
1

CAP 4630

Artificial Intelligence

Instructor: Sam Ganzfried

sganzfri@cis.fiu.edu

2

Schedule

• 11/30, 12/5, 12/7: Machine learning (classification, regression,

clustering, deep learning(neural networks))

• 12/7: Project presentations and class project due

– Project code due Monday 12/4 at 2PM on Moodle.

• Final exam on 12/14

3

Announcements

• HW4 out week of 11/14 (final homework assignment)

due Friday 12/1 at 2pm on Moodle

– https://www.cs.cmu.edu/~sganzfri/HW4_AI.pdf

• HW3 back today.

– Average 71.5, standard deviation 17.2.

https://www.cs.cmu.edu/~sganzfri/HW4_AI.pdf

4

Machine learning

• An agent is learning if it improves its performance on

future tasks after making observations about the world.

Learning can range from the trivial, as exhibited by

jotting down a phone number, to the profound, as

exhibited by Albert Einstein, who inferred a new

theory of the universe.

• We will start by concentrating on one class of learning

problem, which seems restricted but actually has vast

applicability: from a collection of input-output pairs,

learn a function that predicts the output for new inputs.

5

Machine learning

• Why would we want an agent to learn? If the design of

the agent can be improved, why wouldn’t the designers

just program in that improvement to begin with? There

are three main reasons.

6

• First, the designers cannot anticipate all possible

situations that the agent might find itself in. For

example, a robot designed to navigate mazes must

learn the layout of each new maze it encounters.

7

• Second, the designers cannot anticipate all changes

over time; a program designed to predict tomorrow’s

stock market prices must learn to adapt when

conditions change from boom to bust.

8

• Third, sometimes human programmers have no idea

how to program a solution themselves. For example,

most people are good at recognizing the faces of family

members, but even the best programmers are unable to

program a computer to accomplish that task, except by

using learning algorithms.

9

Supervised learning

• The task of supervised learning is this: Given a training set of

N example input-output pairs (x1, y1),(x2, y2),…,(xN, yN),

• Where each yj was generated by an unknown function y = f(x),

discover a function h that approximates the true function f.

• Example: xi, can be True/False for whether email says “Prize” in

it, and yi can be True/False for whether or not it is Spam.

• x and y can be any value, they need not be numbers.

– E.g., x can be {red, green, blue} for jacket color, and y can be price.

• The function h is a hypothesis. Learning is a search through the

space of possible hypotheses for one that will perform well,

even on new examples beyond the training set.

10

Supervised learning

• To measure the accuracy of a hypothesis we give it a test

set of examples that are distinct from the training set.

– What would happen if we tested on the examples that were

trained on?

• We say a hypothesis generalizes well if it correctly

predicts the value of y for novel examples. Sometimes

the function f is stochastic—it is not strictly a function of

x, and what we have to learn is a conditional probability

distribution, P(Y|x).

11

Supervised learning

• When the output y is one of a finite set of values (such as

sunny, cloudy, or rainy), the learning problem is called

classification, and is called Boolean or binary

classification if there are only two values. When y is a

number (such as tomorrow’s temperature), the learning

problem is called regression. (Technically, solving a

regression problem is finding a conditional expectation or

average value of y, because the probability that we have

found exactly the right real-valued number for y is 0).

12

Supervised learning

13

Supervised learning

• The figure shows a familiar example: fitting a function of a single variable to

some data points. The examples are points in the (x,y) plane, where y = f(x).

We don’t know what f is, but we will approximate it with a function h

selected from a hypothesis space, H, which for this example we will take to

be the set of polynomials such as x5 + 3x2 + 2. Figure a shows some data with

an exact fit by a straight line (the polynomial 0.4x + 3). The line is called a

consistent hypothesis because it agrees with all the data. Figure b shows a

high-degree polynomial that is also consistent with all the data. This

illustrates a fundamental problem in inductive learning: how do we choose

from among multiple consistent hypotheses? The answer is to prefer the

simplest hypothesis consistent with the data. This principle is called

Ockham’s razor, after the 14th-century English philosopher William of

Ockham, who used it to argue sharply against all sorts of complications.

Defining simplicity is not easy, but it seems clear that a degree-1 polynomial

is simpler than a degree-7 polynomial, and thus (a) should be preferred to (b).

We will make this intuition more precise later.

