CAP 4630
Artificial Intelligence

Instructor: Sam Ganzfried
sganzfri@cis.fiu.edu

Schedule

A 11/3Q 12/5, 12/7Machine learning (classification, regression,
clustering, deepearning(neural networks))

A 12/7: Project presentations and class project due
I Project code due Monday 12/4 at 2PM on Moodle.

A Final exam on 12/14

Announcements

A HW4 out week of 11/14 (final homework assignment)
due Friday 12/ht 2pm onMoodle

T https://www.cs.cmu.edu/~sganzfri/HW4 Al.pdf

A HW3 back today.
I Average 71.5, standard deviation 17.2.

https://www.cs.cmu.edu/~sganzfri/HW4_AI.pdf

Machine learning

A An agent idearning if it improves its performance on
future tasks after making observations about the wor
Learning can range from the trivial, as exhibited by
jotting down a phone number, to the profound, as
exhibited by Albert Einstein, who inferred a new
theory of the universe.

A We will start by concentrating on one class of learnin
problem, which seems restricted but actually has vas
applicablility: from a collection of inpeutput pairs,
learn a function that predicts the output for new input

Machine learning

A Why would we want an agent to learn? If the design «
t he agent can be | mpr ove
just program in that improvement to begin with? Ther
are three main reasons.

A First, the designers cannot anticipate all possible
situations that the agent might find itself in. For
example, a robot designed to navigate mazes must
learn the layout of each new maze it encounters.

A Second, the designers cannot anticipate all changes
over time; a program des
stock market prices must learn to adapt when
conditions change from boom to bust.

A Third, sometimes human programmers have no idea
how to program a solution themselves. For example,
most people are good at recognizing the faces of famn
members, but even the best programmers are unable
program a computer to accomplish that task, except |
using learning algorithms.

Supervised learning

A The task of supervised learning is this: Givamaiing set of

N example inpubutput pairs (X Y¥1),(X, Vo) , € W)X
A Where each;was generated by an unknown function y = f(x),
discover a function h that approximates the true function f.

A Example:x can be True/ False for
It, and y can be True/False for whether or not it is Spam.

A x and y can be any value, they need not be numbers.
I E.g., x can be {red, green, blue} for jacket color, and y can be price.
A The function h is &ypothesis Learning is a search through the

space of possible hypotheses for one that will perform well,
even on new examples beyond the training set.

Supervised learning

A To measure the accuracy of a hypothesis we giveeita
setof examples that are distinct from the training set.

I What would happen if we tested on the examples that were
trained on?

A We say a hypothesgeneralizeswell if it correctly
predicts the value of y for novel examples. Sometimes
the function f is stochasticit is not strictly a function of
X, and what we have to learn is a conditional probabillit

distribution, P(Y|x).

10

Supervised learning

A When the output y is one of a finite set of values (such
sunny, cloudyorrainy), the learning problem is called
classification, and is called Boolean or binary
classification If there are only two values. Wheny is a

numbe

r (such as tomorr ow

problem is calledegression (Technically, solving a

regression
average va
foundexact

oroblem is finding a conditional expectation
ue of y, because the probabllity that we hay

ythe right realvalued number for y is 0).

11

Supervised learning

| (d)

Figure 18.1 (a) Example (z. J(x)) pairs

sistent, degree-7 polynomial hypothesis for t}
admits an exact degree-6 polynomj
sinusoidal fit to the same d

- . 4 b) A col
and a consistent, linear hypothesis. (q[i
1¢ same data set. (c) A different data set. V™"

y _ : cimple, e
al fit or an dpproximate linear fit. (d) A simp
ata set.

Supervised learning

A The figure shows a familiar example: fitting a function of a single variable t
some data points. The examples are points in the (x,y) plane, where y = f(;
We dondot know what f i1 s, but we W
selected from aypothesis spaceH, which for this example we will take to
be the set of polynomials such ash3x? + 2. Figure a shows some data with
an exact fit by a straight line (the polynomial 0.4x + 3). The line is called a
consistenthypothesis because it agrees with all the data. Figure b shows &
high-degree polynomial that is also consistent with all the data. This
lllustrates a fundamental problem in inductive learnhmmy do we choose
from among multiple consistent hypothésébe answer is to prefer the
simplesthypothesis consistent with the data. This principle is called
Oc k h a mo saftar thezl8-century English philosopher William of
Ockham, who used it to argue sharply against all sorts of complications.
Defining simplicity is not easy, but it seems clear that a defmaynomial
Is simpler than a degregépolynomial, and thus (a) should be preferred to (b
We will make this intuition more precise later.

