−n2

2 · · · γ−nk

k

wherem1 + · · ·+mk+n1 + · · ·+nk = m−1. Notice that ifmk and n1 are both nonzero,
then no occurrence of γi is immediately followed by γ−1

i ; so we have γ∗i+1 = γ∗i whenever
ji+1 = ji, as desired. Therefore, by permuting γ1, . . . , γk, we may assume mi = ni = 0
for all i > 1. Also, we may assume m1 and n1 are both nonzero, for otherwise we have
γ∗i = γ∗j for all i and j. Then, since γ1γ

−1
1 = γ2γ

−1
2 , we have

γ∗1γ
∗
2 · · · γ∗m−1 = γm1

1 γ−n1
1 = γm1−1

1 γ2γ
−(n1−1)
1 γ−1

2 .

We can assume n1 ≥ m1 (by replacing γ1 with its inverse, if necessary). Then

n1 ≥
⌈
m− 1

2

⌉
≥
⌈
|N | − 1

2

⌉
≥ 2,

so this new representation of the same product satisfies the condition that γi is never im-
mediately followed by γ−1

i . This completes the proof.

Corollary 3.11. Assume |N | is square-free and k ≥ 2 (and ε ∈ {1, 2}, as usual). For
convenience, let m = mk+1 and a = σk+1. If h ∈ N , then there exists a sequence
(si)

m−1
i=1 of elements of Sk, and s∗i ∈ {s

±1
i } for each i, such that s∗i+1 = s∗i whenever

si+1 = si, and

〈
h

m−1∏
i=1

[a, s∗i ], (G′k)ε

〉
contains


G′k+1

if there exist s, s′ ∈ Sk, such that
|[a, s]| is even and |[a, s′]| is odd,

(G′k+1)ε if |G′k+1/G
′
k| is odd,

(G′k+1)2 otherwise.

(3.12)

Proof. For each s ∈ Sk, let γs = [a, s]. Also, let

T = { γs | s ∈ Sk } ⊆ G′k+1 ⊆ N.
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Let

ε̂ =


1 if there exist t, t′ ∈ T , such that |t| is even and |t′| is odd,
ε if |G′k+1/G

′
k| is odd,

2 otherwise.

Lemma 3.6 allows us to assume (G′k+1)ε̂ = N , by modding out
(
(G′k+1)ε̂

)⊥
. We can also

assume (G′k)ε is trivial, by modding it out.
We claim that 〈T 〉 = N . We have〈

T,G′k
〉
⊇
〈
{ [σk+1, s] | s ∈ Sk }, { [s, t] | s, t ∈ Sk }

〉
=
〈
{ [s, t] | s, t ∈ Sk+1 }

〉
= G′k+1 (see Lemma 3.5)
= N.

Since (G′k)ε is trivial, this implies |N : 〈T 〉| ≤ ε. Thus, if the claim is not true, must have
|N : 〈T 〉| = ε = 2. In particular, |N | is even. Since (G′k+1)ε̂ = N , we conclude that
ε̂ = 1, so the definition of ε̂ (together with the fact that ε = 2) implies that T contains an
element of even order. So |〈T 〉| is even, which contradicts the fact that |N : 〈T 〉| = 2 is
even (and |N | is square-free). This completes the proof of the claim.

We also claim that Cay(N ;T ) is not bipartite. We may assume |N | is even (for other-
wise the claim is obvious). Since (G′k+1)ε̂ = N , this implies ε̂ = 1. However, the claim is
also obviously true if there exist t, t′ ∈ T , such that |t| is even and |t′| is odd. Hence, we
may assume |G′k+1/G

′
k| is odd, and ε = ε̂ = 1. Since (G′k)ε is trivial, this implies |G′k| is

odd, which contradicts the fact that |N | is even. This completes the proof of the claim.
The desired conclusion is now immediate from Lemma 3.9 (since γs = [a, s] and

(γs)
−1 = [a, s−1]).

