by Angsuman Roy

DESIGN, FABRICATION AND TESTING OF MONOLITHIC LOW-POWER PASSIVE SIGMA-DELTA ANALOG-TO DIGITAL-CONVERTERS

### A BRIEF ROADMAP

#### Context

- Basic Sigma-Delta ADC Concepts
- Review of Passive Sigma-Delta Topologies
- Proposed Topology
- Continuous-Time IC Implementation
- Switched-Capacitor IC Implementation
- KD1S IC Implementation

### FITTING IN



### FITTING IN



### FITTING IN



### MARKET NEED FOR LOW POWER $\sum -\Delta$ ADC



All these future devices and trends require low cost, low power ADCs. High resolution and precision are not prioritized. Passive  $\sum -\Delta$  ADCs can meet this need.

### **ANALOG-TO-DIGITAL CONVERTERS**



- input bandwidth.
- -Resolution is limited to nominal value.

-Resolution is higher than the nominal value.

#### **QUANTIZATION ERROR**



#### **QUANTIZATION ERROR**



#### PDF AND PSD OF QUANTIZATION ERROR

$$P_{Qe} = \int_{-\frac{1}{2}LSB}^{+\frac{1}{2}LSB} \rho * (Q_e) * dQ_e = \frac{V_{LSB}^2}{12} = 2 * \int_{0}^{\frac{fs}{2}} V_{Qe}^2(f) * df$$
Probability Density Function,  $\rho$ 

$$\frac{1}{V_{LSB}} \underbrace{V_{Qe}(f), \frac{V}{\sqrt{Hz}}}_{-1/2 \text{ LSB}} Q_e$$

$$V_{Qe}(f), \frac{V}{\sqrt{Hz}} \underbrace{V_{LSB}, \frac{V_{LSB}}{\sqrt{12f_s}}}_{f_s} f$$

 $P_{Qe}$ :Quantization Noise Power  $Q_e$ : Quantization Error

 $V_{LSB}$ : Least-Significant-Bit Voltage

#### Key

 $V_{Qe}(f)$ : Quantization Noise Voltage  $V_{Qe}^2(f)$ : Quantization Noise Power Spectral Density  $f_n$ : Nyquist Frequency  $f_s$ : Sampling Frequency

L

#### **OVERSAMPLING**

Oversampling is running a data converter at a sampling rate beyond the Nyquist criterion in order to increase its resolution.

**Nyquist Criterion** 

 $f_{sampling=2f_{MAX}}$ 

**Oversampling Ratio** 

 $OSR = 2^{2n}$ 

#### QUANTIZATION NOISE



#### BANDLIMITING



#### **OVERSAMPLING EXAMPLE**



1 MHz Bandwidth 2 MHz Sampling Rate 1 MHz Bandwidth 32 MHz Sampling Rate

 $OSR = 2^{2n}$  $OSR = 2^{2*2} = 16$ 

# **Caveat** Inherent linearity of data converter must be equal to desired resolution.

#### **1-BIT ADC**

**Solution** A 1-bit ADC is inherently linear because two points define a perfectly straight line.



#### **NOISE SHAPING**



# **BASIC 1<sup>st</sup> order** $\sum -\Delta$ **Modulator**



# $\sum -\Delta$ MODULATOR WITH DC INPUT



### **1-BIT OUTPUT**



# **BASIC 1<sup>st</sup> order** $\sum -\Delta$ **Modulator**



Generally,  $\sum \Delta$  modulators use an active integrator to keep the voltage swing on the integrator's input to a minimum (ideally zero).

#### WHY PASSIVE?

# **Lower Power**

- Active integrators constantly draw current for biasing.
- Passive modulators only draw current while switching.

# **Higher Speed**

• Passive modulators are not limited by op-amp GBW performance.