13

Supervised learning

A Figure c shows a second data set. There is no consistent straic
line for this data set; in fact, it requires a deegggmlynomial for
an exact fit. There are just 7 data points, so a polynomial with 7
parameters does not seem to be finding any pattern in the data
we do not expect it to generalize well. A straight line that is not
consistent with any of the data points, but might generalize fairl
well for unseen values of x, Is also shown imageneral, there is
a tradeoff between complex hypotheses that fit the training datz
well and simpler hypotheses that may generalize béttégure
d we expand the hypothesis space H to allow polynomials over
both x and sin(x), and find that the data in ¢ can be fitted exactl
by a simple function of the form ax + b + csin(x). This shows thi
Importance of the hypothesis space.

14

Supervised learning

A In some cases, an analyst looking at a problem is willing to mak
more finegrained distinctions about the hypothesis space, say
even before seeing any dataot just that a hypothesis is possible
or impossible, but rather how probable it is. Supervised learning
can be done by choosing the hypothesis h* thauast probable
given the data:

I h* = argmax, 4P(h|data)
i By Bayeso6 rul e, t hi s, LPedat@igR()v al er

A Then we can say that the prior probability P(h) is high for a degr:
1 or-2 polynomial, lower for a degreépolynomial, and
especially low for degreé polynomials with large, sharp spikes a:
In Figure 18.1(b). We allow unusui@ioking functions when the
data say we really need them, but we discourage them by giving
them a low prior probabillity. 15

Supervised learning

A Why not let H be the class of all Java programs, or Turing
machines? After all, every computable function can be
represented y some Turing machine, and that is the best we ¢
do. One problem with this idea is that it does not take into
account the computational complexity of learnihigere is a
tradeoff between the expressiveness of a hypothesis space ar
the complexity of finding a good hypothesis within that space
For example, fitting a straight line to data is an easy
computation; fitting higkdegree polynomials is somewhat
harder; and fitting Turing machines is in general undecidable.
second reason to prefer simple hypothesis spaces is that
presumably we will want to use h after we have learned it, anc
computing h(x) when h is a linear function is guaranteed to be
fast, while computing an arbitrary Turing machine program is
not even guaranteed to terminate. For these reasons, most wc
on learning has focused on simple representations. 16

Learning decision trees

A A decision treerepresents a function that takes as
Input a vector of attribute values and returns a
N d e c 10 & Birgle output value. The input and
output values can be discrete or continuous. For now
we will concentrate on problems where the inputs ha
discrete values and the output has exactly two possi
values; this Is Boolean classification, where each
example input will be classified as truep@sitive
example) or false (aegative example).

17

Decision trees

A A decision tree reaches its decision by performing a
sequence of tests. Each internal node in the tree
corresponds to a test of the value of one of the input
attributes, A and the branches from the node are
labeled with the possible values of the attributes A
v,.. Each leaf node in the tree specifies a value to be
returned by the function. The decision tree
representation is natural for humans; indeed, many
AHow Too manuals (e.g.
entirely as a single decision tree stretching over
hundreds of pages.

RS

Decision tree

Patrons?

Some Full

Yes WaitEstimate?

>60 30-60 10-30

0 Alternate? Hungry?

A

Reservation? Fri/Sat? Yes Alternate?

NW&G No Yes NW%

Raining?
No Yes

No Yes

Yes

Figure 18.2 A decision tree for deciding whether to wait for a table.

Decision trees

A As an example, we will build a decision tree to decide whether
to wait for a table at a restaurant. The aim here is to learn a
definition for thegoal predicateWillWait. First we list the
attributes that we will consider as part of the input:

I Alternate whether there is a suitable alternative restaurant nearby.
I Bar: whether the restaurant has a comfortable bar area to wait in.
I Fri/Sat true on Fridays and Saturdays.

I Hungry. whether we are hungry.

I Patrons how many people are in the restaurant (values are None, Som
and Full).

I Pricee the restaurantos price rang:
I Raining whether it is raining outside.

I Reservationwhether we made a reservation.

I Type the kind of restaurant (French, Italian, Thali, or burger).

I WaitEstimatethe wait estimated by the host10 minutes, 1% 3060,
or >60).

