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Abstract— In this paper, the receiver performance of Alam-
outi coded orthogonal frequency division multiplexing (OFDM)
systems is analyzed. When the channel is not constant during
the period of Alamouti codeword transmission, the conventional
linear maximum likelihood (ML) receiver suffers from perfor-
mance degradation. We use three different receiver combining
methods and study the error performance. The sensitivity of
different receivers is investigated by varying the correlation
coefficient. Our results can be easily extended to be applicable
to other block coded OFDM schemes with different antenna
configurations. The performance loss in linear ML receiver can
be partially improved by employing a decision-feedback strategy.
In the decision feedback steps preliminary decisions are used to
subtract the intercodeword coupling. However this increases the
computational complexity of the receiver.

I. INTRODUCTION

Transmit diversity assisted space time block coded (STBC)
orthogonal frequency division multiplexing (OFDM) systems
improve the error performance in fading channels [1]. The
popular Alamouti scheme and numerous other STBCs for
different antenna configurations are reported previously [2], [3]
and can be used in combination with transmit diversity OFDM
[4]-[10]. In OFDM the Alamouti code can be applied along
the symbols/time (STBC-OFDM) or subcarriers/frequency
(SFBC-OFDM) [6], [7]. In both techniques the Alamouti
scheme reduces the dimensionality of the complex maximum
likelihood (ML) decoding problem by decoupling the symbols
transmitted from different antennas. However in STBC-OFDM
this receiver is optimum only when the channel remains time
invariant during the OFDM codeword transmission period [4],
[5]. In the SFBC-OFDM linear ML detector, the adjacent
subcarrier channel coefficients must be equal for the decision
variables to be decoupled.

The existing literature describing STBC single-carrier and
STBC-OFDM systems usually assume a quasi-static block
fading scenario where the optimal condition holds. However
in practical channels this is seldom satisfied. Hence recent
publications have analyzed the time varying channel effects
on Alamouti STBC for single-carrier [11] and OFDM systems
[9], [12]. In single-carrier systems depending on the channel
coefficients used for linear combining, a possible loss in
diversity order and spatial intercodeword coupling degrade the
performance. Hence the authors of [11] proposed three novel
receivers based on zero-forcing (ZF), an optimum joint ML

and decision-feedback (DF) strategies to reduce the perfor-
mance degradation.

OFDM transforms the broadband frequency selective chan-
nel required for high speed data transmission onto a set of
frequency flat subchannels. By using a cyclic prefix it elimi-
nates the intersymbol interference which is a problem in high
rate single carrier systems. However in time varying channels,
STBC-OFDM can suffer heavily due to its relatively longer
symbol duration compared to single-carrier systems [9]. In
addition to intercodeword coupling, inter-carrier interference
(ICI) can further reduce the performance of STBC-OFDM over
highly time varying channels [12]. If the channel variations
within one OFDM symbol period are not negligible, ICI is
introduced for the demodulated subcarriers. Similar drawbacks
occur in SFBC-OFDM systems. In some applications the
total number of subcarriers N is limited and the channel
delay spread governs the frequency domain channel correlation
among the subcarriers [7]. Hence in practice for SFBC-OFDM,
the adjacent subcarrier frequency domain channel coefficients
deviate from the idealistic assumption.

In this paper we investigate the performance degradation
of STBC-OFDM in non quasi-static Rayleigh channels using
different receiver combining schemes. Besides the conven-
tional Alamouti linear ML receiver, two types of receivers
are used. The first receiver guarantees the maximum diversity
however suffers from intercodeword coupling. The second
receiver completely decouples the decision variables but has
a low diversity order due to the non quasi-static fading
conditions. The channel is modeled as a first order auto-
regressive (AR) process [13]. The covariance coefficient ρ is
an indicator of the time-varying channel characteristics. By
varying ρ we investigate the resulting performance loss and the
sensitivity of the different receivers. Simulation results confirm
the degradation in all three receivers. Surprisingly the receiver
capable of decoupling the decision variables performs similar
to the linear ML receiver in quasi static conditions amidst
reduced diversity order. The theoretical lower bound for the
symbol error rate (SER) is derived in the case of M-QAM
modulated STBC-OFDM. We also examine the performance
of a decision feedback detection to mitigate the intercodeword
coupling effects present in the linear ML receiver.