14

Supervised learning

• Figure c shows a second data set. There is no consistent straight

line for this data set; in fact, it requires a degree-6 polynomial for

an exact fit. There are just 7 data points, so a polynomial with 7

parameters does not seem to be finding any pattern in the data and

we do not expect it to generalize well. A straight line that is not

consistent with any of the data points, but might generalize fairly

well for unseen values of x, is also shown in c. In general, there is

a tradeoff between complex hypotheses that fit the training data

well and simpler hypotheses that may generalize better. In figure

d we expand the hypothesis space H to allow polynomials over

both x and sin(x), and find that the data in c can be fitted exactly

by a simple function of the form ax + b + csin(x). This shows the

importance of the hypothesis space.

15

Supervised learning

• In some cases, an analyst looking at a problem is willing to make

more fine-grained distinctions about the hypothesis space, to say—

even before seeing any data—not just that a hypothesis is possible

or impossible, but rather how probable it is. Supervised learning

can be done by choosing the hypothesis h* that is most probable

given the data:

– h* = argmaxh in H P(h|data)

– By Bayes’ rule, this is equivalent to h* = argmaxh in H P(data|h) P(h)

• Then we can say that the prior probability P(h) is high for a degree-

1 or -2 polynomial, lower for a degree-7 polynomial, and

especially low for degree-7 polynomials with large, sharp spikes as

in Figure 18.1(b). We allow unusual-looking functions when the

data say we really need them, but we discourage them by giving

them a low prior probability.

16

Supervised learning
• Why not let H be the class of all Java programs, or Turing

machines? After all, every computable function can be

represented y some Turing machine, and that is the best we can

do. One problem with this idea is that it does not take into

account the computational complexity of learning. There is a

tradeoff between the expressiveness of a hypothesis space and

the complexity of finding a good hypothesis within that space.

For example, fitting a straight line to data is an easy

computation; fitting high-degree polynomials is somewhat

harder; and fitting Turing machines is in general undecidable. A

second reason to prefer simple hypothesis spaces is that

presumably we will want to use h after we have learned it, and

computing h(x) when h is a linear function is guaranteed to be

fast, while computing an arbitrary Turing machine program is

not even guaranteed to terminate. For these reasons, most work

on learning has focused on simple representations.

17

Learning decision trees

• A decision tree represents a function that takes as

input a vector of attribute values and returns a

“decision”—a single output value. The input and

output values can be discrete or continuous. For now

we will concentrate on problems where the inputs have

discrete values and the output has exactly two possible

values; this is Boolean classification, where each

example input will be classified as true (a positive

example) or false (a negative example).

18

Decision trees

• A decision tree reaches its decision by performing a

sequence of tests. Each internal node in the tree

corresponds to a test of the value of one of the input

attributes, Ai, and the branches from the node are

labeled with the possible values of the attribute, Ai =

vik. Each leaf node in the tree specifies a value to be

returned by the function. The decision tree

representation is natural for humans; indeed, many

“How To” manuals (e.g., for car repair) are written

entirely as a single decision tree stretching over

hundreds of pages.

19

Decision tree

20

Decision trees
• As an example, we will build a decision tree to decide whether

to wait for a table at a restaurant. The aim here is to learn a

definition for the goal predicate WillWait. First we list the

attributes that we will consider as part of the input:

– Alternate: whether there is a suitable alternative restaurant nearby.

– Bar: whether the restaurant has a comfortable bar area to wait in.

– Fri/Sat: true on Fridays and Saturdays.

– Hungry: whether we are hungry.

– Patrons: how many people are in the restaurant (values are None, Some,

and Full).

– Price: the restaurant’s price range ($, $$, $$$).

– Raining: whether it is raining outside.

– Reservation: whether we made a reservation.

– Type: the kind of restaurant (French, Italian, Thai, or burger).

– WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60,

or >60).

21

Decision trees

• Note that every variable has a small set of possible

values; the value of WaitEstimate, for example, is not

an integer, rather it is one of the four discrete values 0-

10, 10-30, 30-60, or >60. The decision tree usually

used by one of us for this domain is shown in Figure

18.2. Notice that the tree ignores the Price and Type

attributes. Examples are processed by the tree starting

at the root and following the appropriate branch until a

leaf is reached. For instance, an example with Patrons

= Full and WaitEstimate = 0-10 will be classified as

positive (i.e., yes, we will wait for a table).

22

Decision trees

• An example for a Boolean decision tree consists of an

(x,y) pair, where x is a vector of values for the input

attributes, and y is a single Boolean output value. A

training set of 12 examples is shown in Figure 18.3.

The positive examples are the ones in which the goal

WillWait is true (x1, x3,…); the negative examples are

the ones in which it is false (x2, x5,…).