Decision trees

A Note that every variable has a small set of possible
values; the value diVaitEstimatefor example, is not
an integer, rather it is one of the four discrete values
10, 1030, 3060, or >60. The decision tree usually
used by one of us for this domain is shown In Figure
18.2. Notice that the tree ignores the Price and Type
attributes. Examples are processed by the tree starti
at the root and following the appropriate branch until
leaf is reached. For instance, an example Rédtrons
= Full andWaitEstimate= 0-10 will be classified as
positive (I.e., yes, we will wait for a table).

21

Decision trees

A An example for a Boolean decision tree consists of a
(Xx,y) pair, where x Is a vector of values for the input
attributes, and y is a single Boolean output value. A
training set of 12 examples is shown In Figure 18.3.
The positive examples are the ones in which the goa
WillWaitis true (¢, X3, €) ; t he negat |
the ones in which it is false {xx;, é) .

22

Decision tree

Chapter 18. Leaming from gy,

Example ||
Bar | Fri

Alt

Yes
Yes
No
Yes
Yes |
No

/’\«“’() ‘
No

No |
es |
No J‘
Y.

1S show

Input Attributes \\ :

/—)”f j [’/"/‘u:{ Rain 1 Res] Type

.\'(}
.\'()
Yes
No
No
Yes
Yes
No
Yes
Yes |
No |

Figure 18.3 Ix s

Hun '
Yes |

Yes
No
No
No
Yes
Yes
No
Yes
No
Yes
No
No

French
Thai
Burger
Thai
French
ltalian
Burger
Thai
Burger
ltalian
Thai
Burger

Some
Full
Some
Full
Full
Some
None
Some
Full
Full
None

$$8% | No

$ No
' No
Yes
No
Yes
Yes
Yes

Decision trees

A Consider the set of all Boolean functions on n attributes. How
many different functions are in this set? This Is just the numbe
of different truth tables that we can write down, because the
function is defined by its truth table. A truth table over n
attributes has™@ows, one for each combination of values of th
attri butes. We can consi der
a 2'-bit number thatlefinesthe function. That means that there
are22"n different functions (and there will be more than that
number of trees, since more than one tree can compute the s
function). This is a scary number. For example, with just the t
Boolean attributes of our restaurant problem there ‘@féiit,
or about 16°8 different functions to choose from, and for 20
attributes there are over3P0%° We will need some ingenious
algorithms to find good hypotheses in such a large 2si)ace.

Decision trees

A We want a tree that is consistent with the examples and is as
small as possible. Unfortunately, no matter how we measure
size, It Is an intractable problem to find the smallest consistent
tree; there is no way to efficiently search through #ietes.
With some simple heuristics, however, we can find a good
approximate solution: a small (but not smallest) consistent tree
The DECISIONTREELEARNING ALGORITHM adopts a
greedy divideand-conquer strategy; always test the most
Important attribute first. This test divides the problem up into
smallersubproblemshat can then be solved recursively. By
Amost | mportant attribute, O
most difference to the classification of an example. That way,
we hope to get to the correct classification with a small numbe
of tests, meaning that all paths in the tree will be short and the
tree as a whole will be shallow. 25

Decision trees

A Figure 18.4(a) shows th&ypeis a poor attribute, because it
leaves us with four possible outcomes, each of which has the
same number of positive as negative examples. On the other
hand, in (b) we see thRatronsis a fairly important attribute,
because If the value Moneor Somethen we are left with
example sets for which we can answer definitively (No and Ye
respectively). If the value Bull, we are left with a mixed set of
examples. In general, after the first attribute test splits up the
examples, each outcome is a new decision tree problem in its
with fewer examples and one less attribute. There are four ca
to consider for these recursive problems:

26

Decision trees

If the remaining examples are all positive (or all negative), then we are
done: we can answer Yes or No. Figure 18.4(b) shows examples of this
happening in the None and Some branches.

If there are some positive and some negative examples, then choose th
attribute to split them. Figure 18.4(b) shows Hungry being used to split t
remaining examples.