The rest of the paper is organized as follows. In Section
II we introduce the time-varying channel and the Alamouti
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Fig. 1. Block digram of an STBC-OFDM system model.

coded OFDM model. Performance of the different receivers
is discussed in Sections III and IV and the decision feedback
scheme is explained. Simulation results appear in Section V
and some conclusions are drawn in Section VI.

II. ALAMOUTI CODED STBC-OFDM MODEL

In this Section we describe the Alamouti STBC-OFDM
system and the channel model. Fig. 1 shows a basic block dia-
gram of an STBC-OFDM system. Consider the combination of
Alamouti STBC and OFDM with nT = 2 transmit and nR = 1
receive antennas. At the transmitter data bits are mapped onto
a modulation alphabet X (For 4-QAM, X ∈ (±1±j), followed
by Alamouti coding. These information values are multiplexed
to the two antennas. In the OFDM block instant (2i), X1,k and
X2,k are mapped to the k-th subcarrier to be transmitted from
antenna 1 and 2. Next at block instant (2i + 1), −X∗

2,k and
X∗

1,k are mapped to the k-th subcarrier to be transmitted from
antenna 1 and 2. The transmitted STBC-OFDM symbols are
given by (

X1

X2

)
→
(

X1 −X∗
2

X2 X∗
1

) → time
↓ space

(1)

where Xi = [Xi,0,Xi,1, ...,Xi,(N−1)] is the transmit OFDM
symbol from ith antenna (i = 1, 2) and (·)∗ denotes the
complex conjugate. In a block fading channel this system
experiences second order diversity on a subcarrier basis.
Following Alamouti mapping an inverse discrete Fourier trans-
form (IDFT) is applied on X1 and X2 to obtain the discrete
time domain signals, a cyclic prefix greater than the channel
memory is appended and transmitted to the channel using the
two antennas. The total signal power dissipated from the two
antennas is unity.

A. Time Varying Channel

We model the time selectivity of the channel by a first order
AR process [13]. The AR process is sufficiently accurate in
modeling typical Rayleigh time selective channels encountered
in mobile propagation conditions [11]. Hence the fading
samples are given by

hi(n) = ρhi(n − 1) + vi(n), i = 1, 2 (2)

where ρ is the correlation coefficient for hi(n) and hi(n− 1)
and the noise vi(n) is a zero mean and variance σ2

v complex

Gaussian process. We assume that hi(n) is zero mean and
normalized complex Gaussian.

ρ = E{hi(n)h∗
i (n − 1)} (3)

σ2
v = 1 − |ρ|2

In (3) E{·} is the expectation operator. For typical time
selective mobile channels ρ is [14]

ρ = J0(2πfdTs) (4)

where J0(·) is the zeroth-order Bessel function, fd is the
maximum Doppler spread and Ts is the OFDM symbol dura-
tion. Furthermore we assume that our time-varying channel is
constant during a single OFDM symbol duration. Hence the
possible ICI among the demodulated subcarriers is neglected
and our focus is only on the time-selective degradation effects
at the output of the Alamouti combiner. The two channel
paths are identically distributed and spatially independent.
Symmetric correlation conditions are assumed with E{h1(n−
1)h1(n)} = E{h2(n − 1)h2(n)} = ρ. In the following the
time evolution of the channel during OFDM symbol (2i) and
(2i + 1) will be denoted Ht and Ht+1 respectively.

III. PERFORMANCE ANALYSIS OF LINEAR ML RECEIVER

In this Section we analyze the performance of the conven-
tional Alamouti STBC-OFDM receiver in the time varying
channel described earlier. At the receiver, the knowledge of
perfect channel state information and synchronization error
free conditions are assumed.

The received time domain signals after discarding the cyclic
prefix are passed through an N -point DFT operation to obtain
the k-th subcarrier values for symbol period (2i) and (2i +
1). After DFT processing the k-th subcarrier received signals
Y t(k) and Y t+1(k) are given by

Y t(k) = Ht
1(k)X1(k) + Ht

2(k)X2(k) (5)

Y t+1(k) = −Ht+1
1 (k)X∗

2 (k) + Ht+1
2 (k)X∗

1 (k) (6)

Consider the case where decision variables must be for-
mulated for conventional linear ML decoding [2]. For this
Y t(k), Y t+1(k) are combined with the pairs [H∗

1 (k),H2(k)]



and [H∗
2 (k),−H1(k)] to obtain the decision variables X̂1, X̂2

respectively.

