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Inflation
l. Introduction

The recent claim of the BICEP2 collaboration of observation of CMB B-mode polarization is
obviously of fundamental importance. While the BICEP2 claim has undergone criticism, and in
any case requires confirmation, in what follows | will assume that the claim is correct.

One theme of this note is that it is not unreasonable to associate discrete-symmetry violation
with inflationary physics and with the inflationary dark energy component in particular. This can
lead to parity-violating, circularly-polarized graviton modes dominating the tensor-mode
contribution to the CMB. My personal motivation was originally based on the notion that
circularly polarized gravitons would of course lead to circular polarization of the observed CMB
photons. This in turn would lead to the central importance of measuring the Stokes parameter
V, which is sensitive to CMB circular polarization. However, this requires insertion of quarter-
wave plates into the telescope optics. To do this is technically straightforward. But strategically
it is not easy to commit setup and running time to a measurement which is, with high
probability, likely to end up being a null measurement. Consequently, most collaborations have
chosen not to try it. However, one collaboration has recently explored the territory, and has set
the best limits (arXiv 1307.6090). Meanwhile, | eventually discovered that my own expectations
were wrong: there is no easy mechanism which turns circularly polarized gravitons into
circularly polarized CMB photons.

The second theme of this note has to do with this failure. While one part of the reason for my
mistake was simple carelessness in scrutinizing the literature, another part was the difficulty |
found in understanding the nitty-gritty details of inflationary cosmology. This may be due to
nothing more than my advancing age, because | have available to me excellent pedagogical
resources such as Baumann’s TASI lectures, and Dodelson’s textbook. The difficulty had to do
with the plethora of details inhabiting the phenomenology----details that are the result of a
half-century of splendid theoretical research, linked with an even more splendid sequence of
accurate experiments. In the back of Dodelson’s book there are a few pages which ease the
pain. They contain a list of the symbols used in the many equation therein, explaining what they
mean, and indicating on what page of the book they were first introduced. While the list is
immensely useful, the fact remains that it contains 147 entries. It seemed to me that, even for
my limited purposes, | encountered all 147.

So why was this note written? With regard to the first theme, | wanted to do my best to
encourage experimentalists to measure V . The best way for a theorist like me to do that is to
provide an interesting model which does exhibits circular polarization. This | did, and the first
part of this note is a description of the model. It accounts for the inflationary dark energy itself




in terms of a Lorentz-violating Fermion condensate containing both vector and axial charge. In
order for the model to be simple and to succeed in accounting all by itself for all the inflationary
dark energy, both vector and axial contributions are needed. Furthermore the formalism
simplifies enormously when the condensate is pure chiral. The inflationary-graviton
phenomenology is only dependent on one parameter, which is known in the loop-quantum-
gravity community as the Barbero-Immirzi parameter Y . And the only requirement for the
inflationary-graviton modes to have large circular polarization is that %" be smaller than unity.

The second reason for writing this note is that in grappling with the post-reheating inflation
phenomenology, | came up with a different descriptive language. It is based on the observation
that inflaton and graviton field-oscillator modes, when viewed in Hamiltonian language,
become highly squeezed after horizon crossing. This implies that at reheating, their phase-
space Wigner functions are extremely filamentary, extending out to very large values of
canonical momentum. Nevertheless, because the Liouville theorem is operative, the area of the
phase-space region where the Wigner function is nontrivial does not increase. As a
consequence, the subsequent post-reheating evolution is not sensitive to the thickness of the
filament.

But a thick filament can describe a single classical pulse of inflaton (or graviton) field, most
conveniently expressed in terms of a quasi-monoenergetic coherent-state amplitude with a
Gaussian pulse shape. In this way one can replace the real problem by a simpler problem,
where during inflation one has a dilute gas of classical inflaton (graviton) pulses. After these
degrees of freedom cross and recross the horizon, one is left with a dilute ensemble of
temperature perturbations, each of which is localized in space (and in momentum space). At
the time of recombination, this ensemble leaves imprints on the CMB sky, each of which is
circular, with a radius of about 30 milliradians. And it certainly possible to choose the numbers
in the model so that there are a large number of these little spots, but not so large a number
that they overlap, The temperature profile from inflatons within these spots looks something
like the logo of the Target big-box stores. However those from circularly polarized gravitons
often have a twisted quadrupole pattern. And the bottom line is that, even though this model
gives a totally different CMB sky than the one measured by WMAP and Planck, the resultant
power spectra are identical. This has to be the case because in each case the primary input data
were the squeezed-phase-space filaments at reheating.

