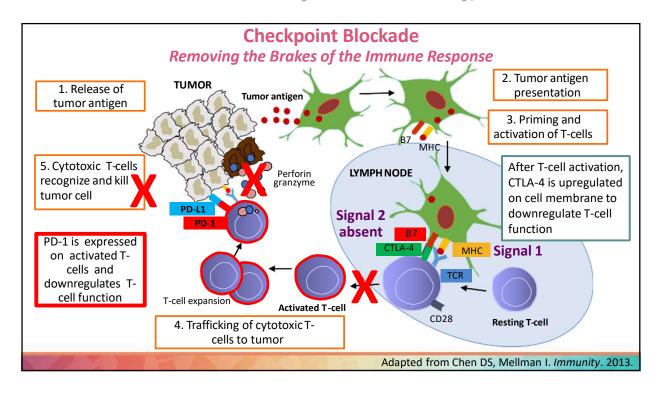
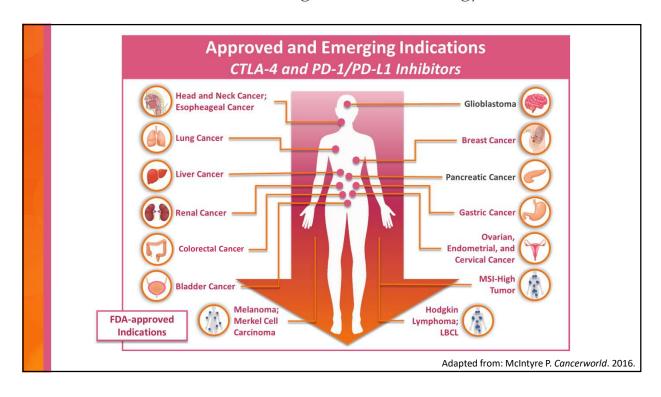
Case-Based Challenges for the Oncology Nurse



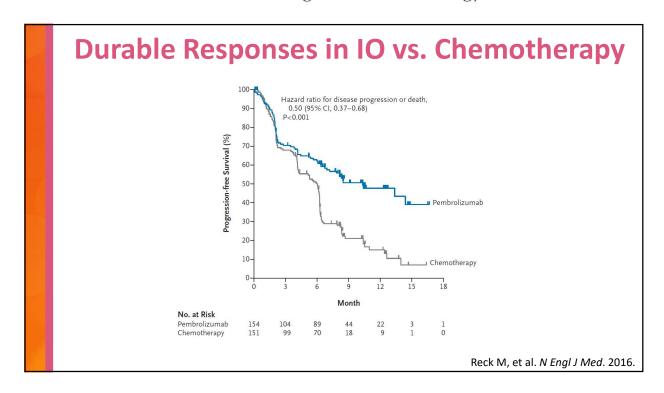
Learning Objectives

- 1. Assess the clinical efficacy, unique response patterns, and safety profiles associated with checkpoint inhibitors in various types of cancers.
- Evaluate the signs and symptoms of immune-related adverse events (irAEs) associated with checkpoint inhibitors and understand how to differentiate them from other etiologies.
- 3. Review recent ASCO/NCCN guidelines for the management of irAEs and apply these recommendations to optimize patient care.
- 4. Using a case-based approach, discuss strategies oncology nurses can employ to overcome real-world challenges to the early recognition and appropriate management of irAEs.


Case-Based Challenges for the Oncology Nurse

CTLA-4 and PD-1/PD-L1 Inhibitors FDA-approved Agents as of January 2020			
Class	Agents		
Anti-CTLA-4	 Ipilimumab (Human IgG1 mAb) 		
	 Tremelimumab* (Human IgG2 mAb) 		
Anti–PD-1	 Nivolumab (Human IgG4 mAb) 		
	 Pembrolizumab (Humanized IgG4 mAb) 		
	 Cemiplimab (Humanized IgG4 mAb) 		
Anti-PD-L1	 Atezolizumab (Humanized IgG1 mAb) 		
	 Avelumab (Human IgG1 mAb) 		
	 Durvalumab (Human IgG1 mAb) 		
orphan drug status for malignant mesothelioma and small-cell lung cancer* FDA Prescribing Informa			

