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Poker has been studied academically since the founding of game theory and in fact may have even been
the inspiration for the field: the only motivating problem described in John Nash’s PhD thesis, which defined
and proved existence of the central solution concept, was actually a three-player poker game. Such interest
has not waned over time. Last year when a computer program developed at Carnegie Mellon University
competed against the strongest human two-player no-limit Texas hold ’em players in the inaugural Brains vs.
Artificial Intelligence competition, thousands of poker fans followed with excitement. The entire event was
streamed live, and a thread on the most popular poker forum dedicated to the event received over 230,000
views.1 Earlier that year another monumental breakthrough was attained, as the two-player limit variation
of Texas hold ’em (which is one of the smallest variants that is played competitively by humans) was
“essentially weakly solved” (i.e., an ε-Nash equilibrium was computed for such a small ε to be statistically
indistinguishable from zero in a human lifetime of played games) by researchers at the University of Alberta.
This result was published in the journal Science. Poker, and particularly Texas hold ’em, is tremendously
popular for humans, and online poker is a multi-billion dollar industry. Computer poker has proved to be
one of the most visible applications of research in computational game theory.

In theory, there exists an “optimal” strategy for any two-player zero-sum game, that would guaran-
tee being unbeatable against all opposing agents. This result is due to the Minimax Theorem, one of the
fundamental results in game theory, and the “optimal” strategy is called a Nash equilibrium. If we were
able to compute a Nash equilibrium for two-player no-limit Texas hold ’em, then we would guarantee that
against any opponent we would either win or tie (in expectation). From a complexity-theoretic perspective,
computing this strategy is easy; there exists a polynomial-time algorithm based on a linear programming
formulation. However, this algorithm only scales to games with 108 states. More recently algorithms have
been developed for approximating equilibrium strategies (they converge to equilibrium in the limit) that
scale to 1015 states. However, even this is a far cry from 10165, the size of the version of two-player no-limit
Texas hold ’em played in the AAAI Annual Computer Poker Competition. In addition to scalable algo-
rithms for Nash equilibrium computation, approximating Nash equilibrium strategies in a domain of that
magnitude requires approaches for approximating the full 10165 game tree with a significantly smaller game
of 1015 states that retains much of the strategic structure of the original game (aka automated abstraction al-
gorithms), approaches for interpreting actions for the opponent that have been removed from the abstraction
(aka action translation mappings), and additional approaches for extrapolating the equilibrium strategies
from the abstract game to the full game (aka postprocessing techniques).

The tutorial will cover practical and theoretical aspects of all of the components of the strongest poker
agents, including detailed description of the architecture of recent competition champions. While some
of these approaches are heuristic, many of them have interesting theoretical aspects and open questions.
Unlike in single-agent optimization, it has been shown that abstraction in games can suffer from theoretical
pathologies; for instance, solving a finer-grained abstraction can actually increase exploitability. The main
abstraction algorithms that have been successful in practice are heuristic and have no theoretical guarantees
(it is extremely difficult to prove meaningful theoretical guarantees when approximating a game with 10165

states by one with 1015 states). Recent work has presented an abstraction algorithm with bounds on the
solution quality; however, it only scales to a tiny poker game with a five-card deck. It would be very
interesting to bridge this gap between heuristics that work well in practice for large games with no theoretical
guarantees, and the approaches with guarantees that have modest scalability. There are also many theoretical
questions related to the action translation and post-processing approaches. Another important component

1http://forumserver.twoplustwo.com/29/news-views-gossip-sponsored-online-poker-report/
wcgrider-dong-kim-jason-les-bjorn-li-play-against-new-hu-bot-1526750/
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of strong poker agents that has been actively studied is called “endgame solving,” where the portion of the
game we have reached is solved in real-time to a higher-degree of accuracy. Theoretically this approach
can lead to high exploitability, though experimentally it consistently improves performance, and the best
human two-player no-limit player said it was the strongest part of the competition agent. We will describe
counterfactual regret (CFR) minimization, the most popular equilibrium-finding algorithm for the strongest
recent poker agents, and present convergence guarantees of several common variants.

The Minimax Theorem does not apply to games that are not zero sum or have more than two agents.
These games can have many equilibria, each assigning different payoffs to the agents; if the opponents do not
follow the equilibrium strategy that we have computed, then we can perform arbitrarily poorly. Furthermore,
computing a Nash equilibrium in these game classes is challenging computationally (it is PPAD-complete
and widely conjectured that no efficient algorithms exist). Despite this worst-case hardness result, several
of the techniques described are applicable to these games (though in some cases theoretical guarantees are
more limited), and there has already been initial progress in practical algorithms.

Even in two-player zero-sum games, the Nash equilibrium is not the end of the story (even if we are
able to compute one exactly without requiring approximation). Against suboptimal opponents who are not
playing an equilibrium strategy, we can often obtain a significantly higher payoff than the value of the game
by learning to exploit their mistakes as opposed to following a static equilibrium strategy. In addition to
the work on approximating Nash equilibrium, there has been significant recent work on opponent modeling
and exploitation, which will also be presented in the tutorial. This includes robust approaches for exploiting
opponents in large imperfect-information games as well as approaches that exploitatively deviate from stage-
game equilibrium while also theoretically guaranteeing safety in the worst-case.
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2 Prior events

There have been several related workshops at AAAI (e.g., http://www.cs.cmu.edu/˜sganzfri/
AAAI15_Workshop.html).
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