3D Results from [9] and [16]

The following result from [16] allows us to assume G is not a 3-group. (Since we always
assume that G′ is cyclic, a short proof of the special case we need can be found in [15,
Thm. 6.1].)

Theorem 3.13 (Witte [16]). If |G| is a power of some prime p, then every connected Cayley
graph on G has a hamiltonian cycle.

The following simple observation usually allows us to assume |N | is square-free.

Lemma 3.14 ([9, Lem. 3.2]). Let G = G/Φ(N), where Φ(N) is the Frattini subgroup
of N [8, §10.4]. Then:

1. |N | is square-free, and

2. if there is a hamiltonian cycle in Cay(G/N ;S) whose voltage generates N , then
there is a hamiltonian cycle in Cay(G/N ;S) whose voltage generates N .

Lemma 3.15 (Keating-Witte [9, Case 6.1]). If |G2| is even, then Cay
(
G2;S2

)
has a hamil-

tonian cycle whose voltage is a generator of G′2.
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Proof. For the reader’s convenience, we provide a proof. We may assume |σ1| is even (by
interchanging σ1 and σ2 if necessary). For convenience, let n = |σ1| and m = m2. Then(

σm−1
2 , (σ1, σ

−(m−2)
2 , σ1, σ

m−2
2 )(n−2)/2, σ1, σ

−(m−1)
2 , σ

−(n−1)
1

)
is a hamiltonian cycle in Cay(G2;S2).

Lemma 3.14 allows us to assume |G′2| is square-free, which implies G′2 is in the center
of G2 (see remark 3.2). Also, from Lemma 3.4, we know that |[σ1, σ2]| is a divisor of both
m and n. Therefore

(σ1σ
−(m−2)
2 σ1σ

m−2
2 )(n−2)/2 =

(
σ2

1 [σ1, σ
m−2
2 ]

)(n−2)/2

= σn−2
1 [σ1, σ2](m−2)(n−2)/2 = σn−2

1 [σ1, σ2]2

and
[σ
−(m−1)
2 , σ

−(n−1)
1 ] = [σ2, σ1](m−1)(n−1) = [σ2, σ1] = [σ1, σ2]−1,

so the voltage of this cycle is

σm−1
2

(
σ1σ

−(m−2)
2 σ1σ

m−2
2

)(n−2)/2
σ1σ

−(m−1)
2 σ

−(n−1)
1

= σm−1
2

(
σn−2

1 [σ1, σ2]2
)
σ1σ

−(m−1)
2 σ

−(n−1)
1

= σm−1
2 σn−1

1 σ
−(m−1)
2 σ

−(n−1)
1 [σ1, σ2]2

= [σ
−(m−1)
2 , σ

−(n−1)
1 ] [σ1, σ2]2

= [σ1, σ2],

which generates G′2 (see Lemma 3.5).

The following result allows us to assume ` ≥ 3.

Proposition 3.16 (Keating-Witte [9, §6]). If ` = 2 and N = G′, then Cay
(
G;S

)
has a

hamiltonian cycle.

Proof. For the reader’s convenience, we provide a proof (using the main result of Section 4
below). We may assume |G/G′| is odd, for otherwise a hamiltonian cycle is obtained by
combining Lemma 3.15 with the Factor Group Lemma (2.5). We may also assume that |G|
is not a power of 3, for otherwise theorem 3.13 applies. This implies it is not the case that
|s| = 3 for every s ∈ S.

If |G′| is square-free, then proposition 4.1 tells us that α2
2 is true. Also, since |G/G′| is

odd, we know |G′| is odd (cf. Lemma 3.4), so α2
2 implies that α1

2 is true (see remark 2.7(1)).
Therefore, the Factor Group Lemma (2.5) provides a hamiltonian cycle in Cay(G;S) (see
Lemma 2.6). Then Lemma 3.14 tells us there is a hamiltonian cycle even without the
assumption that |G′| is square-free.