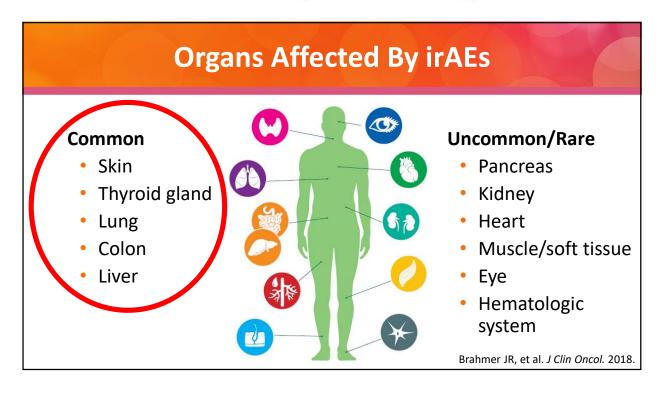
Case-Based Challenges for the Oncology Nurse

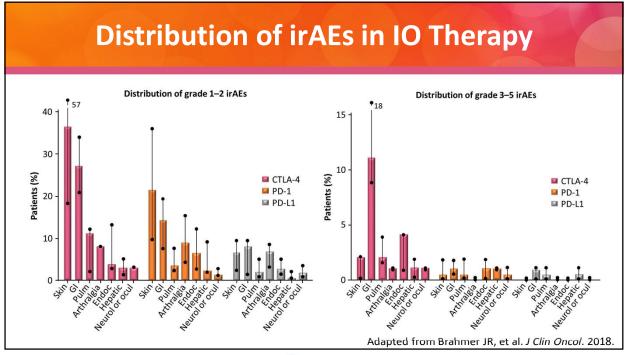

Immune Therapy vs Cytotoxic Therapy

	Immune Therapy	Cytotoxic Therapy	
Mechanism of action	Enhance anti-tumor immunity Direct tumor cell kill		
Target	Immune cells Rapidly dividing cancer ce		
Mechanism of toxicity	Loss of immunologic tolerance to self-antigens	 Off-target cytotoxicity Drug specific toxicities from metabolism/metabolites 	
Onset of toxicity	Unpredictable Predictable		
Duration of response	Durable/Prolonged	Limited	
Supportive care measures	Targets immune system	e system Targets adverse effect	

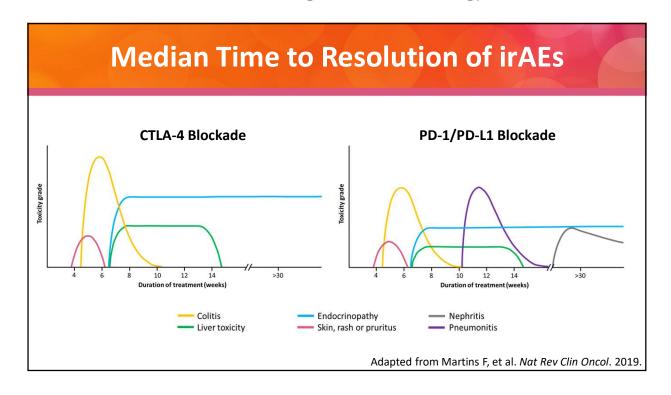
Chen DS, Mellman I. Immunity. 2013; Dimberu PM, Leonhardt RM. Yale J Biol Med. 2011; Villadolid J, Amin A. Transl Lung Cancer Res. 2015;

Case-Based Challenges for the Oncology Nurse


Immune-related Adverse Events (irAEs)


- Any toxicity with a potential immune-mediated etiology that may or may not require use of an immune-modulating therapy (e.g., steroids) after other diagnoses have been excluded
- The nomenclature for organs afflicted with inflammation usually includes the suffix "-itis"
 - Thyroiditis (inflammation of the thyroid)
 - Pneumonitis (inflammation of the lungs)
 - Colitis (inflammation of the colon)
 - Pancreatitis (inflammation of the pancreas)

Maughan BL, et al. Front Oncol. 2017.




Case-Based Challenges for the Oncology Nurse

Case-Based Challenges for the Oncology Nurse

Case-Based Challenges for the Oncology Nurse

Common Terminology Criteria for Adverse Events (CTCAE) v. 5.0

Descriptive terminology to "quantify" the severity of an adverse event (AE)/side effect of treatment.