In this note, this visualization tool has only been sketched out. But even these first-attempt
rough sketches suffice to qualitatively describe not only the shape of the famous temperature
power spectrum, but also the shapes of the five other polarization power spectra as well. And
this is accomplished with hardly any equations at all. | look forward to seeing this idea pursued
by a professional inflationeer---one who is not only proficient in managing the 147 parameters,



but also proficient in computer graphics. As for myself, | may return to this subject in a future
note.

Before going on, | must say that 1 still feel that measurement of the Stokes parameter V is an
important frontier measurement. There do exist theoretical motivations, but of a different
nature than expressed here (cf. e.g. arXiv 1307.6090 and references therein). | also must note
that the visualization idea mentioned above has a prehistory (cf. e.g. arxiv 0202215). | learned
of it via a note by Daniel Eisenstein, “The Acoustic Peak Primer”, available from his home page.

In Section I, we review the basics of FRW cosmology, in order to establish notation and the
general descriptive point of view.

In Section I, we introduce the formalism necessary to describe this Fermion-condensate
model. It involves the first-order Einstein-Cartan Lagrangian, supplemented with the symmetry-
violating interaction widely known as the Holst term. The coupling constant for this Holst term
is the inverse of the aforementioned Barbero-Immirzi parameter, which is relevant if and only if
there is a source of torsion in the description. This is the case for this model; the Fermion
condensate serves as a source of torsion.

In Section 1V, we apply this formalism to FRW cosmology. The condensate densities are a source
of dark energy, and this is the most interesting consequence of the model. The axial condensate
subtracts, and the vector condensate adds. All the dark energy is condensate if the vector and
axial condensate densities have the same magnitude.

In Section V, we extend the Einstein-Cartan description to include transverse-traceless graviton
degrees of freedom. Because the Einstein-Cartan description is simply an O(3,1) non-Abelian
gauge theory, we expect and find that choice of temporal gauge leads to an especially user-
friendly description. In particular, in the limit of a Minkowski-space (or DeSitter-space)
background replacing the FRW background, the field equations have an exact gravitational
plane-wave solution of the Einstein equations. But it is not a vacuum solution; the energy-
momentum source term on the right hand side of the Einstein equation has properties
consistent with what one expects from the energy-momentum carried by the gravitational
wave itself. We then study the cosmological evolution of these transverse-traceless modes, all
the way from early inflation to the present day, and exhibit the aforementioned squeezing of
the modes after horizon crossing and in particular during the reheating period.

In Section VI, we study the evolution of the metric fluctuations after horizon recrossing, and
how they leave an imprint on the CMB polarization power spectra. It is in this section that the
visualization tools mentioned above are introduced.

Section VIl contains a few concluding comments.



I Cosmological Basics

In order to establish our descriptive language and make this note as self-contained as possible,
we begin by reviewing the basics of cosmological history. This history is succinctly encoded in
the behavior of the cosmological scale factor a(t) and of its time derivative a(t) . This is plotted
below, on a logarithmic scale:
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Also marked on the figure are landmark events:

1. Reheating: the end of inflation, when the inflationary dark energy is converted into
predominantly extreme-relativistic quanta: “radiation”. We have also included a period
of time during which reheating proceeds and the universe continues to expand. It must
be emphasized that everything to do with this event is speculative. There is not a scrap
of data constraining the description of reheating.

2. Nucleosynthesis: From here forward to later times, there are considerable experimental
constraints, while at earlier times there is much more freedom of theoretical choice.

3. Matter-radiation equality: This event will be very important in this note. After this
event, the energy content of the universe was dominated by nonrelativistic quanta:
“matter”. This event is connected with the phenomenon of baryon acoustic oscillations
(BAO), very relevant to the description of the CMB and polarization power spectra.

4. Recombination: This event marks the creation of neutral hydrogen from its ionized
components. Thereafter the universe became transparent to photons. Hence the origin
of the CMB photons can be traced back to this event but no further.

5. Nowadays: The importance of this event needs no elaboration.

We cannot resist commenting here on the absurdity of the descriptors “reheating” and
“recombination”. Prior to the reheating event, the default description of the very early universe
is that it was always ice cold. And prior to recombination, there was never any time when
neutral hydrogen atoms existed.

The horizontal line on the figure labeled “graviton” will become relevant as we trace the history
of gravitational-wave degrees of freedom from their “birth” during inflation until the present
time. It will be discussed in detail at the end of this section.

There is a second descriptive language which we will need. We will call it the conformal
description, and is based on replacing the FRW time variable t with a new variable 7 .