X̂1 = (|Ht
1|2 + ρ|Ht

2|2 + Ht
2v

t
2)X1 (7)

+ (1 − ρ∗)Ht
2H

∗t
1 X2 − Ht

2v
∗t
1 X2

+ N tH∗t
1 + N∗t+1Ht

2

and

X̂2 = (|Ht
2|2 + ρ|Ht

1|2 + Ht
1v

t
1)X2 (8)

+ (1 − ρ∗)H∗t
2 Ht

1X2 − Ht
1v

∗t
2 X2

+ N tH∗t
2 − N∗t+1Ht

1

where W denotes the complex zero mean and variance σ2
N

circularly symmetric additive white Gaussian noise (AWGN)
component, W � CN (0, σ2

W ). If ρ = 1 X̂1, X̂2 reduce to
assumed expressions in previous literature. Eqs. (7) and (8)
show the impact of channel not remaining constant during the
period of the Alamouti codeword transmission. At the com-
biner output the decision variables are no longer orthogonal
and inter codeword coupling effects are introduced for X1 and
X2.

The STBC-OFDM theoretical SER lower bound in the dual
transmit single receive antenna channel can be calculated by
averaging the fading statistics over the AWGN SER expres-
sion. The channel is assumed to be block fading. The SNR
after combining γ = (|H1,k|2 + |H2,k|2σ2

X)/(nT σ2
W ) is a χ2

distributed random variable with 4 degrees of freedom. Hence
the averaged SER PE is given by PE =

∫∞
0

PM (γ)Pγ(γ) dγ.
The SER for M-QAM modulation PM (γ) is [15]

PM (γ) = 2a × erfc

(√
γ

b

)
− a2 × erfc2

(√
γ

b

)
(9)

where a = 4(1 − 1/
√

M), b = 2(M − 1)/(3 log2 M) and
the complementary error function erfc(x) = 2/

√
π
∫∞

x
e−t2dt.

The first integral I1 to calculate PE can be solved using
integration by parts method and an integral result of [16,
(2.8.5-6)].

I1 =
2a

γ̄2

∫ ∞

0

γ erfc

(√
γ

b

)
exp

(
−γ

γ̄

)
dγ (10)

= 2a − 3a

√
γ̄

b
2F1

(
1
2
,
5
2
;
3
2
;− γ̄

b

)
where 2F1(x1, x2;x3;x4) is the Gauss hypergeometric func-
tion [17] defined by

2F1(x1, x2;x3;x4) =
∞∑

n=0

(x1)n(x2)n

(x3)nn!
xn

4 (11)

and (x)n = x(x+1)...(x+n−1) is the Pochhammer symbol.
Similarly the second integral I2 can be evaluated by

I2 =
a2

γ̄2

∫ ∞

0

γ erfc2

(√
γ

b

)
exp

(
−γ

γ̄

)
dγ (12)

= − γ̄β3/2

2b
+

2γ̄β2

πb
2F1

(
1
2
, 2;

3
2
;−β

)

− γ̄2β1/2

b2
+

2γ̄2β

πb2 2F1

(
1
2
, 1;

3
2
;−β

)

where β = 1/(1 + b
γ̄ ). Finally the total average SER PE in

the static case is given by PE = I1 + I2. Finally the total
SER is obtained by averaging PE for all N subcarriers. When
the channel is non-quasi static it is difficult to analysis the
performance for this detector. Instead we have resorted to
computer simulations.

IV. DIFFERENT COMBINING SCHEMES

Instead of using the channel coefficients used in the
previous Section if we combine the received signals of
Y t(k) and Y t+1(k) with the pairs of H∗t

1 (k),Ht+1
2 (k) and

H∗t
2 (k),−Ht+1

1 (k) we get

X̂1 = (|Ht
1|2 + |Ht+1

2 |2)X1 (13)

+ (1 − ρ∗)Ht
2H

∗t
1 X2 − Ht

2v
∗t
1 X2

+ N tH∗t
1 + N∗t+1Ht

2

and

X̂2 = (|Ht+1
1 |2 + |Ht

2|2)X2 (14)

+ (1 − ρ∗)H∗t
2 Ht

1X2 − Ht
1v

∗t
2 X1

+ N tH∗t
2 − N∗t+1Ht

1

Note that this receiver can achieve the available full diversity
order of two amidst intercodeword coupling. The performance
of this receiver depends on the intercodeword coupling. As ex-
pected when ρ = 1 the intercodeword interference disappears.
The instantaneous effective SNR γi for X̂1 is

γi =
(|H1|2 + |H̃2|2)σ2

X/2σ2
W( |H2H∗

1−H̃2H̃∗
1 |2

|H1|2+|H̃2|2
)