Grade 1	Grade 2	Grade 3	Grade 4	Grade 5
Mild; asymptomatic or mild symptoms; clinical or diagnostic observations only; intervention not indicate	Moderate; minimal, local or noninvasive intervention indicated; limiting age- appropriate instrumental ADL	Severe or medically significant but not immediately life-threatening; hospitalization or prolongation of hospitalization indicated; disabling; limiting self care ADL	Life-threatening consequences; urgent intervention indicated	Death related to AE

https://ctep.cancer.gov/protocoldevelopment/electronic_applications/docs/CTCAE_v5_Quick_Reference_8.5x11.pdf.

Case Study

JT is a 70-year-old male never smoker. He is a South African native who works as an endocrinologist in a private practice. He is an avid marathon runner.

In 2012, JT developed a SOB. CTs of the chest, abdomen, and pelvis were performed and showed a LUL nodule. A PET scan confirmed LUL with no other sites of disease.

He underwent a VATS resection of LUL.

- Pathology: squamous cell carcinoma, approximately 3 cm, all nodes (-)
- Molecular: p53 (+), EGFR, ALK, BRAF (-)

JT is followed yearly with scans

Case-Based Challenges for the Oncology Nurse

Case Study

In 2015, a routine CT showed a right renal mass. An MRI of the abdomen confirmed a suspicious lesion. JT underwent a left total nephrectomy.

Pathology: metastatic squamous cell carcinoma

Case Study

In September 2015, JT enrolled in a phase II study of pembrolizumab after curative intent treatment for oligometastatic non–small-cell lung cancer (NSCLC).

When seen in clinic for cycle 5 of pembrolizumab, he notes bilateral hand "stiffness" that is worse in the morning but not affecting activities of daily living.

Differential diagnoses?

- Metastases
- Joint erosion
- Arthritis

Case-Based Challenges for the Oncology Nurse

Arthralgias

Incidence: (2%-12%)

- More common in anti–PD-1
- Often exacerbation of pre-existing arthritis

Management

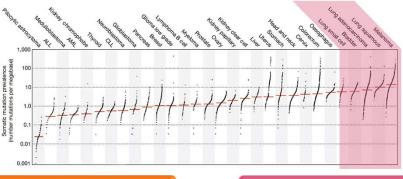
- NSAIDS/APAP
- Prednisone
- Refer to rheumatology

JT was managed with naproxen as needed.

Image from: Nall R, et al. Medical News Today. 2017. Haanen JBAG, et al. Ann Oncol. 2017.

Case Study

JT completed the pembrolizumab oligometastases study in July 2016, but 4 months later, a PET scan confirmed recurrence in the renal fossa.


A biopsy of the left retroperitoneal lesion was completed.

- Pathology: metastatic squamous cell carcinoma
- Molecular: P53 (+), PD-L1 (-), TMB high

Case-Based Challenges for the Oncology Nurse

Mutational Burden A Changing Paradigm

Tumor mutational burden—measurement of mutations carried by tumor cells; a predictive biomarker being studied to evaluate its association with response to immunotherapy

Highest prevalence of mutations

Highest benefit from immune checkpoint inhibitors

Alexandrov LB, et al. Nature. 2013; Langer C, et al. WCLC. 2019. Abstract OA04.05; Garassino M, et al. WCLC. 2019. Abstract OA04.06.

Mutational Burden A Changing Paradigm

2019: KEYNOTE 021/189 data shows no association with tumor mutational burden.

Alexandrov LB, et al. Nature. 2013; Langer C, et al. WCLC. 2019. Abstract OA04.05.

Case-Based Challenges for the Oncology Nurse

Case Study

Plan: Chemo vs. I/O therapy?

In December 2016, atezolizumab IV every 3 weeks was initiated.

Patient Complaints/Issues While Receiving Atezolizumab Xerosis, Pruritus, Xerostomia, Taste Alterations Hypothyroidism Dyspepsia Ongoing: Arthritis

Case-Based Challenges for the Oncology Nurse

Case Study

JT was seen in clinic prior to cycle 4 of atezolizumab. He complains of dry mouth/taste alterations and pruritic skin.