The FRW line element is
- 2
As™ = > — J) d*

The new time variable v] is defined as follows
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Therefore the new metric is conformal
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This means that in this description the trajectories of photons and gravitons are straight lines,
just as in Minkowski space. Therefore causal relationships are clearly revealed.

A plot of V] versus a space coordinate z reveals that most of the cosmological history of the
first figure is highly squished. Only a finite interval of VI is needed to describe the entire
history of the universe relevant to phenomenology. And only those regions for which ais very
small are important in the evolution of the 7 variable: A y)

“the Endm -~
(FRw t= @) Remflatiow bemNose
Matter Matter (<5)
Huclea%n“'ﬂesfs : i .
Radiation K z

“Refeaty ’ N Y
':[:\?j:,f{:lz _Efé_’fwn (,f( /0> G\"A,V[‘t'

£ 1fe '_Q_egznifrgl_" QZ < I_> _________ _

We have drawn in this figure the trajectory of a graviton from its “birth” during inflation to its
arrival to us at the present time. The history of this graviton is interesting. At birth its dynamics
is essentially that of a plane wave. For a given wavelength, its dynamics is that of a harmonic
oscillator. However, as the universe expands the wavelength will grow because the size of the
box in which the plane wave is contained is expanding in proportion to the scale factor a, while
the number of wavelengths within the box does not change. Therefore the frequency of the
oscillator decreases in inverse proportion to a . These changes in the dynamics are well-
accounted for by the adiabatic approximation until the period of the oscillator becomes
comparable to the doubling time of the inflationary, expanding universe. Thereafter the
oscillatory behavior is not possible, and the phase space description of the oscillator becomes
that of a squeezed state. For irrational reasons, this event is called “crossing of the horizon”.

The oscillatory behavior of the gravitational-wave mode does revive, however, during the hot
big bang phase, when the expansion velocity 8 becomes sufficiently small. This second event is
called “recrossing of the horizon”. In general terms, the condition for crossing or recrossing the
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Here p is the time-independent comoving wavenumber (momentum) of the mode. Therefore,
for agiven p , the history of the wave is encapsulated in the straight line drawn in the first
figure. Low comoving momenta are near the bottom of the figure, while large comoving
momenta are further up.

In inflation theory, these comoving momenta become proportional to the Legendre-function
variables £ which parametrize the famous power spectrum. It is no accident that the “first
acoustic peak” in that power spectrum occurs for a value of £ (and corresponding p) for which
the horizontal line above intersects the BAO matter-radiation-equality point in Figure 1.

. Lagrangians

As discussed in the introduction, we will describe the cosmological history prior to reheating in
terms of a dark-energy-dominated deSitter space. The source of the dark energy will be
assumed to be due to a fermionic, Lorentz-violating condensate, which also exhibits parity
violation. This condensate will be assumed to be destroyed by the reheating event, leaving
behind the hot big bang plus the tiny dark-energy residue which we see nowadays.

We therefore need to consider two distinct Lagrangians. They will differ by the nature of their
source terms. But, in addition, the gravitational Lagrangian in the absence of sources that we
will use will perhaps be unfamiliar. We use the first-order Einstein-Cartan formalism,
supplemented by a CP-violating additional term, generally known as the Holst term. This
formalism allows the information about the fermionic source to communicate to the
gravitational sector via torsion degrees of freedom.

So we begin by writing down the gravitational Lagrangian. It describes a non-abelian gauge
theory like QCD. But the gauge group is not SU(3)----it is the Lorentz group O(3,1). Instead of
the 4 x 8 degrees of freedom describing the potentials of the eight gluons of QCD, we now have
4 x 6 gauge potentials to deal with. We actually will choose temporal gauge for everything we
do, so that the number reduces to a mere 18, labeled as follows:
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However, this is not the end of the story. The formalism also admits 4 x 4 = 16 more “vierbein”
degrees of freedom, which provide the connection to the usual Einstein-Hilbert description
based on the 10 degrees of freedom described by the metric tensor g rg!
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Again, for everything in this note, we can ab initio set 6 of these vierbein degrees of freedom to
zero without getting into trouble. This has already been done in the above expression.

With these preliminaries, we can write down the basic gravitational Lagrangian in terms of
these variables:
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The first factor is the standard Einstein-Cartan Lagrangian. The second factor is the Holst term.
Its coupling constant ¥ is known as the Barbero-lmmirzi parameter.