23

Decision tree

24

Decision trees

• Consider the set of all Boolean functions on n attributes. How

many different functions are in this set? This is just the number

of different truth tables that we can write down, because the

function is defined by its truth table. A truth table over n

attributes has 2n rows, one for each combination of values of the

attributes. We can consider the “answer” column of the table as

a 2n-bit number that defines the function. That means that there

are 22^n different functions (and there will be more than that

number of trees, since more than one tree can compute the same

function). This is a scary number. For example, with just the ten

Boolean attributes of our restaurant problem there are 21024-bit,

or about 10308, different functions to choose from, and for 20

attributes there are over 10300,000. We will need some ingenious

algorithms to find good hypotheses in such a large space.

25

Decision trees

• We want a tree that is consistent with the examples and is as

small as possible. Unfortunately, no matter how we measure

size, it is an intractable problem to find the smallest consistent

tree; there is no way to efficiently search through the 22^n trees.

With some simple heuristics, however, we can find a good

approximate solution: a small (but not smallest) consistent tree.

The DECISION-TREE-LEARNING ALGORITHM adopts a

greedy divide-and-conquer strategy; always test the most

important attribute first. This test divides the problem up into

smaller subproblems that can then be solved recursively. By

“most important attribute,” we mean the one that makes the

most difference to the classification of an example. That way,

we hope to get to the correct classification with a small number

of tests, meaning that all paths in the tree will be short and the

tree as a whole will be shallow.

26

Decision trees

• Figure 18.4(a) shows that Type is a poor attribute, because it

leaves us with four possible outcomes, each of which has the

same number of positive as negative examples. On the other

hand, in (b) we see that Patrons is a fairly important attribute,

because if the value is None or Some, then we are left with

example sets for which we can answer definitively (No and Yes,

respectively). If the value is Full, we are left with a mixed set of

examples. In general, after the first attribute test splits up the

examples, each outcome is a new decision tree problem in itself,

with fewer examples and one less attribute. There are four cases

to consider for these recursive problems:

27

Decision trees

1. If the remaining examples are all positive (or all negative), then we are

done: we can answer Yes or No. Figure 18.4(b) shows examples of this

happening in the None and Some branches.

2. If there are some positive and some negative examples, then choose the best

attribute to split them. Figure 18.4(b) shows Hungry being used to split the

remaining examples.

3. If there are no examples left, it means that no example has been observed

for this combination of attribute values, and we return a default value

calculated from the plurality classification of all the examples that were

used in constructing the node’s parent. These are passed along in the

variable parent_examples.

4. If there are no attributes left, but both positive and negative examples, it

means that these examples have exactly the same description., but different

classifications. This can happen because there is an error or noise in the

data; because the domain is nondeterministic; or because we can’t observe

an attribute that would distinguish the examples. The best we can do is

return the plurality classification of the remaining examples.

28

Decision tree learning algorithm

• The DECISION-TREE-LEARNING algorithm is shown in

Figure 18.5. Note that the set of examples is crucial for

constructing the tree, but nowhere do the examples appear in the

tree itself. A tree consists of just tests on attributes in the interior

nodes, values of attributes on the branches, and output values on

the leaf nodes. The output of the learning algorithm on our

sample training set is shown in Figure 18.6.

29

Decision tree

30

Decision trees
• The tree is clearly different from the original tree shown in Figure

18.2. One might conclude that the learning algorithm is not doing

a very good job of learning the correct function. This would be the

wrong conclusion to draw, however. The learning algorithm looks

at the examples, not at the correct function, and in fact, its

hypothesis not only is consistent with all the examples, but is

considerably simpler than the original tree! The learning algorithm

has no reason to include tests for Raining and Reservation,

because it can classify all the examples without them. It has also

detected an interesting and previously unsuspected pattern: the

first author will wait for Thai food on weekends. It is also bound

to make some mistakes for cases where it has seen no examples.

For example, it has never seen a case where the wait is 0-10

minutes but the restaurant is full. In that case it says not to wait

when Hungry is false, but I would certainly wait. With more

training examples the learning program could correct this mistake.

31

Decision tree algorithm

32

Decision tree from 12-example

training set

33

Decision tree

• We note there is a danger of over-interpreting the tree

that the algorithm selects. When there are several

variables of similar importance, the choice between

them is somewhat arbitrary: with slightly different

input examples, a different variable would be chosen to

split on first, and the whole tree would look completely

different. The function computed by the tree would still

be similar, but the structure of the tree can vary widely.

34

Learning curves

• We can evaluate the accuracy of a learning algorithm with a

learning curve, as shown in Figure 18.7. We have 100

examples at our disposal, which we split into a training and a

test set. We learn a hypothesis h with the training set and

measure its accuracy with the test set. We do this starting with a

training set of size 1 and increasing one at a time up to size 99.

