Math 3331 ODEs - ST3 Solns

\# 1 A spring is stretched 20 cm by a $4-\mathrm{kg}$ mass. The weight is pulled down an additional 1 m and released with an upward velocity of $4 \mathrm{~m} / \mathrm{s}$. Find the position of the mass at and time t.

Soln. Since $F=m a=k x$ then we have $4 \times 9.8=k \times 0.2$ giving $k=196$. The equation of motion is given by $m \ddot{x}+k x=0$ or in this case $4 \ddot{x}+196 x=0$ which simplifies to $\ddot{x}+49 x=0$. The solution is $x=c_{1} \cos 7 t+c_{2} \sin 7 t$. The initial conditions are: $x(0)=1$ and $\dot{x}(0)=-4$. Imposing these gives $x(0)=c_{1}=1$ and $\dot{x}(0)=7 c_{2}=-4$ so $c_{2}=-4 / 7$ giving the final solution as

$$
\begin{equation*}
x=\cos 7 t-\frac{4}{7} \sin 7 t \tag{1}
\end{equation*}
$$

\# 2 A spring with a mass of 2 kg has damping constant 14 , and a force of 6 N is required to keep the spring stretched 0.5 m beyond its natural length. The spring is stretched 1 m beyond its natural length and then released with zero velocity. Find the position of the mass at any time t.

Soln. Given in the problem is $m=2$ and $l=14$. Since $F=6=k \times 0.5$ then $k=12$. The differential equation for the motion is $2 \ddot{x}+14 \dot{x}+12 x=0$ or $\ddot{x}+7 \dot{x}+6 x=0$. The solution is given by $x=c_{1} e^{-t}+c_{2} e^{-6 t}$. The initial conditions are: $x(0)=1, \dot{x}(0)=0$. These give $c_{1}+c_{2}=1$ and $-c_{1}-6 c_{2}=0$ from which we obtain $c_{1}=6 / 5, c_{2}=-1 / 5$ giving the final solution as

$$
\begin{equation*}
x=\frac{6}{5} e^{-t}-\frac{1}{5} e^{-6 t} \tag{2}
\end{equation*}
$$

\# 3 This involves solving 6 systems.
\# 3(i)

$$
\frac{d \bar{x}}{d t}=\left(\begin{array}{ll}
1 & 2 \tag{3}\\
3 & 2
\end{array}\right) \bar{x} .
$$

Here $\operatorname{Tr} A=3$ and $\operatorname{Det} A=-4$ and the characteristic equation is

$$
\lambda^{2}-3 \lambda-4=(\lambda+1)(\lambda-4)=0
$$

from which we obtain the eigenvalues $\lambda=-1$ and $\lambda=4$.

Case 1: $\lambda=-1$
From $(A-\lambda I) \vec{u}=\overrightarrow{0}$ we have

$$
\left(\begin{array}{ll}
2 & 2 \\
3 & 3
\end{array}\right)\binom{u_{1}}{u_{2}}=\binom{0}{0}
$$

from which we obtain upon expanding $2 u_{1}+2 u_{2}=0$ and obtain the eigenvector

$$
\bar{u}=\binom{1}{-1}
$$

and thus, the first solutions is

$$
\bar{x}_{1}=\binom{1}{-1} e^{-t}
$$

Case 2: $\lambda=4$
From $(A-\lambda I) \vec{u}=\overrightarrow{0}$ we have

$$
\left(\begin{array}{rr}
-3 & 2 \\
3 & -2
\end{array}\right)\binom{u_{1}}{u_{2}}=\binom{0}{0}
$$

from which we obtain upon expanding $-3 u_{1}+2 u_{2}=0$ and we deduce the eigenvector

$$
\bar{u}=\binom{2}{3}
$$

and the second solution is

$$
\bar{x}_{2}=\binom{2}{3} e^{4 t}
$$

The general solution to (3) is then given by

$$
\bar{x}=c_{1}\binom{1}{-1} e^{-t}+c_{2}\binom{2}{3} e^{4 t} .
$$

\# 3(ii)

$$
\frac{d \bar{x}}{d t}=\left(\begin{array}{ll}
3 & -2 \tag{4}\\
2 & -2
\end{array}\right) \bar{x}, \quad \vec{x}(0)=\binom{8}{7}
$$

Here $\operatorname{Tr} A=1$ and $\operatorname{Det} A=-2$ and the characteristic equation is

$$
\lambda^{2}-\lambda-2=(\lambda+1)(\lambda-2)=0
$$

from which we obtain the eigenvalues $\lambda=-1$ and $\lambda=2$.