When we expand this Lagrangian out in terms of the temporal-gauge degrees of freedom, we
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The individual terms are “double forms”, which are invariant not only with respect to spatial

rotations, but also with respect to O(3) gauge transformations. These “double forms” are
defined as follows: .. &
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This construction satisfies the following symmetry properties:
[ade|=|bac|=|4cal

The only independent degrees of freedom which possess time derivatives in the Lagrangian are

7k

This combination, well-known in the ioop-quantum-gravity community, will evidently play a
special role, and we therefore rewnte the Lagrangian appropriately:
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This gravitational Lagrangian still needs to be supplemented by source terms. After reheating,
we only need the source term to describe the FRW expansion. A general function of the
comoving volume |e e e] suffices for this purpose. (In the usual Einstein-Hilbert metric
language, the corresponding statement is that the source term need only depend upon 'Fil—g—ﬁ‘.)

Z o = — N [ecel P(leeel)

The normalization above is such that P is equal to the energy density which drives the
expansion of the universe via the FRW equations of motion.

Before reheating, we are assuming that the inflationary dark energy is provided by a
condensate of Dirac fermions. The appropriate Dirac Lagrangian is

2o = L-i)PY e (3 + G} + fe

Dirae.

We have included a phase factor (1 — it} outin front. In the Minkowski-space limit it does
not affect anything. Butin curved spacetime, as pointed out by Freidel et.al. (arXiv0507253), it
does have an effect. (We have normalized this factor so that the Dirac action reduces to
standard form in the Minkowski-space limit.)



We assume that these fermions form a condensate, such that

b= (P Py +0 =¥y +0

In addition, we assume that the condensate is maximally parity-violating:
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The Dirac Lagrangian describing the condensate reduces to
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This form demonstrates the role of the condensate—-it provides a “ j+3 “ source term for the
gravitational degrees of freedom---more precisely the FRW degrees of freedom.

It should not be too surprising to expect that additional simplicity will emerge if we choose

X =Y (Loimey = =3NCY |k

In what follows we will indeed make this choice. The more general case, however, has been
considered, and some details can be found in another of these notes (“Gravitational Waves in
the First Order Formalism”).

Iv. FRW Equations

For the FRW application, the double forms simplify enormously, because all the entries are
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It also follows immediately that, for this application,

()= [(3¢) | =

The inflationary Lagrangian (prior to the reheating event) therefore can be written
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The equations of motion are best obtained by varying C ,T(J, and N in that order:
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Once the variation with respect to N has been performed, we can set it equal to unity. While
this is appropriate for the FRW description, it is not for the conformal description we will use
for gravitational waves. In that case, to be discussed in the next section, we set N equal to a(b,),

The solution of these FRW equations can be immezdiately written down:
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Note that we only get the deSitter-space solution if the Barbero-immirzi parameter is positive.

However, for negative ¥ , all we need to do is assume that PA = -~ R, . With PV and &
chosen positive, we then recover our simple solution. Hereafter, we assume that 4" > 0.

Variation with respect to the “dreibein” variable leads to no new information, but provides a
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Before leaving this section, we also record the solution of the FRW equations for the epoch

following reheating. In that case we need the general source term (% . The Lagrangian now

reads
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Variation with respectto C ,T(', and N lead to the FRW equations:
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The solution is, for the FRW metric, fa
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Again, variation with respect to a leads to nothing more than another interesting identity;
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V. Gravitational Waves

The description of gravitational waves is much simpler if the conformal metric is chosen,
because the propagation of the waves becomes as simple as in Minkowski space. Therefore we
record the modifications of the field equations which are a consequence of setting N equal to
the scale factor a ( N ). Of course, in what follows, we can set the FRW contorsion C to zero
everywhere. And our notation will be R G(ﬂ, 7L
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Before reheating, the field equations are
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The pre-reheating S a —identity becomes

Sa: 0=2aK+ak- %E“D:PAYYZ

= 4H@ + AW~ §H @ = O
After reheating, the field equations become
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And the post-reheating ga — identity now becomes QR'
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With these preliminaries, we are ready to introduce the transverse-traceless gravitational-wave
degrees of freedom into the formalism. The FRW degrees of freedom will be considered a
background in which the gravitons propagate. Of course, this constitutes an extremely good
approximation.