4 Base case of the inductive construction
Recall that the condition αεk is defined in Section 2.

Proposition 4.1 (cf. [9, Case 6.2]). Assume |N | is square-free (and ` ≥ 2). Then α2
2 is

true unless |G′2| = m2 = |σ1| = |σ2| = 3.
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Proof. For convenience, let

a = σ1, b = σ2, and m = m2,

and define r by
b
m

= ar and 0 < r ≤ |a|.
We may assume:

• ` = 2, so S = S2 = {a, b} and G = G2.

• (G′)2 is nontrivial. (Otherwise, the condition about generating (G′)2 is automatically
true, so it suffices to show V2 6= ∅, which is easy.)

• Either |a| is even, or m is odd (by interchanging σ1 and σ2 if necessary).

• |a| 6= 3 (by interchanging σ1 and σ2 if necessary: if |σ1| = |σ2| = 3, then m = 3
and, from Lemma 3.4, we also have |G′| = 3, which means we are in a case in which
the statement of the proposition does not make any claim).

• r ≥ |a|/2 (by replacing a with its inverse if necessary).

Note that |G′| is a divisor of both |a| andm (see Lemma 3.4). Since (G′)2 is nontrivial,
this implies that |a| and m both have at least one odd prime divisor.

Case 1. Assume m = 3. Since |G′| is a divisor of m, we must have |G′| = 3, so |a| must
be divisible by 3. Then, since |a| 6= 3, we must have |a| ≥ 6. Furthermore, by applying
Lemma 3.4 with a and b interchanged, we see that |G/〈b〉| is also divisible by |G′| = 3,
which means that r is divisible by 3.

We claim that it suffices to find two elements γ1, γ2 ∈ V2, such that γ1 6= γ2 and
γ1 ∈ γ2G

′. To see this, note that, for any x ∈ N , there is some i ∈ {1, 2}, such that 〈γix〉
has nontrivial projection to G′ (with respect to the unique direct-product decomposition
N = G′ × (G′)⊥). Since |G′| is prime, this implies that the projection is all of G′, so
Lemma 3.6 tells us that 〈γix〉 contains G′. This establishes α1

2, which is equivalent to α2
2

(see remark 2.7(1)). This completes the proof of the claim.
Assume, for the moment, that r = 3. Then, since r ≥ |a|/2 and |a| ≥ 6, we must have

|a| = 6. Here are two hamiltonian cycles in Cay(G; a, b) that cover S±1:

(b−1, a−2, b−4, a−2, b−1, a3, b2, a, b−2)

and
(b−1, a−2, b−1, a, b−1, a−1, b−2, a−1, b−1, a2, b2, a, b−2)

(see Figure 1). By using Lemma 3.3, we see that their voltages are

b−1a−2b−4a−2b−1a3b2ab−2 = b−6[a, b]−(−10) = b−6[a, b]

and

b−1a−2b−1ab−1a−1b−2a−1b−1a2b2ab−2 = b−6[a, b]−(−8) = b−6[a, b]2,

respectively. So we may let γ1 = b−6[a, b] and γ2 = b−6[a, b]2.
We may now assume r ≥ 6 (since r is divisible by 3). Let

I =

{
{0, 1} if r 6= |a|,
{1, 2} if r = |a|.
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2

a a2 a3 a4 a5 e

b

b
2

a a2 a3 a4 a5

Figure 1: Two hamiltonian cycles in Cay
(
G; {a, b}

)
when m = r = 3.

e
ai ai+1

aib
−1

ai+1b
−1

b

b
2

a−3

Figure 2: A hamiltonian cycle in Cay
(
G; {a, b}

)
when m = 3 and r ≥ 6.