Case 1: $\lambda=-1$
From $(A-\lambda I) \vec{u}=\overrightarrow{0}$ we have

$$
\left(\begin{array}{ll}
4 & -2 \\
2 & -1
\end{array}\right)\binom{u_{1}}{u_{2}}=\binom{0}{0}
$$

from which we obtain upon expanding $4 u_{1}-2 u_{2}=0$ and obtain the eigenvector

$$
\bar{u}=\binom{1}{2}
$$

and thus, the first solutions is

$$
\bar{x}_{1}=\binom{1}{2} e^{-t}
$$

Case 2: $\lambda=2$
From $(A-\lambda I) \vec{u}=\overrightarrow{0}$ we have

$$
\left(\begin{array}{ll}
1 & -2 \\
2 & -4
\end{array}\right)\binom{u_{1}}{u_{2}}=\binom{0}{0}
$$

from which we obtain upon expanding $u_{1}-2 u_{2}=0$ and we deduce the eigenvector

$$
\bar{u}=\binom{2}{1}
$$

and the second solution is

$$
\bar{x}_{2}=\binom{2}{1} e^{2 t} .
$$

The general solution to (4) is then given by

$$
\bar{x}=c_{1}\binom{1}{2} e^{-t}+c_{2}\binom{2}{1} e^{2 t} .
$$

From the initial condition we have

$$
c_{1}\binom{1}{2}+c_{2}\binom{2}{1}=\binom{8}{7}
$$

from which we deduce that $c_{1}=2$ and $c_{2}=3$ giving the solution subject to the initial condition as

$$
\bar{x}=2\binom{1}{2} e^{-t}+3\binom{2}{1} e^{2 t} .
$$

\# 3(iii)

$$
\frac{d \bar{x}}{d t}=\left(\begin{array}{rr}
1 & -1 \tag{5}\\
1 & 3
\end{array}\right) \bar{x}
$$

In this example, $\operatorname{Tr} A=4$ and $\operatorname{Det} A=4$ and the characteristic equation is

$$
\lambda^{2}-4 \lambda+4=(\lambda-2)^{2}=0
$$

from which we obtain the repeated eigenvalues $\lambda=2$. From $(A-\lambda I) \vec{u}=\overrightarrow{0}$ we have

$$
\left(\begin{array}{rr}
-1 & -1 \\
1 & 1
\end{array}\right)\binom{u_{1}}{u_{2}}=\binom{0}{0}
$$

from which we obtain upon expanding $u_{1}+u_{2}=0$ and obtain the eigenvector

$$
\bar{u}=\binom{1}{-1}
$$

and thus, the first solution is

$$
\bar{x}_{1}=\binom{1}{-1} e^{2 t} .
$$

The second solution is given by

$$
\bar{x}_{1}=\bar{u} t e^{2 t}+\bar{v} e^{2 t}
$$

where \bar{v} satisfies

$$
\left(\begin{array}{rr}
-1 & -1 \\
1 & 1
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{1}{-1}
$$

giving $-v_{1}-v_{2}=1$. Any choice will suffice so here we will choose

$$
\bar{v}=\binom{-1}{0}
$$

and the second solution is

$$
\bar{x}_{2}=\binom{1}{1} t e^{2 t}+\binom{-1}{0} e^{2 t} .
$$

The general solution to (5) is then given by

$$
\bar{x}=c_{1}\binom{1}{-1} e^{2 t}+c_{2}\left[\binom{1}{-1} t+\binom{-1}{0}\right] e^{2 t} .
$$

\# 3(iv)

$$
\frac{d \bar{x}}{d t}=\left(\begin{array}{rr}
5 & -4 \tag{6}\\
1 & 1
\end{array}\right) \bar{x}, \quad \vec{x}(0)=\binom{-3}{1}
$$

In this example, $\operatorname{Tr} A=6$ and $\operatorname{Det} A=9$ and the characteristic equation is

$$
\lambda^{2}-6 \lambda+9=(\lambda-3)^{2}=0
$$

from which we obtain the repeated eigenvalues $\lambda=3$. From $(A-\lambda I) \vec{u}=\overrightarrow{0}$ we have

$$
\left(\begin{array}{ll}
2 & -4 \\
1 & -2
\end{array}\right)\binom{u_{1}}{u_{2}}=\binom{0}{0}
$$

from which we obtain upon expanding $u_{1}-2 u_{2}=0$ and obtain the eigenvector

$$
\bar{v}=\binom{2}{1}
$$

and thus, the first solution is

$$
\bar{x}_{1}=\binom{2}{1} e^{3 t}
$$

The second solution is given by

$$
\bar{x}_{1}=\bar{u} t e^{3 t}+\bar{v} e^{3 t}
$$

where \bar{v} satisfies

$$
\left(\begin{array}{ll}
2 & -4 \\
1 & -2
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{2}{1}
$$

giving $v_{1}-2 v_{2}=1$. Any choice will suffice so here we will choose

$$
\bar{v}=\binom{1}{0}
$$

and the second solution is

$$
\bar{x}_{2}=\binom{2}{1} t e^{2 t}+\binom{1}{0} e^{2 t}
$$

The general solution to (6) is then given by

$$
\bar{x}=c_{1}\binom{2}{1} e^{2 t}+c_{2}\left[\binom{2}{1} t+\binom{1}{0}\right] e^{2 t} .
$$