For each size we actually repeat the process of randomly

splitting 20 times, and average the results of the 20 trials. The

curve shows that as the training size grows, the accuracy

increases. (For this reason, learning curves are also called happy

graphs.) In this graph we reach 95% accuracy, and it looks like

the curve might continue to increase with more data.

35

Learning curve

36

Choosing attribute tests

• The greedy search used in decision tree learning is

designed to approximately minimize the depth of the

final tree. The idea is to pick the attribute that goes as

far as possible toward providing an exact classification

of the examples. A perfect attribute divides the

examples into sets, each of which are all positive or all

negative and thus will be leaves of the tree. The

Patrons attribute is not perfect, but it is fairly good. A

really useless attribute, such as Type, leaves the

example sets with roughly the same proportion of

positive and negative examples as the original set.

37

Choosing attribute tests

• All we need, then, is a formal measure of “fairly good”

and “really useless” and we can implement the

IMPORTANCE function of Figure 18.5. We will use

the notion of information gain, which is defined in

terms of entropy, the fundamental quantity in

information theory.

38

Choosing attribute tests

• Entropy is a measure of the uncertainty of a random variable;

acquisition of information corresponds to a reduction in entropy.

A random variable with only one value—a coin that always

comes up heads—has no uncertainty and thus its entropy is

defined as zero; this, we gain no information by observing its

value. A flip of a fair coin is equally likely to come up heads or

tails, 0 or 1, and we will soon show that this counts as “1 bit” of

entropy. The roll of a fair four-sided die has 2 bits of entropy,

because it takes two bits to describe one of four equally probable

choices. Now consider an unfair coin that comes up heads 99%

of the time. Intuitively, this coin has less uncertainty than the

fair coin—if we guess heads we’ll be wrong only 1% of the

time—so we would like it to have an entropy measure that is

close to zero, but positive.

39

Choosing attribute tests

• In general, the entropy of a random variable V with

values vk, each with probability P(vk), is defined as

Entropy: H(V) = Σk P(vk) log2 (1/ P(vk))

= -Σk P(vk) log2 (P(vk))

• We can check that the entropy of a fair coin flip is

indeed 1 bit: H(Fair) = -(0.5 log(0.5) + 0.5 log(0.5)) = 1.

• If the coin is loaded to give 99% heads, we get

H(Loaded) = -(0.99 log 0.99 + 0.01 log 0.01 ~= 0.08 bits.

40

Choosing attribute tests

• It will help to define B(q) as the entropy of a Boolean random

variable that is true with probability q:

– B(q) = -(q log q + (1-q) log(1-q))

• Thus, H(Loaded) = B(0.99) ~= 0.08. Now let’s get back to

decision tree learning. If a training set contains p positive

examples and n negative examples, then the entropy of the goal

attribute on the whole set is H(Goal) = B(p/(p+n)).

• The restaurant training set in Figure 18.3 has p = n = 6, so the

corresponding entropy is B(0.5) or exactly 1 bit. A test on a

single attribute A might give us only part of this 1 bit. We can

measure exactly how much by looking at the entropy remaining

after the attribute test.

41

Choosing attribute tests

• An attribute A with d distinct values divides the training set E

into subsets E1,…, Ed. Each subset Ek has pk positive examples

and nk negative examples, so if we go along that branch, we will

need an additional B(pk /(pk + nk)) bits of information to answer

the question. A randomly chosen example from the training set

has the kth value for the attribute with probability (pk +

nk)/(p+n), so the expected entropy remaining after testing

attribute A is

– Remainder(A) = Σd
k=1 (pk + nk)/(p+n) B(pk)/(pk + nk)

• The information gain from the attribute test on A is

the expected reduction in entropy: Gain(A) =

B(p/(p+n)) – Remainder(A).

42

Choosing attribute tests

• In fact Gain(A) is just what we need to implement the

IMPORTANCE function. Returning to the attributes

considered in Figure 18.4, we have

– Gains(Patrons) = 1 – [2/12 B(0/2) + 4/12 B(4/4) + 6/12

B(2/6)] ~= 0.541 bits.

– Gain(Type) = 1 – [2/12 B(1/2) + 2/12 B(1/2) + 4/12 B(2/4) +

4/12 B(2/4)] = 0 bits.

• This confirms our intuition that Patrons is a better

attribute to split on. In fact, Patrons has the maximum

gain of any of the attributes and would be chosen by

the decision-tree learning algorithm as the root.

