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CAP 4630

Artificial Intelligence

Instructor: Sam Ganzfried

sganzfri@cis.fiu.edu
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Schedule

Å11/30, 12/5, 12/7: Machine learning (classification, regression, 

clustering, deep learning(neural networks))

Å12/7: Project presentations and class project due

ïProject code due Monday 12/4 at 2PM on Moodle.

ÅFinal exam on 12/14
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Announcements

ÅHW4 out week of 11/14 (final homework assignment) 

due Friday 12/1 at 2pm on Moodle

ïhttps://www.cs.cmu.edu/~sganzfri/HW4_AI.pdf

ÅHW3 back today. 

ïAverage 71.5, standard deviation 17.2.

https://www.cs.cmu.edu/~sganzfri/HW4_AI.pdf
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Machine learning

ÅAn agent is learning if it improves its performance on 

future tasks after making observations about the world. 

Learning can range from the trivial, as exhibited by 

jotting down a phone number, to the profound, as 

exhibited by Albert Einstein, who inferred a new 

theory of the universe. 

ÅWe will start by concentrating on one class of learning 

problem, which seems restricted but actually has vast 

applicability: from a collection of input-output pairs, 

learn a function that predicts the output for new inputs.
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Machine learning

ÅWhy would we want an agent to learn? If the design of 

the agent can be improved, why wouldnôt the designers 

just program in that improvement to begin with? There 

are three main reasons. 
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ÅFirst, the designers cannot anticipate all possible 

situations that the agent might find itself in. For 

example, a robot designed to navigate mazes must 

learn the layout of each new maze it encounters. 



7

ÅSecond, the designers cannot anticipate all changes 

over time; a program designed to predict tomorrowôs 

stock market prices must learn to adapt when 

conditions change from boom to bust. 



8

ÅThird, sometimes human programmers have no idea 

how to program a solution themselves. For example, 

most people are good at recognizing the faces of family 

members, but even the best programmers are unable to 

program a computer to accomplish that task, except by 

using learning algorithms.
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Supervised learning

ÅThe task of supervised learning is this: Given a training set of 

N example input-output pairs (x1, y1),(x2, y2),é,(xN, yN),

ÅWhere each yj was generated by an unknown function y = f(x), 

discover a function h that approximates the true function f. 

ÅExample: xi, can be True/False for whether email says ñPrizeò in 

it, and yi can be True/False for whether or not it is Spam.

Åx and y can be any value, they need not be numbers.

ïE.g., x can be {red, green, blue} for jacket color, and y can be price.

ÅThe function h is a hypothesis. Learning is a search through the 

space of possible hypotheses for one that will perform well, 

even on new examples beyond the training set. 
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Supervised learning

ÅTo measure the accuracy of a hypothesis we give it a test 

setof examples that are distinct from the training set. 

ïWhat would happen if we tested on the examples that were 

trained on?

ÅWe say a hypothesis generalizeswell if it correctly 

predicts the value of y for novel examples. Sometimes 

the function f is stochasticðit is not strictly a function of 

x, and what we have to learn is a conditional probability 

distribution, P(Y|x).
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Supervised learning

ÅWhen the output y is one of a finite set of values (such as 

sunny, cloudy, or rainy), the learning problem is called 

classification, and is called Boolean or binary 

classification if there are only two values. When y is a 

number (such as tomorrowôs temperature), the learning 

problem is called regression. (Technically, solving a 

regression problem is finding a conditional expectation or 

average value of y, because the probability that we have 

found exactlythe right real-valued number for y is 0). 
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Supervised learning
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Supervised learning

Å The figure shows a familiar example: fitting a function of a single variable to 

some data points. The examples are points in the (x,y) plane, where y = f(x). 

We donôt know what f is, but we will approximate it with a function h 

selected from a hypothesis space, H, which for this example we will take to 

be the set of polynomials such as x5 + 3x2 + 2. Figure a shows some data with 

an  exact fit by a straight line (the polynomial 0.4x + 3). The line is called a 

consistenthypothesis because it agrees with all the data. Figure b shows a 

high-degree polynomial that is also consistent with all the data. This 

illustrates a fundamental problem in inductive learning: how do we choose 

from among multiple consistent hypotheses? The answer is to prefer the 

simplesthypothesis consistent with the data. This principle is called 

Ockhamôs razor, after the 14th-century English philosopher William of 

Ockham, who used it to argue sharply against all sorts of complications. 

Defining simplicity is not easy, but it seems clear that a degree-1 polynomial 

is simpler than a degree-7 polynomial, and thus (a) should be preferred to (b). 