If there are no examples left, it means that no example has been obsen
for this combination of attribute values, and we return a default value
calculated from the plurality classification of all the examples that were
used I n constructing the nodeos
variableparent_examples

If there are no attributes left, but both positive and negative examples, it
means that these examples have exactly the same description., but diffe
classifications. This can happen because there is an emoisein the
data; because the domain iIis nond
an attrlbute that would distinguish the examples. The best we can do is
return the plurality classification of the remaining examples27

Decision tree learning algorithm

A The DECISIONTREELEARNING algorithm is shown in
Figure 18.5. Notéhat the set of examples is crucial for
constructinghe tree, but nowhere do the examples appear in t
tree itself. A tree consists of just tests on attributes in the inter
nodes, values of attributes on the branches, and output value:
the leaf nodesl he output of the learning algorithm on our
sample training set is shown in Figure 18.6.

28

Decision tree

French ltalian
1 6

5 10

(a)

: attributes. At each node we show the
; . s by testing on attributes.
i itting the examples by £ e
Figure 18.4 Splitting yative (dark boxes) examples remaining. (a) Splitting f)ll.]‘\'/(
positive (light boxes) and ne}:d' lh- between positive and negative examples. (b) Splitting
2 i istineuishing Ll 20 e i et solitting on
brings us no nearer to dl'st:)"gf separating positive and negative examples. After splitting
, : ob of ¢
on Patrons does a good] st
« . second test.
Patrons, Hungry is a fairly good

Decision trees

A The tree is clearly different from the original tree shown in Figur
18.2. One might conclude that the learning algorithm is not doin
a very good job of learning the correct function. This would be tr
wrong conclusion to draw, however. The learning algorithm look
at theexamplesnot at the correct function, and in fact, its
hypothesis not only is consistent with all the examples, but is
considerably simpler than the original tree! The learning algorith
has no reason to include tests RainingandReservation
because it can classify all the examples without them. It has alst
detected an interesting and previously unsuspected pattern: the
first author will wait for Thail food on weekends. It is also bound
to make some mistakes for cases where it has seen no example
For example, it has never seen a case where the wallls 0
minutes but the restaurant is full. In that case it says not to wait
whenHungryis false, but | would certainly wait. With more
training examples the learning program could correct $8is mistak

Decision tree algorithm

>mpty then return ITY-VALUEI(]
me classification then return the cla

.

oty then return PLURALITY- VAL FA ¢

4t r Sy ‘
) i FS — 2 =T
I3

ot eTe TR)
ana \Ubtr'JC suubtres

-ree leaming aleorit e b '
function Py { 4 gorithm. The function IMPORTAN
ncuon L--.":L.i,l’-r"- ._Z : .
T I'Y-VALUE selects the most comme
LIES r’dnd‘_h’n]\.

Decision tree from 12example
training set

———
——

“~ 1T :-wi_"j ?'r'v‘... r‘- , = __J—’-—/ =
—— " ~"®Xample training set- a5

Decision tree

A We note there is a danger of oweterpreting the tree
that the algorithm selects. When there are several
variables of similar importance, the choice between
them Is somewnhat arbitrary: with slightly different
Input examples, a different variable would be chosen
split on first, and the whole tree would look completel
different. The function computed by the tree would st
be similar, but the structure of the tree can vary widel

33

Learning curves

A We can evaluate the accuracy of a learning algorithm wit
learning curve, as shown in Figure 18.7. We have 100

h a

examples at our disposal, which we split into a training and a
test set. We learn a hypothesis h with the training set and
measure Its accuracy with the test set. We do this starting witl
training set of size 1 and increasing one at a time up to size 9
For each size we actually repeat the process of randomly

splitting 20 times, and average the results of the 20 trials

. The

curve shows that as the training size grows, the accuracy

Increases. (For this reason, learning curves are also balix

Py

graphs.) In this graph we reach 95% accuracy, and it looks lik

the curve might continue to increase with more data.

34

Learning curve

—
L
7]
—
"
L
=
oy
~
-~
9
o
—_
—_
—~
=
Q
~—
-
-~
-
-—
—
o
-

o
~
-
—
e

v "

20 40 60 80 100

Training set size \J

Figure 18.7 A learning curve for the decision tree learning algorithm on 100 randomly
renerated examples in the restaurant domain. Each data point is the average of 20 trials.

Choosing attribute tests

A The greedy search used in decision tree learning is
designed to approximately minimize the depth of the
final tree. The Idea Is to pick the attribute that goes a:
far as possible toward providing an exact classificatic
of the examples. A perfect attribute divides the
examples into sets, each of which are all positive or ¢
negative and thus will be leaves of the tree. The
Patronsattribute is not perfect, but it is fairly good. A
really useless attribute, suchlage leaves the
example sets with roughly the same proportion of
positive and negative examples as the original set.