Imposing the initial condition gives

$$
c_{1}\binom{2}{1}+c_{2}\binom{1}{0}=\binom{-3}{1}
$$

giving two equations for c_{1} and c_{2}. This leads to $c_{1}=1$ and $c_{2}=-5$ and thus, our solution is

$$
\bar{x}=\binom{2}{1} e^{2 t}-5\left[\binom{2}{1} t+\binom{1}{0}\right] e^{2 t} .
$$

\# 3(v)

$$
\frac{d \bar{x}}{d t}=\left(\begin{array}{rr}
6 & -1 \tag{7}\\
5 & 4
\end{array}\right) \bar{x}
$$

Here, $\operatorname{Tr} A=10$ and $\operatorname{Det} A=29$ and the characteristic equation is

$$
\lambda^{2}-10 \lambda+29=0
$$

from which we obtain the complex eigenvalues $\lambda=5 \pm 2 i$ so $\alpha=5$ and $\beta=2$. Choosing the positive case, from $(A-\lambda I) \vec{u}=\overrightarrow{0}$ we have

$$
\left(\begin{array}{cc}
1-2 i & -1 \\
5 & -1-2 i
\end{array}\right)\binom{u_{1}}{u_{2}}=\binom{0}{0}
$$

from which we obtain upon expanding $5 u_{1}-(1+2 i) u_{2}=0$ and obtain the eigenvector

$$
\bar{u}=\binom{1+2 i}{5}=\binom{1}{5}+\binom{2}{0} i
$$

So

$$
R=\binom{1}{5} \text { and } I=\binom{2}{0}
$$

and our two solutions are

$$
\begin{aligned}
& \bar{x}_{1}=\left[\binom{1}{5} \cos 2 t-\binom{2}{0} \sin 2 t\right] e^{5 t} \\
& \bar{x}_{2}=\left[\binom{1}{5} \sin 2 t+\binom{2}{0} \cos 2 t\right] e^{5 t}
\end{aligned}
$$

giving the general solution to (7) as

$$
\bar{x}=c_{1}\left[\binom{1}{5} \cos 2 t-\binom{2}{0} \sin 2 t\right] e^{5 t}+c_{2}\left[\binom{1}{5} \sin 2 t+\binom{2}{0} \cos 2 t\right] e^{5 t}
$$

\# 3(iv)

$$
\frac{d \bar{x}}{d t}=\left(\begin{array}{rr}
7 & -5 \tag{8}\\
10 & -3
\end{array}\right) \bar{x}, \quad \vec{x}(0)=\binom{3}{-2}
$$

In this example, $\operatorname{Tr} A=4$ and $\operatorname{Det} A=29$ and the characteristic equation is

$$
\lambda^{2}-4 \lambda+29=0
$$

from which we obtain the complex eigenvalues $\lambda=2 \pm 5 i$ so $\alpha=2$ and $\beta=5$. Choosing the positive case, from $(A-\lambda I) \vec{u}=\overrightarrow{0}$ we have

$$
\left(\begin{array}{cc}
5-5 i & -5 \\
10 & -5-5 i
\end{array}\right)\binom{u_{1}}{u_{2}}=\binom{0}{0},
$$

from which we obtain upon expanding $5(1-i) u_{1}-5 u_{2}=0$ and obtain the eigenvector

$$
\bar{u}=\binom{1}{1-i}=\binom{1}{1}+\binom{0}{-1} i
$$

So

$$
R=\binom{1}{1} \quad \text { and } I=\binom{0}{-1}
$$

and our solutions is

$$
\bar{x}=c_{1}\left[\binom{1}{1} \cos 5 t-\binom{0}{-1} \sin 5 t\right] e^{2 t}+c_{2}\left[\binom{1}{1} \sin 5 t+\binom{0}{-1} \cos 5 t\right] e^{2 t} .
$$

Imposing the initial condition gives

$$
\bar{x}(0)=c_{1}\binom{1}{1}+c_{2}\binom{0}{-1}=\binom{3}{-2}
$$

which readily gives $c_{1}=3$ and $c_{2}=5$ and thus our solution

$$
\bar{x}=3\left[\binom{1}{1} \cos 5 t-\binom{0}{-1} \sin 5 t\right] e^{2 t}+5\left[\binom{1}{1} \sin 5 t+\binom{0}{-1} \cos 5 t\right] e^{2 t} .
$$