Then, for i ∈ I , we have 0 ≤ i ≤ |a| − 4, and 4 ≤ r − i ≤ |a| − 1, so the walk

Ci =
(
ai, b−1, a−(|a|−r+i−1), b−1, a|a|−4, b−1, a−(|a|−i−4), b−1, ar−i−3, b−2, a, b2, a, b−2

)
is as pictured in Figure 2. It is a hamiltonian cycle in Cay(G; a, b) that covers S±1. Fur-
thermore, since

aib−1a−i = b−1(baib−1a−i) = b−1[b−1, a−i] = b−1[b, a]i = b−1[a, b]−i,

its voltage is of the form h2 [a, b]−2i, where h2 is independent of i. Thus, we may let

{γ1, γ2} = {h2 [a, b]−2i | i ∈ I }.

Case 2. Assume m 6= 3. (Cf. [9, Case 4.3].) Since m and |a| both have at least one odd
prime divisor, we must have m ≥ 5 and |a| ≥ 5. Let

X =

{(
b−(m−2), a, bm−3, a|a|−3, b−1, (a−(|a|−4), b−1, a|a|−4, b−1)(m−3)/2

)
if |a| is odd,(

b−1, (b−(m−3), a, bm−3, a)(|a|/2)−1, b−(m−2)
)

if |a| is even.

For each i with 1 ≤ i ≤ b(|a| − 1)/2c, we have 1 ≤ i ≤ min
(
r − 1, |a| − 3

)
(since

r ≥ |a|/2 and |a| ≥ 5), so we may let

Ci =
(
ai, b−1, a−(|a|+i−r−1), X, a−(|a|−i−2), b−1, ar−i−1, b−(m−1)

)
(see Figures 3 and 4). Then Ci is a hamiltonian cycle in Cay(G; a, b).
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e
ai ai+1

aib
−1

ai+1b
−1

b

...

b
m−2

b
m−1

Figure 3: A hamiltonian cycle Ci in Cay
(
G; {a, b}

)
when m = |G/〈a〉| is odd.

Note that both possibilities for X contain oriented edges labelled a, b, and b−1. Fur-
thermore, since |a| − i − 2 ≥ 1, we see that Ci also contains at least one oriented edge
labelled a−1. Therefore Ci covers {a, b, a−1, b−1} = S±1.

As in Case 1, the voltage ΠCi of Ci is of the form h2 [a, b]−2i, where h2 is independent
of i. Since |a| ≥ |G′| (see Lemma 3.4) and 〈[a, b]〉 = G′ (see Lemma 3.5), Lemma 3.8
(combined with Lemma 3.6) tells us that for any x ∈ N , we may choose i so that 〈(ΠCi)x〉
contains (G′)2.

5 The main induction step
The induction step of our proof uses the following well-known gluing technique that is
illustrated in Figure 5.

Definition 5.1. Let

• C1 and C2 be two vertex-disjoint oriented cycles in Cay(G;S),

• g ∈ G, and

• a, s ∈ S.

If

• C1 contains the oriented edge g(s), and

• C2 contains the oriented edge gsa(s−1),

then we use C1 #a
s C2 to denote the oriented cycle obtained from C1 ∪ C2 as in Figure 5,

by

• removing the oriented edges g(s) and gsa(s−1), and
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e
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aib
−1

ai+1b
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...

b
m−2

b
m−1

Figure 4: A hamiltonian cycle Ci in Cay
(
G; {a, b}

)
when |a| is even.

• inserting the oriented edges g(a) and gsa(a−1).

This is called the connected sum of C1 and C2.

Lemma 5.2. If C1, C2, g, s, and a are as in definition 5.1, and N ⊂ Z(G), then

Π(C1 #a
s C2) = (ΠC1)(ΠC2)[a, s].

