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ABSTRACT-Technological advances in genomics have 
led to an explosion of molecular and cellular profiling data 
from large numbers of samples. This rapid increase in 
biological data dimension and acquisition rate is challenging 
traditional analysis strategies. Modern machine learning 
methods, such as deep learning, promise to leverage very large 
data sets for finding hidden structure within them, their 
analysis and for making accurate predictions. 

In this review, we discuss applications of this new breed of 
analysis approaches in regulatory genomics and cellular 
imaging. We provide background of what deep learning is, 
and the settings in which it can be successfully applied to 
derive biological aspects. In addition to presenting specific 
applications we also highlighted possible pitfalls and 
limitations to guide computational biologists when and how to 
make the most of its use of this new technology. 
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1.INTRODUCTION 

In computational biology, the appeal is the ability to derive 
predictive models without a need for strong assumptions about 
underlying mechanisms, which are frequently unknown or 
insufficiently defined. As a case in point, the most accurate 
prediction of gene expression levels is currently made from a 
broad set of epigenetic features using sparse linear models  or 
random forests  how the selected features determine the 
transcript levels remains an active research topic. Predictions 
in genomics, proteomics, metabolomics or sensitivity to 
compounds  all rely on machine learning approaches as a key 
ingredient. Most of these applications can be described within 
the canonical machine learning workflow, which involves four 
steps: data cleaning and pre-processing, feature extraction, 
model fitting and evaluation . It is customary to denote one 
data sample, including all co-variates and features as input x 
(usually a vector of numbers),and label it with its response 
variable or output value y (usually a single number) when 
available .A supervised machine learning model aims to learn 
a function f(x) = y from a list of training pairs (x1,y1), (x2,y2), 
... for which data are recorded . One typical application in 
biology is to predict the viability of a cancer cell line when 
exposed to a chosen drug.  

Knowing the sequence specificities of DNA- and RNA-
binding proteins is essential for developing models of the 
regulatory processes in biological systems and for identifying 
causal disease variants. Here we show that sequence 
specificities can be ascertained from experimental data with 
‘deep learning’ techniques, which offer a scalable, flexible and 
unified computational approach for pattern discovery. Using a 
diverse array of experimental data and evaluation metrics , we 
find that deep learning outperforms other state-of-the-art 
methods, even when training on in vitro data and testing on in 
vivo data. We call this approach Deep Bind and have built a 
stand-alone software tool that is fully automatic and handles 
millions of sequences per experiment. Specificities determined 
by Deep Bind are readily visualized as a weighted ensemble of 
position weight matrices or as a ‘mutation map’ that indicate 
show variations affect binding within a specific sequence.  

DNA- and RNA-binding proteins play a central role in 
gene regulation, including transcription and alternative 
splicing. The sequence specificities of a protein are most 
commonly characterized using position weight matrices1 
(PWMs), which are easy to interpret and can be scanned over 
a genomic sequence to detect potential binding sites. 

Deep Bind  addresses the above challenges. (i) it can learn 
from millions of sequences through parallel implementation 
on a graphics processing unit (GPU); (ii) It can be applied to 
both microarray and sequencing data; (iii) it can tolerate a 
moderate degree of noise and mislabeled training data; (iv) it 
generalizes well across technologies, even without correcting 
for technology-specific biases; and(v) it can train predictive 
models fully automatically, alleviating the need for careful and 
time-consuming hand-tuning. Importantly, a trained model can 
be applied and visualized in ways that are familiar to users of 
PWMs.  
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2.TWO EXPLORED DOWNSTREAM 
APPLICATIONS 

1. Analyzing disease-associated genetic variants that 
can affect transcription factor binding and gene expression 
and, 

2. Uncovering the regulatory role of RNA binding 
proteins (RBPs) in alternative slicing. 

2.1 TRAINING DEEP BIND AND SCORING 
SQUENCES 

For training, Deep Bind uses a set of sequences and, for 
each sequence, an experimentally determined binding score. 
Sequences can have varying lengths , and binding scores can 
be real-valued measurements or binary class labels.  