# **1<sup>ST</sup> ORDER PASSIVE** $\sum -\Delta$ **MODULATOR**



#### **TRANSFER FUNCTIONS**



# CONVENTIONAL $2^{ND}$ ORDER PASSIVE $\sum -\Delta$ MODULATOR



#### NOISE SHAPING ORDER



#### PROPOSED 2<sup>ND</sup> ORDER MODULATOR



#### MATHEMATICA PLOT OF NTF



Quantization noise is shifted to a resonant peak.

#### **CONCEPTUAL NTF PLOT**



#### **MATHEMATICA PLOT OF STF**



Signal transfer function exhibits 1<sup>st</sup> order low-pass behavior.

#### SPICE SIMULATIONS



Each topology was simulated in LTspice using ideal components.

#### SPICE SIMULATIONS



Linearity Comparison of  $\sum \Delta$  Modulator Topologies with a 10mS 0-5V Ramp Input

### **IC IMPLEMENTATION**



#### LOW POWER COMPARATOR DESIGN



#### **CHIP LAYOUT**



### **CHIP MICROGRAPHS**



 Comparator

 10pF

 Capacitor

 1 MΩ

 Resistor

 50 kΩ

 Resistor

Micrograph of Entire Chip Area = 1.5 mm<sup>2</sup> Proposed Modulator in Green Micrograph of Proposed Modulator Area in View ≈ 400 µm<sup>2</sup>

#### **TEST SET-UP**



"Dead-bug" Test Set-up





#### **MEASURED DC TEST RESULTS**





Significant filtering was used to make the output nearly static. DNL was calculated by dividing the measured incremental change by the ideal incremental change between data points.

#### **MEASURED AC TEST RESULTS**



#### Harmonic Distortion (dB Below Fundamental)

Result measured using 8-bit oscilloscope FFT function. This limits SNR to around 50 dB.



**Digital Output Viewed on Spectrum Analyzer** 

Unfiltered digital output with 1kHz sine input. The spuriae free dynamic range is 50dB. The noise shaping is clearly visible.

#### **COMPARISONS TO OTHER WORKS**

| Parameter            | 2 <sup>nd</sup> Order<br>Passive ∑-∆<br>Modulator in<br>This Work<br>(Measured) | 2 <sup>nd</sup> Order Active<br>∑-∆ Modulator<br>in [5]<br>(Simulated) | 2 <sup>nd</sup> Order<br>Passive∑-∆<br>Modulator in<br>[2]<br>(Simulated) |
|----------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Process              | 500 nm                                                                          | 350 nm                                                                 | 350 nm                                                                    |
| Resolution<br>(ENOB) | 8-bit                                                                           | 12-bit                                                                 | 10-bit                                                                    |
| Power<br>Consumption | 100µW (typical)<br>@5V VCC                                                      | 120 μW<br>@2V VCC                                                      | 50 μW<br>@3.3V VCC                                                        |
| Signal<br>Bandwidth  | 5 kHz                                                                           | 1 kHz                                                                  | 4 kHz                                                                     |
| Clock Frequency      | 10 MHz                                                                          | 320 kHz                                                                | 1 MHz                                                                     |

[2] Guessab, S., P. Benabes, and R. Kielbasa. "Passive Delta-Sigma Modulator for Low-Power Applications," *MWSCAS '04*. (2004): 295-298.

[5] Gundel, Adnan, and Carr, William N. "A Micro Power Sigma-Delta A/D Converter in 0.35µm CMOS for Low Frequency Applications," *LISAT 2007*. (2007): 1-7.

#### SWITCHED CAPACITOR VERSION





Switched capacitor resistors reduce layout area.

#### **BLOCK DIAGRAM**



# DESIGN OF NON-OVERLAPPING CLOCK GENERATOR



#### SWITCHED CAPACITOR FILTER



#### **Transmission Gates Used as Switches**

- NMOS and PMOS devices are minimum size
- $W/_L = \frac{1.8u}{0.6u}$

#### **Design is Parasitic Sensitive**

- Slight gain error introduced
- Trade off for lower power

# FABRICATED CHIP IN 500 NM C5 PROCESS



**Proposed**  $\Sigma$ **-** $\Delta$  **Modulator** 

Chips were fabricated with the MOSIS service.