Xerostomia/Taste Alterations Differential Diagnoses

- Parotid blockage—parotiditis
- Dehydration
- Medication
- Hypothyroidism

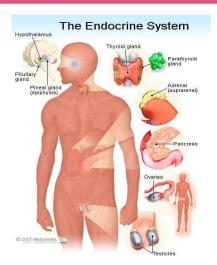
Case-Based Challenges for the Oncology Nurse

Pruritic Skin Differential Diagnoses

- Dry skin
- Contact dermatitis
- Allergy
- Medications

Cutaneous irAE Pruritus, Xerosis, Xerostomia, Taste Alterations

- Incidence: 13%–20% PD-1
- Affects QOL
- Management
 - Topical emollients
 - Topical steroids
 - Oral antihistamines
 - Avoid irritants
 - Avoid sun exposure
 - Grade 2–3: prednisone 1 mg/kg


JT managed symptoms with hydration, thick emollients, and gum. After trying to avoid steroids, he started a steroid taper and remained on 10 mg prednisone daily for several months.

Phillips GS, et al. JAMA Dermatol. 2019; Haanen JBAG, et al. Ann Oncol. 2017.

Case-Based Challenges for the Oncology Nurse

Endocrinopathies

- Thyroid dysfunction
 - Hypothyroid
 - Hyperthyroid
 - Thyroiditis
- Adrenal insufficiency (rare)
- Hypophysitis
- Diabetes mellitus type 1

Brahmer JR, et al. J Clin Oncol. 2018; www.medicinenet.com/script/main/art.asp?articlekey=25210.

Endocrinopathies *Hypothyroidism*

- Incidence: up to 16%
- Differential diagnoses
 - After obtaining TFTs, unlikely to have a diagnosis other then hyper/hypothyroidism
- JT was not symptomatic; incidental finding on routine blood work (check TSH prior to each visit)

Haanen JBAG, et al. Ann Oncol. 2017.

Case-Based Challenges for the Oncology Nurse

Case Study

JT started levothyroxine (based on 2017 guidelines, not 2018 guidelines), and managed on own.

ENDOCRINE THYROID TSH Latest Ref Rng & Units 0.27-4.20 uIU/mL 3/16/2017 3.96 4/13/2017 4.62 (H) 4.93 (H) 5/4/2017 9/15/2017 5.19 (H) 11/7/2017 4.97 (H) 11/21/2017 6.77 (H) 11/28/2017 6.56 (H) 12/5/2017 2.85 12/12/2017 2.57 12/19/2017 3.54

GI irAE—Dyspepsia

- Upper GI toxicity much less common
- Most common → diarrhea: combo (26-45%); CTLA-4 (30-40%);
 PD-1 (≤19%)
- Treatment: steroids with possible additional immunosuppression if refractory (i.e., infliximab)

JT managed the dyspepsia with omeprazole 20 mg daily.

NCCN. Management of Immunotherapy-Related Toxicities. Version 1.2020; Brahmer JR, et al. *J Clin Oncol*. 2018; Grover S, et al. *Am Soc Clin Oncol Educ Book*. 2018.

Case-Based Challenges for the Oncology Nurse

Case Study

JT was seen in clinic prior to cycle 6 and noted binocular diplopia at night when watching TV.

Binocular Diplopia Differential Diagnoses

- Brain metastases
- Nerve palsy
- Strabismus from thyroid disease
- MG
- Stroke

Case-Based Challenges for the Oncology Nurse

Neurologic Disorders *Rare*

Incidence: 1%

- Many different disorders → Guillain-Barré syndrome, MG, peripheral neuropathy, encephalitis
- Treatment: steroids 1 mg/kg and then wean

Haanen JBAG, et al. Ann Oncol. 2017; NCCN. Management of Immunotherapy-Related Toxicities. Version 1.2020.

Case Study

JT had an MRI (-) for lesions. Neuro-ophthalmology ordered a single-fiber EMG, which confirmed ocular MG.

At the time, JT was on steroids for pruritis, which helped x 1 week, then returned. Neuro-ophthalmology instructed him to patch one eye as needed for symptomatic relief.