We will make this intuition more precise later.
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Supervised learning

ÅFigure c shows a second data set. There is no consistent straight 

line for this data set; in fact, it requires a degree-6 polynomial for 

an exact fit. There are just 7 data points, so a polynomial with 7 

parameters does not seem to be finding any pattern in the data and 

we do not expect it to generalize well. A straight line that is not 

consistent with any of the data points, but might generalize fairly 

well for unseen values of x, is also shown in c. In general, there is 

a tradeoff between complex hypotheses that fit the training data 

well and simpler hypotheses that may generalize better.In figure 

d we expand the hypothesis space H to allow polynomials over 

both x and sin(x), and find that the data in c can be fitted exactly 

by a simple function of the form ax + b + csin(x). This shows the 

importance of the hypothesis space.
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Supervised learning

ÅIn some cases, an analyst looking at a problem is willing to make 

more fine-grained distinctions about the hypothesis space, to sayð

even before seeing any dataðnot just that a hypothesis is possible 

or impossible, but rather how probable it is. Supervised learning 

can be done by choosing the hypothesis h* that is most probable

given the data:

ïh* = argmaxh in H P(h|data)

ïBy Bayesô rule, this is equivalent to h* = argmaxh in H P(data|h) P(h)

ÅThen we can say that the prior probability P(h) is high for a degree-

1 or -2 polynomial, lower for a degree-7 polynomial, and 

especially low for degree-7 polynomials with large, sharp spikes as 

in Figure 18.1(b). We allow unusual-looking functions when the 

data say we really need them, but we discourage them by giving 

them a low prior probability. 
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Supervised learning
ÅWhy not let H be the class of all Java programs, or Turing 

machines? After all, every computable function can be 

represented y some Turing machine, and that is the best we can 

do. One problem with this idea is that it does not take into 

account the computational complexity of learning. There is a 

tradeoff between the expressiveness of a hypothesis space and 

the complexity of finding a good hypothesis within that space. 

For example, fitting a straight line to data is an easy 

computation; fitting high-degree polynomials is somewhat 

harder; and fitting Turing machines is in general undecidable. A 

second reason to prefer simple hypothesis spaces is that 

presumably we will want to use h after we have learned it, and 

computing h(x) when h is a linear function is guaranteed to be 

fast, while computing an arbitrary Turing machine program is 

not even guaranteed to terminate. For these reasons, most work 

on learning has focused on simple representations.
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Learning decision trees

ÅA decision treerepresents a function that takes as 

input a vector of attribute values and returns a 

ñdecisionòða single output value. The input and 

output values can be discrete or continuous. For now 

we will concentrate on problems where the inputs have 

discrete values and the output has exactly two possible 

values; this is Boolean classification, where each 

example input will be classified as true (a positive

example) or false (a negative example). 
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Decision trees

ÅA decision tree reaches its decision by performing a 

sequence of tests. Each internal node in the tree 

corresponds to a test of the value of one of the input 

attributes, Ai, and the branches from the node are 

labeled with the possible values of the attribute, Ai = 

vik. Each leaf node in the tree specifies a value to be 

returned by the function. The decision tree 

representation is natural for humans; indeed, many 

ñHow Toò manuals (e.g., for car repair) are written 

entirely as a single decision tree stretching over 

hundreds of pages.
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Decision tree
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Decision trees
ÅAs an example, we will build a decision tree to decide whether 

to wait for a table at a restaurant. The aim here is to learn a 

definition for the goal predicateWillWait. First we list the 

attributes that we will consider as part of the input:

ïAlternate: whether there is a suitable alternative restaurant nearby. 

ïBar: whether the restaurant has a comfortable bar area to wait in.

ïFri/Sat: true on Fridays and Saturdays.

ïHungry: whether we are hungry.

ïPatrons: how many people are in the restaurant (values are None, Some, 

and Full).

ïPrice: the restaurantôs price range ($, $$, $$$).

ïRaining: whether it is raining outside.

ïReservation: whether we made a reservation.

ïType: the kind of restaurant (French, Italian, Thai, or burger).

ïWaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, 

or >60).
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Decision trees

ÅNote that every variable has a small set of possible 

values; the value of WaitEstimate, for example, is not 

an integer, rather it is one of the four discrete values 0-

10, 10-30, 30-60, or >60. The decision tree usually 

used by one of us for this domain is shown in Figure 

18.2. Notice that the tree ignores the Price and Type 

attributes. Examples are processed by the tree starting 

at the root and following the appropriate branch until a 

leaf is reached. For instance, an example with Patrons

= Full and WaitEstimate= 0-10 will be classified as 

positive (i.e., yes, we will wait for a table). 
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Decision trees

ÅAn example for a Boolean decision tree consists of an 

(x,y) pair, where x is a vector of values for the input 

attributes, and y is a single Boolean output value. A 

training set of 12 examples is shown in Figure 18.3. 