Proof. Write C1 = gs(si)
m
i=1 and C2 = ga(tj)

n
j=1. Then

C1 #a
s C2 = gsa

(
a−1, (si)

m−1
i=1 , a, (tj)

n−1
j=1

)
,

so

Π(C1 #a
s C2) = a−1

(
m−1∏
i=1

si

)
a

n−1∏
j=1

tj


= a−1

(
m∏
i=1

si

)
s−1
m a

 n∏
j=1

tj

t−1
n

= a−1 (ΠC1) s−1 a (ΠC2) s

= (ΠC1) (ΠC2) a−1s−1as (ΠCi ∈ N ⊂ Z(G))

= (ΠC1) (ΠC2) [a, s].

Corollary 5.3. Assume

• 2 ≤ k < `, and (to eliminate some subscripts) m = mk+1 and a = σk+1,

• π1, π2, . . . , πm are elements of Vk,
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g gs

ga gsa

a a−1
s−1

s

C1

C2

Figure 5: C1 and C2 are merged into a single cycle by replacing the two white edges
labelled s and s−1 with the two black edges labelled a and a−1.

• s1, s2, . . . , sm−1 are elements of Sk, and, for each i, a choice s∗i ∈ {s
±1
i } has been

made in such a way that if si+1 = si, then s∗i+1 = s∗i , and

• N ⊂ Z(G).

Then there is a hamiltonian cycle in Cay(Gk+1;Sk+1) that covers S±1
k+1, and whose voltage

is (
m∏
i=1

πi

)(
m−1∏
i=1

[a, s∗i ]

)
.

Proof. For each i, let Ci be an oriented hamiltonian cycle in Cay(Gk;Sk) that covers S±1
k ,

and has voltage πi. We inductively construct sequences (gi)
m
i=1 and (xi)

m
i=1 of elements

of Gk, as follows.
Let g1 = e. Since C1 covers S±1

k , we know there is some x1 ∈ Gk, such that ag1C1

contains the oriented edge ax1(s∗1).
Now, suppose g1, x1, g2, x2, . . . , gi, xi ∈ Gk are given, such that the connected sum

ag1C1 #a
s∗1
a2g2C2 #a

s∗2
· · ·#a

s∗i−1
aigiCi

exists, and contains the oriented edge aixi(s∗i ). Since Ci+1 covers S±1
k , we know that

Ci+1 contains an oriented edge labelled (s∗i )
−1, and a different oriented edge that is la-

belled s∗i+1. Therefore, there exist gi+1, xi+1 ∈ Gk, such that

ai+1gi+1Ci+1 contains the oriented edges ai+1xis∗i
(
(s∗i )

−1
)

and ai+1xi+1(s∗i+1).

The first of these edges is removed when we form the connected sum(
ag1C1 #a

s∗1
a2g2C2 #a

s∗2
· · ·#a

s∗i−1
aigiCi

)
#a
s∗i

ai+1gi+1Ci+1,
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but the second edge remains, and will be used to form the next connected sum (unless
i+ 1 = m).

Since each Ci is a hamiltonian cycle in Cay(Gk;Sk), the resulting connected sum

ag1C1 #a
s∗1
a2g2C2 #a

s∗2
· · ·#a

s∗m−1
amgmCm

passes through all of the vertices in aGk ∪ a2Gk ∪ · · · ∪ amGk. That is, it passes through
every element of Gk+1, so it is a hamiltonian cycle in Cay(Gk+1;Sk+1). Its voltage is
calculated by repeated application of Lemma 5.2.

To complete the proof, we verify that the hamiltonian cycle covers S±1
k+1. Since each

Ci covers S±1
k , the disjoint union

ag1C1 ∪ a2g2C2 ∪ · · · ∪ amgmCm

contains (at least) m disjoint pairs of edges labelled s and s−1, for each s ∈ Sk. Each
invocation of the connected sum removes only one such pair, and the operation is performed
onlym−1 times, so at least one of them pairs must remain, for each s ∈ Sk. Therefore, the
hamiltonian cycle covers S±1

k . Also, the cycle certainly covers a±1, since each invocation
of the connected sum inserts a pair of edges labelled a and a−1. Hence, the hamiltonian
cycle covers S±1

k ∪ {a±1} = S±1
k+1.