For  sequences, DeepBind computes a binding score f (s) 
using four stages: 

1. f(s)=netW(pool(rectb(convM(s)))).The convolution 
stage (convM) scans a set of motif detectors with parameters 
M across the sequence. Motif detector Mk is a 4 × m matrix, 
much like a PWM of length m but without requiring 
coefficients to be probabilities or log odds ratios. The 
rectification stage isolates positions with a good pattern match 
by shifting the response of detector Mk by clamping all 
negative values to zero. 

2. The pooling stage computes the maximum and 
average of each motif detector’s rectified response across the 
sequence; maximizing helps to identify the presence of longer 
motifs, whereas averaging helps to identify cumulative effects 
of short motifs, and the contribution of each is determined 
automatically by learning. 

3. These values are fed into a nonlinear neural network 
with weights W, which combines the responses to produce a 
score. Ascertaining DNA sequence specificities to evaluate 
Deep Bind’s ability to characterize DNA-binding protein 
specificity, we used PBM data from the revised DREAM5 TF-
DNA Motif Recognition Challenge.  

 

2.2 DETAILS OF INNER WORKINGS OF DEEP 
BIND AND ITS TRAINING PROCEDURE 

(a) Five independent sequences being processed in parallel 
by a single Deep Bind model. The convolve, rectify, pool and 
neural network stages predict a separate score for each 
sequence using the current model parameters .  

During the training phase, the back prop and update stages 

simultaneously update all motifs, thresholds and network 
weights of the model to improve prediction accuracy. 

(b) The calibration, training and testing procedure used 
throughout . 

 

2.3 ANALYSIS OF POTENTIALLY DISEASE-
CAUSING GENOMIC VARIANTS 

Deep Bind mutation maps  were used to understand 
disease-causing SNVs associated with transcription factor 
binding. (a) A disrupted SP1 binding site in the LDL-R 
promoter that leads to familial hypercholesterolemia. (b) A 
cancer risk variant in a MYC enhancer weakens a TCF7L2 
binding site. (c) A gained GATA1 binding site that disrupts 
the original globin cluster promoters. (d) A lost GATA4 
binding site in the BCL-2 promoter, potentially playing a role 
in ovarian granulosa cell tumors. (e) Loss of two potential 
RFX3 binding sites leads to abnormal cortical development. 
HGMD SNVs disrupt several transcription factor binding sites 
in the promoters of HBB and F7, potentially leading to β-
thalassemia and hemophilia, respectively. (h) Gained GABP-α 
binding sites in the TERT promoter, which are linked to 
several types of aggressive cancer. WT, wild type. 
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2.4 IDENTIFYING AND VISUALIZING DAMAGING 
GENETIC VARIANTS  

Genetic variants that create or abrogate binding sites can 
alter gene expression patterns and potentially lead to diseases. 

A promising direction in precision medicine is to use binding 
models to identify, group and visualize variants that 
potentially change protein binding. To explore the effects of 
genetic variations using Deep Bind, we developed a 
visualization called a ‘mutation map’, which illustrates the 
effect that every possible point mutation in a sequence may 
have on binding affinity. A mutation map conveys two types 
of information. First, for a given sequence, the mutation map 
shows how important each base is for the Deep Bind analysis 
by the height of the base letter. Second, the mutation map 
includes a heat map of size 4 by n, where n is the sequence 
length, indicating how much each possible mutation will 
increase or decrease the binding score. 

 

3. DEEP BIND MODELS ARE USED TO DESCRIBE 
THE REGULATION MECHANISM FOR DIFFERENT 
RBPs: Retinol-binding proteins (RBP) are a family of 
proteins with diverse functions. They are carrier proteins that 
bind retinol. Retinol and retinoic acid play crucial roles in the 
modulation of gene expression and overall development of an  
embryo. In vitro models are consistent with known splicing 
patterns. RBPs play a crucial role in regulating splicing , 
having an impact on a wide variety of developmental stages 

such as stem cell differentiation and tissue development.   