Sa

We need to generalize the structure of the basic degrees of freedom’l?, ¢, and e, and of the
double-forms which appear in the Lagrangian. We write
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Expansion of the double-form structures yield only terms quadratic in the transverse-traceless
variables:
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We now begin with the pre-reheating description of the gravitational waves in the inflationary
deSitter background metric. The transverse-traceless Lagrangian contains quite a few terms:

%;L[W oa) = [5G+ K - 2k 4 6B)a]
-NHD)[-4(ex + e)a]
N [ 1 B0 - 2K (e 8+ D)
—(—-’%’-%[é; ~ €/ ]’&N(/ /(C,& ¢ cx
NPX[- G +e°')k (ejj_wﬁi)@]

We can clean this up by eliminating the FRW variables N 'K a ,and PY in terms of V} and
H . After some algebra, we find the following Lagrangian:
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The subsequent equations of motion are
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Since these equations are linear, we can go to complex wave-equation notation. We assume a
plane-wave structure with momentum p in the positive z direction. Therefore we make the
replacements

R =ipk ey = P € = ipe,
R =ipth« ¢l = ipay ¢l = ipe
% P % F X F X

The equations are simplified by the choice of a circular-polarization basis, which is implemented

by the following assumptions
E =%,
Oy = N Cp X =
Ex = N é+

It is easily seen that the wave equations are consistent with this ansatz. After some more
algebra, we are left with a single wave equation for the amplitude € +

This equation of motion is actually that of a harmonic oscillator with time-dependent

frequency. This frequency passes through zero at horizon crossing and thereafter becomes
imaginary. To clean up notation, we write

?sm A =2l

(l

The equation of motion is, in this streamlined notation,

v
der T2 .2 _q]e¢
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Note that under a space reflection, which interchanges left- and right-handed chiralities, the
term proportional to Y ™' changes sign,

1
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For¥=0 , it is known as the Mukhanov-Sasaki equation (cf. Baumann TAS! lectures and/or his
website notes on inflation) and has an exact solution:
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It is interesting that even if we generalize the properties of the Dirac source, allowing unequal
vector and axial condensate densities, the structure of the wave equation does not change:
there is the same dependence on the value of the Barbero-Immirzi parameter and nothing else
is changed.

After reheating, the description of the gravitational waves is similar, but not identical. The Dirac
source term is replaced by the matter source term, the relevant parts of which are shown
below:
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After using the FRW equations of motion to streamline things, we have
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The subsequent equations of motion are now, in streamlined form, quite simple;
Se : ac, = Zf)\ €.
SQJ. JL%; = & . T -I‘E.% €,
S€: .Ci‘l' (q—i"" %) €+
The gravitational-wave equation is just the “generalized Mukhanov-Sasaki equation”. It can be

easily solved for the two simple post-reheating scenarios relevant in practice. If radiation
dominates the expansion,
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Therefore the propagation is that of a plane wave:
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On the other hand, if matter dominates over radiation,
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This leads to exactly the same wave equation as we had for deSitter space (with Y = 0d ), and
that equation had an exact solution:

—ip(y-2) -
g, ~ e ™ (- 7)

in short, the post-reheating evolution of modes, before they “recross the horizon” essentially
undoes much of the phase-space squeezing which occurred before reheating. But there are
many details to consider. One must properly match the solutions at reheating, i.e. at 1 20,
and to discuss the “BAO divide”. This is defined by a particular value P of the comoving
momentum p . For p >> P, the “horizon recrossing” occurs when the universe is radiation
dominated, while for p << P, the “horizon recrossing” occurs when the universe is matter
dominated. Evidently, when p ~P, things will be more complicated---and more interesting.
This will be discussed in the next section.

However, before we move on, we will examine the phase-space properties of ensembles of
classical solutions. This has the advantage that the quantum-mechanical issues and other
subtleties that arise in the description of inflation can be visualized at the same time.

We start with the exact deSitter solution above as an example. It can be written
LT -

- L - o -
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The pairs { QP ) and ( Ql)P,_) are solutions of the Hamiltonian equations of motion. They will

serve as a basic skeleton for the description of a more general phase space architecture.

When T is large (and negative!) we have a simple harmonic oscillator. Its natural phase-space
structure is circular, both at the classical level and at the quantum level, provided a Bunch-
Davies vacuum structure is assumed. We can create this circular structure by modifying our
starting point by appending a phase factor on the complex amplitude €, :
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We have also provided a canonical normalization for the state as well.

When *T becomes small, the mode “crosses the horizon” and no longer is oscillatory. The
frequency parameter -25%in fact goes through zero and changes sign. Thereafter the phase
space for the original solutions { with 4> set to zero) is squeezed and rapidly turns into a
filamentary structure. This can be seen by mapping the exact solutions as a function of ‘T :
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Note that the pair (Q, ,P, ) describes the thickness of the filament, while the pair (Q, ,P, )
describes its length. The area of the filament is described by the quantity Q‘.LP‘ - Q,R,,
independent of T . This quantity, the Wronskian, is an expression of the Liouville theorem,

which is applicable to this system.
For very small T, the filament is almost vertical in the phase-space; the angle of deviation is ~L

T L]
The appropriate variable to describe the coordinate is evidently

(%)~ Hewy ~ f‘if(—r’%wfv -;)ig,,,

This remains finite in the limit.