We can now prove the main result of this section. (Recall that the condition αεk is
defined in Section 2.)

Proposition 5.4. Assume |N | is square-free and |G′k+1/G
′
k| is odd. Then

1. α1
k ⇒ α1

k+1, and

2. α2+
k ⇒ α2+

k+1 if |[s, t]| is even for all s, t ∈ Sk+1 with s 6= t.

Proof. For convenience, let m = mk+1 and a = σk+1. Let hk ∈ N be as in (αεk),
and choose an oriented hamiltonian cycle C in Cay(Gk;Sk) that covers S±1

k , and has its
voltage in hk(G′k)ε. There is no harm in assuming that the voltage is precisely hk. Let

hk+1 = (hk)m[a, σ1]m−1.

Given any x ∈ N , corollary 3.11 provides a sequence (si)
m−1
i=1 of elements of Sk, and

s∗i ∈ {s
±1
i } for each i, such that s∗i+1 = s∗i whenever si+1 = si, and〈

x (hk)m
m−1∏
i=1

[a, s∗i ], (G′k)ε

〉
contains (G′k+1)ε. (5.5)

From (αεk) we know there exists π ∈ Vk ∩ hk (G′k)ε, such that, if we let

γ = π (hk)m−1
m−1∏
i=1

[a, s∗i ],

then 〈xγ〉 contains (G′k)ε. Since π ≡ hk (mod (G′k)ε), combining this with (5.5) shows
that 〈xγ〉 contains (G′k+1)ε. Also, since we are assuming |[a, s∗i ]| is even if ε = 2, we have
[a, s∗i ] ≡ [a, σ1] (mod (G′k+1)ε) for all i, so

γ ∈ (hk)m[a, σ1]m−1(G′k+1)ε = hk+1(G′k+1)ε.
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Furthermore, corollary 5.3 tells us that there is a hamiltonian cycle in Cay(G;S) whose
voltage is γ, and this hamiltonian cycle covers S±1. This establishes αεk+1.

Now, if ε = 2, then our assumptions imply that |hk| and |[a, σ1]| are both even. Since
m and m − 1 are of opposite parity, this implies that |hk+1| is even, so 〈hk, (G′k+1)2〉
contains G′k+1. This establishes α2+

k+1.

6 Combining the base case with the induction step
Recall that the condition αεk is defined in Section 2.

Corollary 6.1. Assume |N | is square-free and ` ≥ 2. If |G′| is odd, then α1
` is true unless

|G′| = |s| = 3 for all s ∈ S.

Proof. Assume it is not the case that |G′| = |s| = 3 for all s ∈ S. Then we may assume (by
permuting the elements of S) that either |G′2| 6= 3 or |σ1| 6= 3. Therefore proposition 4.1
tells us that α2

2 is true. Also, since |G′| is odd, we have α2
2 ⇔ α1

2 (see remark 2.7(1)), so
α1

2 is true. Then repeated application of proposition 5.4(1) establishes α1
` .

Proposition 6.2. Assume |N | is square-free and ` ≥ 3. If |G′| is even, then:

1. α1
` is true if there exist s, t ∈ S, such that |[s, t]| is odd and s 6= t.

2. α2+
` is true if |[s, t]| is even for all s, t ∈ S with s 6= t.

Proof. Since |G′| is even, we may assume (by permuting the elements of S) that |[σ3, σ1]|
is even. It suffices to prove α1

3 or α2+
3 (as appropriate), for then repeated application of

proposition 5.4 establishes the desired conclusion. Thus, we may assume ` = 3, so G3 =
G. Let m = m3 and a = σ3 = σ`.

By permuting the elements of S, we may assume that either:

odd case: |[σ3, σ2]| is odd, or

even case: |[s, t]| is even for all s, t ∈ S with s 6= t.