  

4.PRINCIPLES OF USING NEUTRAL NETWORKS 
FOR PREDICTING MOLECULAR TRAITS  FROM 
DNA SEQUENCE: 

(A) DNA sequence and the molecular response variable 
along the genome for three individuals. Conventional 
approaches in regulatory genomics consider variations 
between individuals, whereas deep learning allows exploiting 
intra-individual variations by tiling the genome into sequence 
DNA windows centered on individual traits, resulting in large 
training data sets from a single sample.  

(B) One-dimensional convolutional neural network for 
predicting a molecular trait from the raw DNA sequence in a 
window. 

Filters of the first convolutional layer (example shown on 
the edge) scan for motifs in the input sequence. Subsequent 
pooling reduces the input dimension, and 

additional convolutional layers can model interactions 
between motifs in the previous layer.  

(C) Response variable predicted by the neural network 
shown in(B) for a wild-type and mutant sequence is used as 
input to an additional neural network that predicts a variant 
score and allows to discriminate normal from deleterious 
variants. 

(D) Visualization of a convolutional filter by aligning 
genetic sequences that maximally activate the filter and 
creating a sequence motif. 

 (E) Mutation map of a sequence window. Rows 
correspond to the four possible base pair substitutions, 
columns to sequence positions. The predicted impact of any 
sequence change is colour -coded. 

Letters on top denote the wild-type sequence with the 
height of each nucleotide denoting the maximum effect across 
mutations. Convolutional network architectures are considered 
to predict specificities of DNA- and RNA-binding proteins. 

Their Deep Bind model outperformed existing methods, 
was able to recover known and novel sequence motifs, and 
could quantify the effect of sequence alterations and identify 
functional SNVs(single nucleotide variants). A key innovation  
that enabled training the model directly on the raw. 
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DNA sequence was the application of a one-dimensional 
convolutional layer. Intuitively, the neurons in the 
convolutional layer scan for motif sequences and 
combinations thereof, similar to conventional position weight 
matrices .  

Deep learning for biological image analysis . Historically, 
perhaps the most important successes of deep neural networks 
have been in image analysis. Deep architectures trained on 
millions of photographs can famously detect objects in 
pictures better than humans do. 

 

 All current state-of-the-art models in image classification, 
object detection, image retrieval and semantic segmentation 
make use of neural networks. 

The convolutional neural network  is the most common 
network architecture for image analysis. Briefly, a CNN 
performs pattern matching (convolution) and aggregation 
(pooling) operations. 

At a pixel level, the convolution operation scans the image 
with a given pattern and calculates the strength of the match 
for every position. Pooling determines the presence of the 
pattern in a region, for example by calculating the maximum 
pattern match in smaller patches (max-pooling), thereby 
aggregating region information into a single number.  

The successive application of convolution and pooling 
operations is at the core of most network architectures used in 
image analysis. 

 

4.1 ANALYSIS OF WHOLE CELLS,CELL 
POPULATIONS AND TISSUES: 

In many cases, pixel-level predictions are not required. For 
example, directly classified colon histopathology images into 
cancerous and non-cancerous, finding that supervised feature 
learning with deep networks was superior to using handcrafted 
features. This approach allowed classifying entire images 
without performing segmentation as a pre-processing step. 
CNNs have even been applied to count bacterial colonies in 
agar plates also. 

 

 

 

5 CONCLUSION: 

Deep learning allows computational models that are 
composed of multiple processing layers to learn 
representations of data with multiple levels of abstraction. 
These methods have dramatically improved the state-of-the-art 
in speech recognition, visual object recognition, object 
detection and many other domains such as drug discovery and 
genomics. Deep convolutional networks have brought about 
breakthroughs in processing images, video, speech and audio, 
whereas recurrent nets have shone light on sequential data 
such as text and speech. Research is on to develop algorithms 
to suit drug designing industry .These networks integrated the 
techniques of bioinformatics and computational biology. 
These also helped in discovering and analyzing the intrinsic 
structures of DNA and RNA and hence enhancing the field of 
computational biology. 
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