A basic quantity which contains much of the inflationary source information which will
eventually be expressed as experimental quantities is the correlation function of the
fluctuations (“power spectrum”):

P F (X-%’

(%) § - P& (P €. GW) {di e )<e+(x,7) ey ~ %35&, P
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Because different momentum modes are independent, this correlation function is diagonal in
momentum space. In the next section, we will consider its post-reheating evolution as a
function of conformal time < . An especially important event will be at recombination, when
the CMB photons that we observe nowadays were created. They are described by similar
correlation functions, which in fact are linearly related to the above correlation function of the
fluctuations, evaluated, as here, at an early enough conformal time so that the modes of
interest had not yet recrossed the horizon.

VL. Observable Consequences: The Power Spectra

The metric fluctuations created during inflation are eventually expressed as a pattern on the
sky of CMB photon temperature and polarization fluctuations. The polarization of photons
arriving from, say, the z direction is described in terms of the 2 x 2 Hermitian Stokes matrix:

- = L=l O
'Eé=n%(i-rT'S) L=l ©x

—>
Here the “T are the Pauli matrices, and the coefficients, in a often-used notation which we

adopt, are _
ngca
S =U
Sz = \]

A similar description exists for gravitational waves. For a fully polarized beam, P; . isa

projection operator:
P I'V"l-o LY GVa\)“l‘m

P= P (@1 | < | +

ol=1| 7 X
dr P =0 V= | R | RL

In the model of inflation that we have described, the parameter V(graviton) is large, and the
other two are zero. While one might expect this information to be transmitted to the CMB
Stokes parameter V(photon), the opposite is the case. The information does get transmitted,
but it is only to the other Stokes parameters Q(photon) and U(photon) .The way this happens
is not especially simple to describe. But it was worked out in detail long ago and is well
documented in the literature (cf. eg. arXiv 0705.3701 and arXiv 1002.1308) .
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I will not reproduce the details here. The main reason for this is that | am not competent to do
so. Nevertheless, | will attempt a semiquantitative description. | find the discussions in the
literature rather opaque and crave an intuitive understanding of what is going on. So what
follows is an attempt to provide some simple understanding of the relevant physics.

The bottom-line quantities which emerge from the data are power spectra. The prime example
is the famous power spectrum of the CMB temperature fluctuations. Define, for small @(which
is all that we will need),

TT AN BN =D
oy = [ 4 [(dd 7R B)T(5-F)

In this expression, ‘%" is a unit vector pointing in some direction in the sky. Rotations around n
are then performed, along with averaging “h over the celestial sphere, while keeping the
opening angle‘ 3/constant. Then the resultant correlation function is expanded in Legendre
functions. The coefficients define the CMB TT power spectrum:

CTe) = 5 ¢ Pylust)
£
CZT = I+ a‘j)_fof(aa 6) T, (cos 6) CTTCQ)

In the same way, power spectra can be defined for the CMB-polarization Stokes parameters,
leading to six distinct observables in all: TT,UU, VV, TU, TV, UV . These observables all
emerge from the power spectrum for the inflationary fluctuations defined in the previous
section. The problem is to connect the former with the latter. In the literature this is done by
decomposing the 3-D temperature map into Fourier modes. These evolve with time
independently (This is indeed the essential simplifying feature.) While the temperature map is
simple at very early (conformal) times following reheating, the subsequent evolution is not.
What we will do is to deal directly with the description on the sky at recombination and infer
the power spectrum (approximately) without ever looking at the individual Fourier modes.

We found that the correlation function for scale-invariant, right-handed graviton degrees of
freedom is very simple at very small y7 . This simplicity remains after the graviton degrees of
freedom cross the horizon, because they do not interact with the hot Big Bang plasma.
Complications do occur when the information contained in these gravitational degrees of
freedom is communicated to the plasma and eventually to the CMB photons which are
nowadays observed. This transfer of information involves somewhat subtle dynamical
mechanisms, along with complications of a geometrical nature.