Furthermore, in the even case, we may assume that either:

even subcase: 〈σ1, σ2〉 has even index in G, or

odd subcase: 〈s, t〉 has odd index in G, for all s, t ∈ S, such that s 6= t.

Since |[σ3, σ1]| is even, we know |σ1| is even (see Lemma 3.4). In particular, we have
|σ1| 6= 3, so proposition 4.1 tells us that α2

2 is true.
We now use a slight modification of the proof of proposition 5.4. Let h2 ∈ N be as in

(αεk) (with k = ε = 2), and choose an oriented hamiltonian cycle C in Cay(G2;S2) that
covers S±1

2 , and has its voltage in h2(G′2)2. There is no harm in assuming that the voltage
is precisely h2.

Since |σ1| is even, we know |G2| is even. Therefore, Lemma 3.15 provides a hamilto-
nian cycle C ′ in Cay(G2;S2), such that ΠC ′ is a generator of G′2. Let

h′ =

{
ΠC ′ in the odd subcase of the even case,
h2 in all other cases.

Let h3 = (h2)m−1h′[a, σ1]m−1.
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Given any x ∈ N , corollary 3.11 provides a sequence (si)
m−1
i=1 of elements of S2, and

s∗i ∈ {s
±1
i } for each i, such that s∗i+1 = s∗i whenever si+1 = si, and〈

x(h2)m−1h′
m−1∏
i=1

[a, s∗i ], (G′2)2

〉
contains (G′)2. (6.3)

Furthermore, in the odd case, the choices can be made so that (6.3) holds with G′ in the
place of (G′)2.

From α2
2, we know there exists π ∈ V2 ∩ h2 (G′2)2, such that, if we let

γ = π (h2)m−2h′
m−1∏
i=1

[a, s∗i ],

then

〈xγ〉 contains (G′)2. (6.4)

It is clear from the definitions that γ ∈ h3G
′
3. Furthermore, we have γ ∈ h3(G′3)2 in the

even case.
corollary 5.3 tells us that there is a hamiltonian cycle in Cay(G;S) whose voltage is γ,

and this hamiltonian cycle covers S±1. We now consider various cases individually.

Case 1. The odd case. Recall that, in this case, (6.3) holds with G′ in the place of (G′)2.
Since π ≡ h2 (mod (G′2)2), combining this with (6.4) shows that 〈xγ〉 contains all of G′.
This establishes α1

3.

Case 2. The even subcase of the even case. In this subcase, we know m is even, h′ = h2,
and |[a, σ1]| is even. Since h3 = (h2)m[a, σ1]m−1, we see that |h3| is even, so 〈h3, (G

′
3)2〉

contains G′3. This establishes α2+
3 .

Case 3. The odd subcase of the even case. In this subcase, we know m − 1 is even,
and h′ = ΠC ′ has even order. Therefore |h3| is even, so 〈h3, (G

′
3)2〉 contains G′3. This

establishes α2+
3 .

We can now establish our main theorem:

Proof of theorem 1.2. We may assume:

• ` ≥ 3, for otherwise proposition 3.16 applies.

• |G| is not a power of 3, for otherwise theorem 3.13 applies.

Let S be a minimal generating set of G, and let N = G′. Note that S is a minimal gen-
erating set of G (because G′ is contained in the Frattini subgroup Φ(G) [8, Thm. 10.4.3]).

We claim there is a hamiltonian cycle in Cay(G;S) whose voltage generatesG′. While
proving this, there is no harm in assuming that |G′| is square-free (see Lemma 3.14). Also
note that, since |G| is not a power of 3, we cannot have |G′| = |s| = 3 for all s ∈ S. Then,
by applying either corollary 6.1 or proposition 6.2 (depending on the parity of |G′|), we
obtain either α1

` or α2+
` . Each of these yields the desired hamiltonian cycle in Cay(G;S)

(see Lemma 2.6).
Now that the claim has been verified, the Factor Group Lemma (2.5) provides a hamil-

tonian cycle in Cay(G;S).
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