Case-Based Challenges for the Oncology Nurse

Case Study

JT refused chemo and enrolled in a phase 1b/2 study assessing safety and anti-tumor activity of AMG 820 in combination with pembrolizumab in select advanced solid tumors. A comprehensive metabolic panel was checked at every visit.

GENERAL CHEMISTRIES CREATININE Latest Ref Rng & Units 0.64–1.27 mg/dL

7/11/2017 1.24 9/1/2017 1.45 (H) 9/7/2017 1.31 (H) 9/15/2017 1.50 (H) 9/28/2017 1.42 (H) 10/5/2017 1.27

Differential diagnoses?

- Dehydration
- Medications
- Hypercalcemia
- Recent IV contrast

Case Study Nephritis

Incidence: ~2%–5%

Management: Grade 1 can hold ICI or observe

Creatinine was never higher than 1.52. JT continued ICI treatment, received IVFs with treatment, consulted pharmacy, and followed a renal diet.

Puzanov I, et al. J ImmunoTher Cancer. 2017; Brahmer JR, et al. J Clin Oncol. 2018; Haanen JBAG, et al. Ann Oncol. 2017.

Case-Based Challenges for the Oncology Nurse

Case Study

Four months later, a follow-up CT showed PD in RP LN, liver, with increasing left pleural effusion. JT was started on carbo/nab-paclitaxel.

When he had been off ICI therapy x 5 months, he complained of worsening fatigue and weakness.

Differential Diagnoses?

- Chemotherapy induced
- Thyroid disorder
- Depression
- Medications
- Anemia

Case Study

JT requested that his testosterone level be tested.

TESTOSTERONE

Latest Ref Rng & Units10/5/2017

Testosterone 193–740 ng/dL 82 (L) Free Testosterone 47–244 pg/mL 7 (L)

Case-Based Challenges for the Oncology Nurse

Case Study

JT was diagnosed with secondary hypogonadism, which has an incidence of approximately 7.5% and is managed with HRT.

He was referred to urology who prescribed testosterone gel, which would be required lifelong.

Byun DJ, et al. Nat Rev Endocrinol. 2017.

Case Study Further Treatment

- March 2018—PD; given nivolumab
- October 2018—PD; given pembrolizumab + xrt on RadVax clinical trial (SBRT to right lung)
- February 2019—PD; enrolled in phase 1 viagenpumatucel + nivolumab
- July 2019 to present—on ipilimumab/nivolumab
- July 15 and August 9, 2019—underwent radioembolization to liver lesions

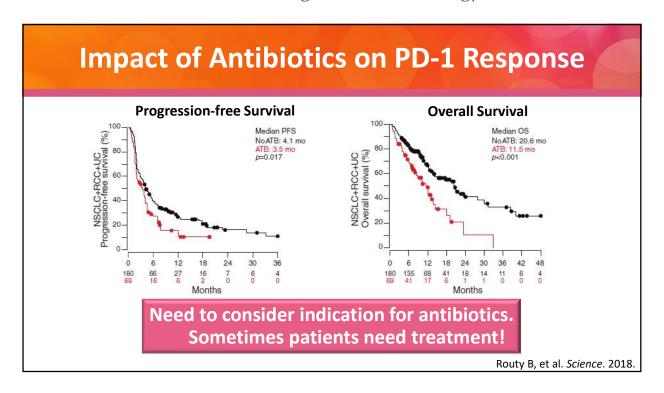
Case-Based Challenges for the Oncology Nurse

Case Study Presently

Currently, JT has a creatinine of 1.3; receives HRT for hypogonadism and hypothyroidism, and suffers from xerostomia, pruritis, diplopia, and fatigue (worst symptom—especially after SIR-spheres).

Medications

- Atorvastatin 20 mg daily
- Fluocinonide 0.05% BID
- Levothyroxine 88 mcg daily
- Megestrol
- Meloxicam 7.5 mg BID
- Omeprazole 20 mg daily
- Prednisone 10 mg daily
- Testosterone gel 1.62% transdermal daily
- Zolpidem 10 mg qhs
- Meds in 2012: atorvastatin, zolpidem


What Else Could Impact IO Therapy Efficacy?