36

Choosing attribute tests

AAl'l we need, then, is a
and nNnreally usel esso anc
IMPORTANCE function of Figure 18.5. We will use
the notion ofinformation gain, which is defined In
terms ofentropy, the fundamental quantity In
Information theory.

37

Choosing attribute tests

A Entropy is a measure of the uncertainty of a random variable;
acquisition of information corresponds to a reduction in entrop
A random variable with only one valdiea coin that always
comes up headélshas no uncertainty and thus its entropy is
defined as zero; this, we gain no information by observing its
value. Aflip of a fair coin is equally likely to come up heads or
tatrls, O or 1, and we wi |l I ¢
entropy. The roll of a faifour-sideddie has 2 bits of entropy,
because itakestwo bits to describe one of four equally probabl
choices. Now consider an unfair coin that comes up heads 99
of the time. Intuitively, this coin has less uncertainty than the
farcomdi f we guess heads weol |
timed so we would like it to have an entropy measure that is
close to zero, but positive. 38

Choosing attribute tests

A In general, the entropy of a random variable V with
values y, each with probability Py, is defined as

Entropy: H(V) =&, P(v,) log, (1/ P(v))
= -B P(M) 10g, (P(v))
A We can check that the entropy of a fair coin flip is
Indeed 1 bit: H(Fair) =(0.5 log(0.5) + 0.5 log(0.5)) = 1.

A If the coin is loaded to give 99% heads, we get
H(Loaded) =(0.99 log 0.99 + 0.01 log 0.01 ~= 0.08 hits.

39

Choosing attribute tests

A It will help to define B(q) as the entropy of a Boolean random
variable that is true with probability g:

I B(q) =-(q log q + (1q) log(1-q))

A Thus,H{oaded = B(0.99) ~= 0.08.
decision tree learning. If a training set contains p positive
examples and n negative examples, then the entropy of the g
attribute on the whole set is H(Goal) = Bfp/()).

A The restaurant training set in Figure 18.3 has p = n = 6, so the
corresponding entropy Is B(0.5) or exactly 1 bit. Atest on a
single attribute A might give us only part of this 1 bit. We can
measure exactly how much by looking at the entropy remainir
afterthe attribute test.

40

Choosing attribute tests

A An attribute A with d distinct values divides the training set E
Into subsets E é ,,. E&ch subset fhasp, positive examples
andn, negative examples, so if we go along that branch, we w
need an additional B{/(p, + n,)) bits of information to answer
the question. A randomly chosen example from the training se
has the kth value for the attribute with probabily«
n)/(p+n), so the expected entropy remaining after testing
attribute A Is

i Remainder(A) 2%, (b, + n/(p+n) B(p, /(P + Ny

A Theinformation gain from the attribute test on A is
the expected reduction in entropy: Gain(A) =
B(p/(p+n)) T Remainder(A).

41

Choosing attribute tests

A In fact Gain(A) is just what we need to implement the
IMPORTANCE function. Returning to the attributes
considered in Figure 18.4, we have
I GainsPatrong = 171 [2/12 B(0/2) + 4/12 B(4/4) + 6/12

B(2/6)] ~= 0.541 bits.
i Gain(Typ = 17 [2/12 B(1/2) + 2/12 B(1/2) + 4/12 B(2/4) +
4/12 B(2/4)] = 0 bits.

A This confirms our intuition tha®atronsis a better
attribute to split on. In facRatronshas the maximum
gain of any of the attributes and would be chosen by
the decisiortree learning algorithm as the root.

42

Bias-variance tradeoff

A We can create a graphical visualization of bias and variance us
a bullseye diagram. Imagine that the center of the target is a
model that perfectly predicts the correct values. As we move av
from the bullseye, our predictions get worse and worse. Imagin
we can repeat our entire model building process to get a numbt
separate hits on the target. Each hit represents an individual
realization of our model, given the chance variabllity in the
training data we gather. Sometimes we will get a good distribut
of training data so we predict very well and we are close to the
bulls-eye, while sometimes our training data might be full of
outliers or norstandard values resulting in poorer predictions.
These different realizations result in a scatter of hits on the targ

A We can plot four different cases representing combinations of &
high and low bias and variance. 43

Bias-variance tradeoff

Low Variance High Variance

Low Bias

[]
-, '
|]
&
80
T

Fig. 1 Graphical illustration of bias and variance.