The positive examples are the ones in which the goal 

WillWait is true (x1, x3,é); the negative examples are 

the ones in which it is false (x2, x5,é).
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Decision tree
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Decision trees

ÅConsider the set of all Boolean functions on n attributes. How 

many different functions are in this set? This is just the number 

of different truth tables that we can write down, because the 

function is defined by its truth table. A truth table over n 

attributes has 2n rows, one for each combination of values of the 

attributes. We can consider the ñanswerò column of the table as 

a 2n-bit number that defines the function. That means that there 

are 22^n different functions (and there will be more than that 

number of trees, since more than one tree can compute the same 

function). This is a scary number. For example, with just the ten 

Boolean attributes of our restaurant problem there are 21024-bit, 

or about 10308, different functions to choose from, and for 20 

attributes there are over 10300,000. We will need some ingenious 

algorithms to find good hypotheses in such a large space.
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Decision trees

ÅWe want a tree that is consistent with the examples and is as 

small as possible. Unfortunately, no matter how we measure 

size, it is an intractable problem to find the smallest consistent 

tree; there is no way to efficiently search through the 22^n trees. 

With some simple heuristics, however, we can find a good 

approximate solution: a small (but not smallest) consistent tree. 

The DECISION-TREE-LEARNING ALGORITHM adopts a 

greedy divide-and-conquer strategy; always test the most 

important attribute first. This test divides the problem up into 

smaller subproblemsthat can then be solved recursively. By 

ñmost important attribute,ò we mean the one that makes the 

most difference to the classification of an example. That way, 

we hope to get to the correct classification with a small number 

of tests, meaning that all paths in the tree will be short and the 

tree as a whole will be shallow.  
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Decision trees

ÅFigure 18.4(a) shows that Typeis a poor attribute, because it 

leaves us with four possible outcomes, each of which has the 

same number of positive as negative examples. On the other 

hand, in (b) we see that Patronsis a fairly important attribute, 

because if the value is Noneor Some, then we are left with 

example sets for which we can answer definitively (No and Yes, 

respectively). If the value is Full, we are left with a mixed set of 

examples. In general, after the first attribute test splits up the 

examples, each outcome is a new decision tree problem in itself, 

with fewer examples and one less attribute. There are four cases 

to consider for these recursive problems:
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Decision trees

1. If the remaining examples are all positive (or all negative), then we are 

done: we can answer Yes or No. Figure 18.4(b) shows examples of this 

happening in the None and Some branches.

2. If there are some positive and some negative examples, then choose the best 

attribute to split them. Figure 18.4(b) shows Hungry being used to split the 

remaining examples.

3. If there are no examples left, it means that no example has been observed 

for this combination of attribute values, and we return a default value 

calculated from the plurality classification of all the examples that were 

used in constructing the nodeôs parent. These are passed along in the 

variable parent_examples.

4. If there are no attributes left, but both positive and negative examples, it 

means that these examples have exactly the same description., but different 

classifications. This can happen because there is an error or noisein the 

data; because the domain is nondeterministic; or because we canôt observe 

an attribute that would distinguish the examples. The best we can do is 

return the plurality classification of the remaining examples.
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Decision tree learning algorithm

ÅThe DECISION-TREE-LEARNING algorithm is shown in 

Figure 18.5. Note that the set of examples is crucial for 

constructingthe tree, but nowhere do the examples appear in the 

tree itself. A tree consists of just tests on attributes in the interior 

nodes, values of attributes on the branches, and output values on 

the leaf nodes. The output of the learning algorithm on our 

sample training set is shown in Figure 18.6. 
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Decision tree
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Decision trees
ÅThe tree is clearly different from the original tree shown in Figure 

18.2. One might conclude that the learning algorithm is not doing 

a very good job of learning the correct function. This would be the 

wrong conclusion to draw, however. The learning algorithm looks 

at the examples, not at the correct function, and in fact, its 

hypothesis not only is consistent with all the examples, but is 

considerably simpler than the original tree! The learning algorithm 

has no reason to include tests for Rainingand Reservation, 

because it can classify all the examples without them. It has also 

detected an interesting and previously unsuspected pattern: the 

first author will wait for Thai food on weekends. It is also bound 

to make some mistakes for cases where it has seen no examples. 