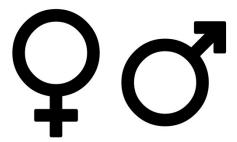
- We know that treating with steroids for irAEs does not worsen outcomes
 - Treating with steroids for other indications was excluded from prior studies
 - Remains an open question
- Gut microbiome may be an important factor predicting response to immunotherapy
 - Patients with cancer frequently receive antibiotics
 - Could antibiotics decrease efficacy?

Routy B, et al. Science. 2018.

Case-Based Challenges for the Oncology Nurse

Probiotics Good or Bad?

- Small study—46 patients
- Probiotics are associated with lower gut microbiome diversity
- Diets high in added sugars and processed meat were negatively associated with these bacteria.
- Eating fiber has better outcomes
 - Five times as likely to respond to anti–PD-1 treatment compared to patients who consumed a low-fiber diet.

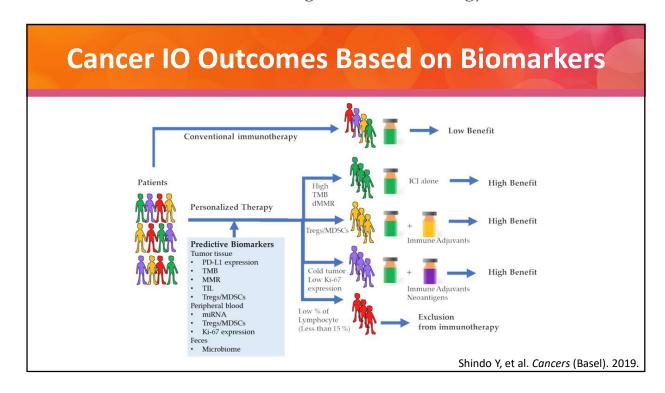

Spencer CN, et al. AACR Annual Meeting. 2019. Abstract 2838/24.

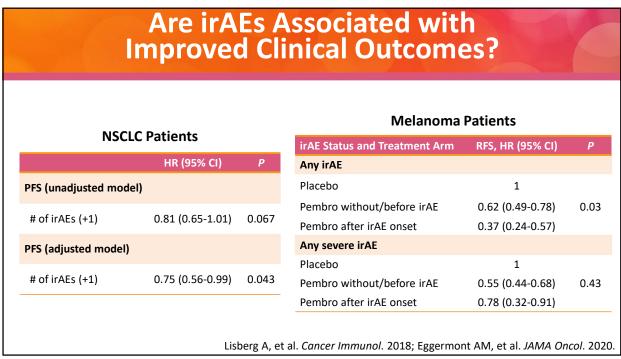
Case-Based Challenges for the Oncology Nurse

Does Patient's SEX Impact Efficacy?

- Meta-analysis of 11,351 patients
- HR= 0.72 in males
- HR = 0.86 in females
- P=0.0019

Conforti F, et al. Lancet Oncol. 2018.


Personalized Cancer Immunotherapy?


- Success in the majority of patients is limited by a low response rate, high treatment cost, and treatment-related toxicity.
- Need to identify predictive and prognostic biomarkers to select the patients who are most likely to benefit from, and respond well to, these therapies.
- "Cancer immunogram"

Shindo Y, et al. Cancers (Basel). 2019.

Case-Based Challenges for the Oncology Nurse

Case-Based Challenges for the Oncology Nurse

DIRE

- Defined as new irAEs manifesting ≥90 days after discontinuation of immunotherapy
- Systematic review from 2008 to 2018 to determine the median data safety reporting window from existing IO clinical trials
- 23 cases identified
- Median off-treatment interval to DIRE was 6 months (range: 3–28)
- Median cumulative immunotherapy exposure was 4 doses (range: 3–42)
- Involvement included endocrine, neurologic, GI, pulmonary, cardiac, rheumatologic, and dermatologic irAEs

Couey MA, et al. J Immunother Cancer. 2019.

DIRE Impact on Nursing

- Not recognizing symptoms can impact patient morbidity
- Early recognition is crucial as irAEs are generally manageable with prompt initiation of treatment
- DIRE should be considered in the differential diagnosis of patients presenting with illnesses of unclear etiology regardless of what treatment they are on

Couey MA, et al. J Immunother Cancer. 2019.