44

Bias-variance tradeoff

A The biagvariance tradeoff is a central problem in supervised learning. Ideall
one wants to choose a model that both accurately captures the regularities |
training data, but also generalizes well to unseen data. Unfortunately, it is
typically impossible to do both simultaneously. Hxgriance learning methods
may be able to represent their training set well, but are at risk of overfitting t:
NoISy or unrepresentative training data. In contrast, algorithms with high bia
typically produce simpler models that don't tenoverfit, but mayunderfit
their training data, failing to capture important regularities

A Models with low bias are usually more complex (e.g. hightder regression
polynomials), enabling them to represent the training set more accurately. Ir
process, however, they may also represent a large noise component in the
training set, making their predictions less accuwratespite their added
complexity. In contrast, models with higher bias tend to be relatively simple
(low-order or even linear regression polynomials), but may produce lower
variance predictions when applied beyond the training set.

45

Bias-variance tradeoff

Bias—variance decomposition of squared error |edi] values for x=0 varies wildly
depending on where the data points

Suppose that we have a training set consisting of a set of points =4,..., z, and real values y; associated with each point were located.

x;. We assume that there is a function with noise y = f(m) + €. where the noise, €, has zero mean and variance o~

We want to find a function _f(,r}l that approximates the true function f(z) as well as possible, by means of some learning algorithm. We make "as well as

possible” precise by measuring the mean squared error between y and f (z): we want (y — f (x]}z to be minimal, both for &y, . .. , &, and for points outside of
our sample. Of course, we cannot hope to do so perfectly, since the y; contain noise e this means we must be prepared to accept an irreducible error in any
function we come up with.

Finding an f that generalizes to points outside of the training set can be done with any of the countless algorithms used for supervised leaming. It turns out that

whichever function f we select, we can decompose its expected error on an unseen sample & as follows: 413451223
B[(v f (2))*] = Bias[f ()]" + Var[f (a)] + o*

Where:
Bias[f (z)] = E[f (z) — f(z)]

and
Var[f ()] = E[f (2)*] - E[f («))*

The expectation ranges over different choices of the training set &1, ..., %, Y1, - - - , Yn. all Sampled from the same joint distribution P(z, y). The three terms
represent:

« the square of the bias of the learming method, which can be thought of as the error caused by the simplifying assumptions built into the method. E.g., when
approximating a non-linear function f(z) using a learning method for linear models, there will be error in the estimates f(:c} due to this assumption;
+ the variance of the learning method, or, intuitively, how much the learning method f(r) will move around its mean;

« the irreducible error o2 Since all three terms are non-negative, this forms a lower bound on the expecied error on unseen samples [41:34

The more complex the model _f(;r}l is, the more data points it will capture, and the lower the bias will be. However, complexity will make the model "move"” more to
capture the data points, and hence its variance will be larger.

Bias-variance tradeoff

A Application to regression:

A The biagvariance decomposition forms the conceptu
basis for regression regularization methods such as
Lasso and ridge regression. Regularization methods
Introduce bias into the regression solution that can
reduce variance considerably relative todhdinary
leastsquares (OLS3olution. Although the OLS
solution provides noibiased regression estimates, the
lower variance solutions produced by regularization

techniques provide superior MSE performance.
47

Bias-variance tradeoff

A Application to classification

A The biagvariance decomposition was originally
formulated for leassquares regression. For the case ¢
classification under the-0 loss (misclassification
rate), it's possible to find a similar decomposition
Alternatively, If the classification problem can be
phrased as probabillistic classification, then the
expected squared error of the predicted probabilities
with respect to the true probabillities can be

decomposed as before.
48

Bias-variance tradeoff

A Dimensionalityreduction and feature selection can decrease
variance by simplifying models. Similarly, a larger training set
tends to decrease variance. Adding features (predictors) tends
decrease bias, at the expense of introducing additional varian
Learning algorithms typically have some tunable parameters tl
control bias and variance, e.g

I (Generalized) linear models can be regularized to decrease their varia
at the cost of increasing their bias

I In artificial neural networks, the variance increases and the bias decres
with the number of hidden unitsike in GLMSs, regularization is
typically applied.

I In k-nearest neighbor models, a high value of k leads to high bias and |
variance.

I In decision trees, the depth of the tree determines the variance. Decisic
trees are commonly pruned to control variance

49