For example, it has never seen a case where the wait is 0-10 

minutes but the restaurant is full. In that case it says not to wait 

when Hungry is false, but I would certainly wait. With more 

training examples the learning program could correct this mistake.
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Decision tree algorithm
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Decision tree from 12-example 

training set
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Decision tree

ÅWe note there is a danger of over-interpreting the tree 

that the algorithm selects. When there are several 

variables of similar importance, the choice between 

them is somewhat arbitrary: with slightly different 

input examples, a different variable would be chosen to 

split on first, and the whole tree would look completely 

different. The function computed by the tree would still 

be similar, but the structure of the tree can vary widely. 
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Learning curves

ÅWe can evaluate the accuracy of a learning algorithm with a 

learning curve, as shown in Figure 18.7. We have 100 

examples at our disposal, which we split into a training and a 

test set. We learn a hypothesis h with the training set and 

measure its accuracy with the test set. We do this starting with a 

training set of size 1 and increasing one at a time up to size 99. 

For each size we actually repeat the process of randomly 

splitting 20 times, and average the results of the 20 trials. The 

curve shows that as the training size grows, the accuracy 

increases. (For this reason, learning curves are also called happy 

graphs.) In this graph we reach 95% accuracy, and it looks like 

the curve might continue to increase with more data.
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Learning curve
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Choosing attribute tests 

ÅThe greedy search used in decision tree learning is 

designed to approximately minimize the depth of the 

final tree. The idea is to pick the attribute that goes as 

far as possible toward providing an exact classification 

of the examples. A perfect attribute divides the 

examples into sets, each of which are all positive or all 

negative and thus will be leaves of the tree. The 

Patronsattribute is not perfect, but it is fairly good. A 

really useless attribute, such as Type, leaves the 

example sets with roughly the same proportion of 

positive and negative examples as the original set. 
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Choosing attribute tests

ÅAll we need, then, is a formal measure of ñfairly goodò 

and ñreally uselessò and we can implement the 

IMPORTANCE function of Figure 18.5. We will use 

the notion of information gain , which is defined in 

terms of entropy, the fundamental quantity in 

information theory. 
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Choosing attribute tests

ÅEntropy is a measure of the uncertainty of a random variable; 

acquisition of information corresponds to a reduction in entropy. 

A random variable with only one valueða coin that always 

comes up headsðhas no uncertainty and thus its entropy is 

defined as zero; this, we gain no information by observing its 

value. A flip of a fair coin is equally likely to come up heads or 

tails, 0 or 1, and we will soon show that this counts as ñ1 bitò of 

entropy. The roll of a fair four-sided die has 2 bits of entropy, 

because it takes two bits to describe one of four equally probable 

choices. Now consider an unfair coin that comes up heads 99% 

of the time. Intuitively, this coin has less uncertainty than the 

fair coinðif we guess heads weôll be wrong only 1% of the 

timeðso we would like it to have an entropy measure that is 

close to zero, but positive.
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Choosing attribute tests

ÅIn general, the entropy of a random variable V with 

values vk, each with probability P(vk), is defined as

Entropy: H(V) = Ɇk P(vk) log2 (1/ P(vk)) 

= -Ɇk P(vk) log2 (P(vk)) 

ÅWe can check that the entropy of a fair coin flip is 

indeed 1 bit: H(Fair) = -(0.5 log(0.5) + 0.5 log(0.5)) = 1.

ÅIf the coin is loaded to give 99% heads, we get

H(Loaded) = -(0.99 log 0.99 + 0.01 log 0.01 ~= 0.08 bits.
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Choosing attribute tests

ÅIt will help to define B(q) as the entropy of a Boolean random 

variable that is true with probability q: 

ïB(q) = -(q log q + (1-q) log(1-q))

ÅThus, H(Loaded) = B(0.99) ~= 0.08. Now letôs get back to 

decision tree learning. If a training set contains p positive 

examples and n negative examples, then the entropy of the goal 

attribute on the whole set is H(Goal) = B(p/(p+n)). 