43

Bias-variance tradeoff

• We can create a graphical visualization of bias and variance using

a bulls-eye diagram. Imagine that the center of the target is a

model that perfectly predicts the correct values. As we move away

from the bulls-eye, our predictions get worse and worse. Imagine

we can repeat our entire model building process to get a number of

separate hits on the target. Each hit represents an individual

realization of our model, given the chance variability in the

training data we gather. Sometimes we will get a good distribution

of training data so we predict very well and we are close to the

bulls-eye, while sometimes our training data might be full of

outliers or non-standard values resulting in poorer predictions.

These different realizations result in a scatter of hits on the target.

• We can plot four different cases representing combinations of both

high and low bias and variance.

44

Bias-variance tradeoff

45

Bias-variance tradeoff

• The bias–variance tradeoff is a central problem in supervised learning. Ideally,

one wants to choose a model that both accurately captures the regularities in its

training data, but also generalizes well to unseen data. Unfortunately, it is

typically impossible to do both simultaneously. High-variance learning methods

may be able to represent their training set well, but are at risk of overfitting to

noisy or unrepresentative training data. In contrast, algorithms with high bias

typically produce simpler models that don't tend to overfit, but may underfit

their training data, failing to capture important regularities.

• Models with low bias are usually more complex (e.g. higher-order regression

polynomials), enabling them to represent the training set more accurately. In the

process, however, they may also represent a large noise component in the

training set, making their predictions less accurate - despite their added

complexity. In contrast, models with higher bias tend to be relatively simple

(low-order or even linear regression polynomials), but may produce lower

variance predictions when applied beyond the training set.

46

Bias-variance tradeoff

47

Bias-variance tradeoff

• Application to regression:

• The bias–variance decomposition forms the conceptual

basis for regression regularization methods such as

Lasso and ridge regression. Regularization methods

introduce bias into the regression solution that can

reduce variance considerably relative to the ordinary

least-squares (OLS) solution. Although the OLS

solution provides non-biased regression estimates, the

lower variance solutions produced by regularization

techniques provide superior MSE performance.

48

Bias-variance tradeoff

• Application to classification:

• The bias–variance decomposition was originally

formulated for least-squares regression. For the case of

classification under the 0-1 loss (misclassification

rate), it's possible to find a similar decomposition.

Alternatively, if the classification problem can be

phrased as probabilistic classification, then the

expected squared error of the predicted probabilities

with respect to the true probabilities can be

decomposed as before.

49

Bias-variance tradeoff

• Dimensionality reduction and feature selection can decrease

variance by simplifying models. Similarly, a larger training set

tends to decrease variance. Adding features (predictors) tends to

decrease bias, at the expense of introducing additional variance.

Learning algorithms typically have some tunable parameters that

control bias and variance, e.g.:

– (Generalized) linear models can be regularized to decrease their variance

at the cost of increasing their bias.

– In artificial neural networks, the variance increases and the bias decreases

with the number of hidden units. Like in GLMs, regularization is

typically applied.

– In k-nearest neighbor models, a high value of k leads to high bias and low

variance.

– In decision trees, the depth of the tree determines the variance. Decision

trees are commonly pruned to control variance.

50

Cross validation

• Cross-validation, sometimes called rotation estimation, is a

model validation technique for assessing how the results of a

statistical analysis will generalize to an independent data set. It

is mainly used in settings where the goal is prediction, and one

wants to estimate how accurately a predictive model will

perform in practice. In a prediction problem, a model is usually

given a dataset of known data on which training is run (training

dataset), and a dataset of unknown data (or first seen data)

against which the model is tested (called the validation dataset

or testing set). The goal of cross validation is to define a dataset

to "test" the model in the training phase (i.e., the validation set),

in order to limit problems like overfitting, give an insight on

how the model will generalize to an independent dataset (i.e., an

unknown dataset, for instance from a real problem), etc.

51

Cross validation

• One round of cross-validation involves partitioning a sample of data into

complementary subsets, performing the analysis on one subset (called the training

set), and validating the analysis on the other subset (called the validation set or

testing set). To reduce variability, multiple rounds of cross-validation are

performed using different partitions, and the validation results are combined (e.g.

averaged) over the rounds to estimate a final predictive model.

• One of the main reasons for using cross-validation instead of using the

conventional validation (e.g. partitioning the data set into two sets of 70% for

training and 30% for test) is that there is not enough data available to partition it

into separate training and test sets without losing significant modelling or testing

capability. In these cases, a fair way to properly estimate model prediction

performance is to use cross-validation as a powerful general technique.

• In summary, cross-validation combines (averages) measures of fit (prediction

error) to derive a more accurate estimate of model prediction performance.

52

Cross validation

53

Homework for next class

• Work on final project and finishing homework 4.

• HW4 due 12/1.

• Next lecture: Continue machine learning (regression,

clustering, start deep learning).