Case-Based Challenges for the Oncology Nurse

Conclusions

- Immunotherapy can induce durable responses and can result in prolonged OS
- Immune-related adverse events are a unique spectrum of adverse events that can mimic other disease processes; irAEs need to be considered as differential diagnosis in any patient receiving checkpoint inhibition
- Early recognition and effective management of irAEs is crucial to optimal use of checkpoint inhibitors
- The overarching principle of medical management is STEROIDS

Notes	
	·
 	·

Case-Based Challenges for the Oncology Nurse

References and Suggested Reading

- Alexandrov LB, Nik-Zainal S, Wedge DC, et al. Signatures of mutational processes in human cancer [published correction appears in: *Nature*. 2013;502(7470):258]. *Nature*. 2013;500(7463):415–421.
- Atezolizumab Prescribing Information. US Food and Drug Administration website. May 2020. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/761034s025lbl.pdf. Accessed July 2020.
- Avelumab Prescribing Information. US Food and Drug Administration website. June 2020. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/761049s009lbl.pdf. Accessed July 2020.
- Brahmer JR, Lacchetti C, Schneider BJ, et al; National Comprehensive Cancer Network. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of Clinical Oncology clinical practice guideline. *J Clin Oncol*. 2018;36(17):1714–1768.
- Byun DJ, Wolchok JD, Rosenberg LM, et al. Cancer immunotherapy—immune checkpoint blockade and associated endocrinopathies. *Nat Rev Endocrinol*. 2017;13(4):195-207.
- Cemiplimab FDA Prescribing Information. US Food and Drug Administration website. June 2020. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/761097s005lbl.pdf. Accessed July 2020.
- Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. *Immunity*. 2013;39(1):1–10.
- Conforti F, Pala L, Bagnardi V, et al. Cancer immunotherapy efficacy and patients' sex: a systematic review and meta-analysis. *Lancet Oncol*. 2018;19(6):737–746.
- Couey MA, Bell RB, Patel AA, et al. Delayed immune-related events (DIRE) after discontinuation of immunotherapy: diagnostic hazard of autoimmunity at a distance. *J Immunother Cancer*. 2019;7(1):165.
- Dimberu PM, Leonhardt RM. Cancer immunotherapy takes a multi-faceted approach to kick the immune system into gear. *Yale J Biol Med*. 2011;84(4):371–380.
- Durvalumab Prescribing Information. US Food and Drug Administration website. June 2020. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/761069s020lbl.pdf. Accessed July 2020.
- Eggermont AM, Kicinski M, Blank CU, et al. Association between immune-related adverse events and recurrence-free survival among patients with stage III melanoma randomized to receive pembrolizumab or placebo: Secondary analysis of a randomized clinical trial. *JAMA Oncol.* 2020;6(4):519-527.
- Feld E, Harton J, Meropol NJ, et al. Effectiveness of first-line immune checkpoint blockade versus carboplatin-based chemotherapy for metastatic urothelial cancer. *Eur Urol*. 2019;76(4):524–532.
- Garassino M, Rodriguez-Abreu D, Gadgeel S, et al. Evaluation of TMB in KEYNOTE-189: Pembrolizumab plus chemotherapy vs placebo plus chemotherapy for nonsquamous NSCLC. Abstract OA04.06. Presented at: World Lung Cancer Conference; September 7–10, 2019; Barcelona, Spain.
- Haanen JBAG, Carbonnel F, Robert C, et al; ESMO Guidelines Committee. Management of toxicities from immunotherapy: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up [published correction appears in: *Ann Oncol*. 2018;29(Suppl 4):iv264–iv266]. *Ann Oncol*. 2017;28(suppl 4):iv119–iv142.
- How chemotherapy drugs work. Revised November, 2019. American Cancer Society website. http://www.cancer.org/treatment/treatmentsandsideeffects/treatmenttypes/chemotherapy/how-chemotherapy-drugs-work. Accessed July 2020.
- Ipilimumab Prescribing Information. US Food and Drug Administration website. June 2020. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/125377s106lbl.pdf. Accessed July 2020.
- Langer C, Gadgeel S, Borghaei H, et al. KEYNOTE-021: TMB and outcomes for carboplatin and pemetrexed with or without pembrolizumab for nonsquamous NSCLC. Abstract OA04.05. Presented at: World Lung Cancer Conference; September 7–10, 2019; Barcelona, Spain.
- Lisberg A, Tucker DA, Goldman JW, et al. Treatment-related adverse events predict improved clinical outcome in NSCLC patients on KEYNOTE-001 at a single center. *Cancer Immunol Res.* 2018;6(3):288-294.