#### **TEST SET-UP**



### **TEST RESULTS**



For each test point filter bandwidth was set to 6X input frequency.

Clock frequency was adjusted to maintain the same OSR.

#### **COMPARISON TO OTHER WORKS**

| Parameter         | Proposed 2 <sup>nd</sup> -Order SC ∑-<br>∆ Modulator<br>(this work) | 2 <sup>nd</sup> -Order SC ∑-<br>∆ Modulator in<br>[4] | 3 <sup>rd</sup> -Order<br>SC ∑-∆ Modulator in<br>[5] |
|-------------------|---------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|
| Process           | 500 nm                                                              | 90 nm                                                 | 130 nm                                               |
| Resolution (ENOB) | 9.3 bits                                                            | 10.48 bits                                            | 12.3 bits                                            |
| Signal Bandwidth  | 3 KHz                                                               | 10 KHz                                                | 20 KHz                                               |
| Clock Frequency   | 1.024 MHz                                                           | 1.28 MHz                                              | 3.2 MHz                                              |
| Power Consumption | 6.75 μW @ 2.5 V                                                     | 17.14 µW @ 1 V                                        | 63 μW @ 0.4 V                                        |
| FOM               | 1.78 pJ/step                                                        | 0.60 pJ/step                                          | 0.31 pJ/step                                         |

[4] Hsu, C. H., Tang, K. T., "A 1V Low Power Second-Order Delta-Sigma Modulator for Biomedical Signal Application," Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE, pp.2008-2011,, July 2013

[5] Yoon, Y., Choi, D., Roh, J., " A 0.4-V 63-μW 76.1-dB SNDR 20-kHz Bandwidth Delta-Sigma Modulator Using a Hybrid Switching Integrator," *IEEE Journal of Solid-State Circuits, vol. no.*99, *pp.*1-12

#### **K-DELTA-1-SIGMA MODULATOR**

#### New Sigma-Delta Modulator Topology

- First proposed in 2008
- IC implementations used active integrators

#### Sampling Rate > Clock Frequency

• Multiple phase shifted clocks are used to increase effective sampling rate.

#### Passive KD1S

 Passive KD1S modulators are well suited for highspeed applications.

#### CONCEPTUAL KD1S MODULATOR



Vin R Vint Q1 Q1 VCM Kf<sub>clk</sub>

Equivalent to a sigma-delta modulator clocked K times higher.

#### **CLOCK PHASES**



#### **BLOCK DIAGRAM**







#### **DELAY UNITS**



#### **REGISTERS AND BUFFERS**



8-bit Register

Register is needed to reclock and resynchronize data for further processing.

#### **KD1S MODULATOR**



#### LAYOUT IN ELECTRIC VLSI



#### **PREAMPED-COMPARATOR**



#### **MEASUREMENT RESULTS**



**ENOB** is derived from SNDR measurements.

#### **SCOPE TRACES**



#### CONCLUSION

#### Good topology for older CMOS processes

Topology well-suited for low-power applications

Proposed topology should scale well to nm CMOS processes Passive KD1S shows promise for future high-speed ADCs

#### **PUBLICATIONS FROM THIS WORK**

Roy, A. and Baker, R. J., <u>"A Passive 2nd-Order Sigma-Delta Modulator for Low-</u> <u>Power Analog-to-Digital Conversion"</u> *IEEE* 57<sup>th</sup> Midwest Symposium on Circuits and Systems 2014

Roy, A., Meza, M., Yurgelon, J. and Baker, R.J. <u>"An FPGA Based Passive K-Delta-1-Sigma Modulator"</u> IEEE 58<sup>th</sup> Midwest Symposium on Circuits and Systems 2015

Roy, A. and Baker, R. J., <u>"A Low-Power Switched-Capacitor Passive Sigma-Delta</u> <u>Modulator"</u> *IEEE Dallas Circuits and Systems 2015*