There will be five FRW times of importance in what follows, which lead to five distinct values of
the conformal-time variable v7 :

Initiation of the hot big bang: all modes are inside the horizon ("l = V‘la)
Horizon crossing for a typical large-p mode under consideration ( P'h‘ =1)
Matter-radiation equality (v? = ']e% ¢ also NesP = D

Recombination (le ") %

Nowadays ('\ =14 V%)

vk whR

It will be important to keep track of the values of these times. Note that, because the
conformal time scale is inversely proportional to the FRW scale factor, which itself has no
absolute normalization scale for a spatially flat universe, we can normalize the conformal time
interval between recombination and nowadays to unity. This is a convenient choice because it
relates the CMB angular and angular-momentum variables directly to q and to the comoving
momentum p.

The landmark values of conformal time are as follows:

(—";—fl = (I (w)yz~33 & n*x 0%
N R

Ve = oy (p>F) & 76’“'("7(%) (f>P)
T ~ (107t & w000

The geometry we must consider is depicted in the following figure: V]
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/
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The CMB photons we observe were created at a redshift of (1100 4 100) --- almost, but not
quite, simultaneously. The prehistory of such photons is that they underwent Compton
scattering (more precisely Thomson scattering) from an electron. While the incident photon in
the Thomson-scattering process had the same energy as the final CMB photon, its direction

differed. The Thomson cross section - o,
&(— ~ ‘ é “ 6 ,I
d

correlates incident and final photon polarizations in a nontrivial way. In principle, therefore, the
polarization of the CMB photon can be dependent on the contents of the past lightcone of the
point of emission P of the CMB photon --- at least within the conformal-time interval l?<vl < V)

But a plan view of the situation shows that there is only a short-range correlation between CMB
photons coming from different directions in the sky.

| S

\" Ob ervey
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We are now ready to introduce the central idea underlying the simplified description which will
follow. It is based on the observation, made in the previous section, that the quantum state of a
graviton mode after horizon crossing is highly squeezed. It is a thin, long filament in phase
space. The subsequent evolution of the sundry fluctuations of photons, electrons, dark matter,
and protons which are induced by the graviton mode after reheating are described by a
plethora of Boltzmann equations. But these do not depend upon the thickness of the phase-
space filament. Therefore we will replace the dense fluid of graviton degrees of freedom by a
“dilute gas” of graviton modes, each of which is semiclassical (the mean number of gravitons in
the mode is very large compared to unity) and which is described by a coherent state: a wave
packet which is almost a plane wave but is modulated by a Gaussian envelope. If the phase
space structure of this packet is, before horizon crossing, circular but with an area large
compared to unity, then after horizon crossing it will be squeezed just like the quantum packet.




With this initial condition, the state at reheating can be taken to be a dilute gas of individual
classical modes which are well separated in space. They will evolve after reheating
independently. The situation at recombination is shown below:
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The individual fluctuations are now uncorrelated. Unlike the real situation, they do not overlap
in space. Nevertheless, the power spectra will be the same, because they only depend on the
phase-space evolution of the individual momentum-space modes. These in turn will be the
same because of the filamentary structure of the individual modes at reheating. They contain
all the initial-state information used by the Boltzmann-equation evolution.

We now exhibit how this works by considering the temperature fluctuations induced by inflaton
degrees of freedom. We consider a classical inflaton wave packet which crosses the horizon and
creates a fluctuation which recrosses the horizon at x = y = 0, and at a value of z such that its
CMB photons will be observed. We assume it has a very high momentum p , large compared to
the characteristic momentum P associated with matter-radiation equality.

The packet reenters the horizon at a conformal time 8 much smaller than v;*. The inflaton
degree of freedom, of course, disappeared during reheating. All that is left at horizon reentry is
a hot spot of small size. As time goes on, this hot spot creates a disturbance to the relativistic
plasma components. It travels outward at the speed of light. The dark matter, however, does
not respond. But the protons and electrons do respond via the BAO (baryon acoustic
oscillation) phenomenon, which plays a significant role. The BAO sound waves propagate at a
sound velocity less than the speed of light, c; » ¢ /3.

Therefore, by the time we reach the recombination era, the overdensity will be contained in a
sphere of radius 0.03 or so, but with a substructure consisting of a dark-matter core at small
radii surrounded by a halo of fluctuating density created by the outgoing BAO sound wave. In
addition there may be a more diffuse component with the full radius of 0.3 consisting of the
relics of the radiation-dominated era. These are schematically depicted in the figure below:



Dark waller core

RAO shell

The power spectra used in the full analyses involve decomposition of the temperature
fluctuations into spherical harmonics. But for our purposes here, this is overkill. Since we are
dealing with a very small patch of sky, there is little need to use anything but Fourier
transforms. Each of the density profiles above admits a simple Fourier transform:
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We can easily get something that looks like the famous TT power spectrum by neglecting the

diffuse component and subtracting the BAO halo component (which oscillates with time) from
the dark-matter-core component.
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The variable «e is properly labeled, given the conjugate relationship between angular

momentum and angle when the { are large and the angles are small.
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Our primary goal is not to discuss the TT power spectrum in detail. So we turn to the
polarization power spectra. We expect the BAO-shell component to possess the induced
polarization via the Thomson scattering. If the relevant photons originate nearby (cf. the figure
below), they will propate inward to the scattering point and then undergo, on average, a 90
degree scatter into the final z-direction en route to us. The initial-photon polarization
component in the z direction will not survive the Thomson scatter. Therefore the expected
polarization pattern for the final photons arriving at the CMB detector will be‘h}}iﬂ as
depicted in the figure below. 'a' )

0 el 5
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The Stokes parameters Q and U are therefore nontrivial.
cha 5, 4) ) < TCr) Bho Cog 2‘#’

At this point it is agpropriate to introduce the E and B modes, which are in common use. They
replace Qand U :

E=( Qes2d + Usmzd ] o T(Hgpo
B=[-&sn2éd + Ucs26]= 0O

The B mode vanishes whenever the polarization is totally radial or totally azimuthal. Azimuthal
polarization could dominate if the important source of primary photons was in the DM core and
not in the BAO shell.

Because the E mode is azimuthally symmetric, it is relatively easy to process. In particular, from
these expressions, we can directly construct the EE and TE correlation functions.

C;"r _ /?‘/—,;DM+ ’;g;\afz,
Czt o /%\iBﬂa{m
CZE . <—'71DM+ _’EBAO),-(’ZBAo
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The T and E correlation functions are sketched below

These in turn allow sketches of the TT, EE, and TE power spectra:
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The power spectra from the literature (Dodelson, Baumann TASI lectures, arXiv 0705.3701) are
plotted below:
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These are close enough to our sketches to provide encouragement that what we are doing,
despite being very crude, is not total nonsense. Therefore we move on to inclusion of the
tensor modes. (Note that there is a loose factor f, multiplying C which needs to be dealt with.)

The main difference from the case of the inflaton is that the graviton does not die during
reheating, but continues into the post-reheating world. Consider the (quite typical!) case where
the graviton propagates in a direction transverse to that of the CMB photon of interest.
Without loss of generality, we can assume this to be the x-direction. After the graviton crosses
the horizon, will disturb its local environment, and in particular will create a BAO shock wave.
This leads to structure in the positive x-direction in the post-reheating temperature bubble:

+




The new feature is the loss of azimuthal symmetry, with structure at large x and small y . This
leads to nonvanishing B polarization.

However, there is a less complex configuration as well. When the graviton is aimed at the
observer, there will be a quadrupole structure already emergent at horizon crossing, but which

Even averaging over azimuth, this pattern cdntains a lot of B- mode polarization. However, only
a relatively small fraction of the gravitons (10-20 % ) are on average aimed near enough to the z
direction to create this strong pattern. However, we will assume that it is this pattern that
dominates the B-mode contribution.

The distribution of B-mode polarization across the disc is broader than that of the E-mode
polarization. Therefore we expect the BB, TB, and EB correlation functions to peak at a lower
value of angular momentum-e . This corresponds to what is computed in detail and presented
in the literature (cf. arXiv 1002.1308 and arXiv 0705.3701) ; the peaks of those power spectra
occur for 4,< 100.

Vil.  Concluding Remarks

. .

These notes contain two messages, each of which needs further elaboration:

1.) Symmetry violation in the inflationary era, especially with respect to the tensor-mode,
gravitational-wave component, deserves to be taken very seriously at the level of
phenomenology. This is an old idea; the contribution here is addition of yet another
theoretical scenario of how this could happen. This scenario accounts for the
inflationary dark energy, thanks to presence of a Lorentz-violating Fermion condensate.

2.) When I initiated this effort, | expected that circular polarization of inflationary gravitons
would lead to circularly polarized CMB photons. This expectation is wrong, and was
documented in detail long ago. Nevertheless, the imprint remains in the TB and EB
correlation functions. However, in learning the lore regarding the processing of
inflationary information, from inflationary graviton to observed CMB photon, | have
come up with the approach expressed in the preceding section. The ideas are very
rough and need to be worked out in full detail. But if the ideas survive further scrutiny,
| believe they could contribute a useful visualization of how inflation phenomenology
works. | might even create another pdf on this subject (“Visualizing Inflation Physics”).
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