Case-Based Challenges for the Oncology Nurse

- Martins F, Sofiya L, Sykiotis GP, et al. Adverse effects of immune-checkpoint inhibitors: epidemiology, management and surveillance. *Nat Rev Clin Oncol*. 2019;16:563–580.
- Maughan BL, Bailey E, Gill DM, Agarwal N. Incidence of immune-related adverse events with program death receptor-1—and program death receptor-1 ligand—directed therapies in genitourinary cancers. *Front Oncol.* 2017;7:56.
- McIntyre P. Accelerating progress in immunotherapy. Cancerworld. 2016;71:29–35.
- National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines: Management of Immunotherapy-related toxicities. Version 1.2020, December 16, 2019. NCCN website. https://www.nccn.org/professionals/physician_gls/pdf/immunotherapy.pdf. Accessed July 2020.
- Nall R, et al. How do you manage arthritis in hands? Medical News Today website. November 2017. https://www.medicalnewstoday.com/articles/319955.php. Accessed July 2020.
- Nivolumab Prescribing Information. US Food and Drug Administration website. June 2020. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/125554s083lbl.pdf. Accessed July 2020.
- Pembrolizumab Prescribing Information. US Food and Drug Administration website. June 2020. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/125514s084lbl.pdf. Accessed July 2020.
- Phillips GS, Freites-Martinez A, Wu J, et al. Clinical characterization of immunotherapy-related pruritus among patients seen in 2 oncodermatology clinics. *JAMA Dermatol.* 2019;155(2):249–251.
- Puzanov I, Diab A, Abdallah K, et al; Society for Immunotherapy of Cancer Toxicity Management Working Group. Managing toxicities associated with immune checkpoint inhibitors: consensus recommendations from the Society for Immunotherapy of Cancer (SITC) Toxicity Management Working Group. *J Immunother Cancer*. 2017;5(1):95.
- Routy B, Le Chatelier E, Derosa L, et al. Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors. *Science*. 2018;359(6371):91–97.
- Shiel WC Jr. Medical definition of endocrine. Reviewed December 21, 2018. MedicineNet website. https://www.medicinenet.com/script/main/art.asp?articlekey=25210. Accessed July 2020.
- Shindo Y, Hazama S, Tsunedomi R, et al. Novel Biomarkers for Personalized Cancer Immunotherapy. *Cancers* (Basel). 2019;11(9):1223.
- Spencer CN, Gopalakrishnan V, McQuade J, et al. The gut microbiome (GM) and immunotherapy response are influenced by host lifestyle factors. Abstract 2838/24. Presented at: AACR Annual Meeting 2019; March 29–April 3, 2019; Atlanta, Georgia.
- US Department of Health and Human Services. Common Terminology Criteria for Adverse Events (CTCAE). Version 5.0; November 27, 2017. National Cancer Institute website. https://ctep.cancer.gov/protocoldevelopment/electronic_applications/docs/CTCAE_v5_Quick_Reference_8.5x1 1.pdf. Accessed July 2020.
- Villadolid J, Amin A. Immune checkpoint inhibitors in clinical practice: update on management of immune-related toxicities. *Transl Lung Cancer Res.* 2015;4(5):560–575.
- Weber JS, Antonia SJ, Topalian SL, et al. Safety profile of nivolumab (NIVO) in patients (pts) with advanced melanoma (MEL): a pooled analysis. Abstract 9018. Presented at: American Society of Clinical Oncology Annual Meeting; May 29–June 2, 2015; Chicago, Illinois.
- Weber JS, Kähler KC, Hauschild A. Management of immune-related adverse events and kinetics of response with ipilimumab. *J Clin Oncol*. 2012;30(21):2691–2697.