ÅThe restaurant training set in Figure 18.3 has p = n = 6, so the 

corresponding entropy is B(0.5) or exactly 1 bit. A test on a 

single attribute A might give us only part of this 1 bit. We can 

measure exactly how much by looking at the entropy remaining 

after the attribute test.
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Choosing attribute tests

ÅAn attribute A with d distinct values divides the training set E 

into subsets E1,é, Ed. Each subset Ek has pk positive examples 

and nk negative examples, so if we go along that branch, we will 

need an additional B(pk /(pk + nk)) bits of information to answer 

the question. A randomly chosen example from the training set 

has the kth value for the attribute with probability (pk + 

nk)/(p+n), so the expected entropy remaining after testing 

attribute A is 

ïRemainder(A) = Ɇd
k=1 (pk + nk)/(p+n) B(pk )/(pk + nk)

ÅThe information gain from the attribute test on A is 

the expected reduction in entropy: Gain(A) = 

B(p/(p+n)) ïRemainder(A).
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Choosing attribute tests

ÅIn fact Gain(A) is just what we need to implement the 

IMPORTANCE function. Returning to the attributes 

considered in Figure 18.4, we have

ïGains(Patrons) = 1 ï[2/12 B(0/2) + 4/12 B(4/4) + 6/12 

B(2/6)] ~= 0.541 bits.

ïGain(Type) = 1 ï[2/12 B(1/2) + 2/12 B(1/2) + 4/12 B(2/4) + 

4/12 B(2/4)] = 0 bits.

ÅThis confirms our intuition that Patronsis a better 

attribute to split on. In fact, Patronshas the maximum 

gain of any of the attributes and would be chosen by 

the decision-tree learning algorithm as the root.
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Bias-variance tradeoff

ÅWe can create a graphical visualization of bias and variance using 

a bulls-eye diagram. Imagine that the center of the target is a 

model that perfectly predicts the correct values. As we move away 

from the bulls-eye, our predictions get worse and worse. Imagine 

we can repeat our entire model building process to get a number of 

separate hits on the target. Each hit represents an individual 

realization of our model, given the chance variability in the 

training data we gather. Sometimes we will get a good distribution 

of training data so we predict very well and we are close to the 

bulls-eye, while sometimes our training data might be full of 

outliers or non-standard values resulting in poorer predictions. 

These different realizations result in a scatter of hits on the target.

ÅWe can plot four different cases representing combinations of both 

high and low bias and variance.
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Bias-variance tradeoff
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Bias-variance tradeoff

Å The biasïvariance tradeoff is a central problem in supervised learning. Ideally, 

one wants to choose a model that both accurately captures the regularities in its 

training data, but also generalizes well to unseen data. Unfortunately, it is 

typically impossible to do both simultaneously. High-variance learning methods 

may be able to represent their training set well, but are at risk of overfitting to 

noisy or unrepresentative training data. In contrast, algorithms with high bias 

typically produce simpler models that don't tend to overfit, but may underfit

their training data, failing to capture important regularities.

Å Models with low bias are usually more complex (e.g. higher-order regression 

polynomials), enabling them to represent the training set more accurately. In the 

process, however, they may also represent a large noise component in the 

training set, making their predictions less accurate - despite their added 

complexity. In contrast, models with higher bias tend to be relatively simple 

(low-order or even linear regression polynomials), but may produce lower 

variance predictions when applied beyond the training set.
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Bias-variance tradeoff
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Bias-variance tradeoff

ÅApplication to regression:

ÅThe biasïvariance decomposition forms the conceptual 

basis for regression regularization methods such as 

Lasso and ridge regression. Regularization methods 

introduce bias into the regression solution that can 

reduce variance considerably relative to the ordinary 

least-squares (OLS) solution. Although the OLS 

solution provides non-biased regression estimates, the 

lower variance solutions produced by regularization 

techniques provide superior MSE performance.
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Bias-variance tradeoff

ÅApplication to classification:

ÅThe biasïvariance decomposition was originally 

formulated for least-squares regression. For the case of 

classification under the 0-1 loss (misclassification 

rate), it's possible to find a similar decomposition. 

Alternatively, if the classification problem can be 

phrased as probabilistic classification, then the 

expected squared error of the predicted probabilities 

with respect to the true probabilities can be 

decomposed as before.
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Bias-variance tradeoff

ÅDimensionality reduction and feature selection can decrease 

variance by simplifying models. Similarly, a larger training set 

tends to decrease variance. Adding features (predictors) tends to 

decrease bias, at the expense of introducing additional variance. 

Learning algorithms typically have some tunable parameters that 

control bias and variance, e.g.:

ï (Generalized) linear models can be regularized to decrease their variance 

at the cost of increasing their bias.

ïIn artificial neural networks, the variance increases and the bias decreases 

with the number of hidden units. Like in GLMs, regularization is 

typically applied.

ïIn k-nearest neighbor models, a high value of k leads to high bias and low 

variance.

ïIn decision trees, the depth of the tree determines the variance. Decision 

trees are commonly pruned to control variance.