σ2
X/2σ2

W + 1
(15)

Let us defined two random variables x = (|H1|2+ |H̃2|)/2σ2
W

and y = |H2H∗
1−H̃2H̃∗

1 |2
|H1|2+|H̃2|2 . y is distributed as y � (1 − ρ2)u1

where u1 is a χ2 distribution of 2 degrees of freedom. Hence
we can write the approximate SER as

PS,E =Ey

(
Ex

(
2a × erfc

(√
x

b(y + 1)

)
(16)

− a2 × erfc2

(√
x

b(y + 1)

)))

where the double expectation in (16) is with respect to the
variables x and y. Since we have defined the pdfs of x and y,
PE is analytically completed. On the other hand if one assumes
the spatial interference is approximately Gaussian distributed
a simple SER expression can be derived.

Finally one can use the intercodeword coupling free ZF
combiner of [11]. For this system the decision variables at
the output of the combiner is

X̂1 = (Ht
1H

∗t+1
1 + Ht

2H
∗t+1
2 )X1 (17)

+ N tH∗t+1
1 + N∗t+1Ht

2

and

X̂2 = (H∗t+1
1 Ht

1 + Ht
2H

∗t+1
2 )X2 (18)

+ N tH∗t+1
2 − N∗t+1Ht

1



The error performance of this receiver for the general case of
ρ has been studied in [11].

A. Decision Feedback Detection

The above analysis showed that in fast fading, the con-
ventional Alamouti ML and the maximum diversity receiver
performance is reduced by intercodeword coupling. Hence to
improve the SER in both the receivers, we investigated the
possibility of DF detection. The idea is to first detect a symbol
and then use this tentatively decided symbol to subtract out
the interference from the other decision variable. Note that
this can be implemented recursively. This is summarized as
follows assuming X1 is detected initially.

1) Estimate X̂1 using (7) or (13).
2) Cancel the contribution of X1 from (8) or

(14) using the estimated X̂1. Estimate X̂2.
3) Cancel the contribution of X2 from (7) or

(13) using the estimated X̂2. Estimate X̂1.
4) Repeat steps (2) and (3) if necessary.

Note that in the case of a maximum diversity receiver, if
the initially estimated X̂1 is correct then we can achieve the
optimum performance for X2 (i.e., static Alamouti condition
of ρ = 1). Using different combining coefficients several
variations of this DF scheme are also possible. For example,
one can initially use the interference free ZF detector of [11] to
estimate X̂1 and then to use the maximum diversity combiner
to detect X̂2 canceling out the contribution of X1.

A lower bound on the performance of maximum diversity
receiver with DF detection can be derived by following the
same arguments in [11]. The approximate average SER of this
detector is given by

P̃E =
1
2
P1 +

1
2
P2 (19)

where P1, P2 denote the probability of erroneous detection for
X1 and X2 respectively [11]. Pi = Pr(X̂i �= Xi) and P̃E is
lower bounded by

P̃E >
1
2
PS,E +

1
2
PE (20)

In (20) we have assumed that X1 is almost correctly detected
and that when its contribution is canceled, the decision variable
for X2 appears to be similar to the non-static scenario.

V. SIMULATION RESULTS

Matlab simulations were performed to study the SER per-
formance of the previously described detection methods. The
number of subcarriers is N = 64 and 16-QAM modulation
was used. For comparison we have also presented the results
for the perfect block fading scenario. E{|N |2} = N0 and a
cyclic prefix length of 3 was assumed.

Figs. 2-4 show the SER against Eb/N0 for different ρ
using the three different combining methods namely the linear
ML Alamouti combiner, receiver-A and receiver-B. In Figs.
2-3 SER results for the linear ML and receiver-A show
premature error floors due to the non block fading nature of the
considered channel. Also the performance degradation in SER
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Fig. 2. SER against Eb/N0 performance for the linear ML receiver.
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Fig. 3. SER against Eb/N0 performance for the receiver-A.

is significant even for ρ ≈ 1. The conventional receiver and
receiver-A exhibits a very similar error performance. However
surprisingly receiver-A has a slightly higher degradation than
the conventional Alamouti receiver. Note that the receiver-A
has the maximum diversity order out of all three receivers. As
seen from Fig. 4 the performance of receiver-B is very much
better than the previous two receivers. Note that the simulated
values of ρ are also higher than the previous cases. No error
floor can be observed.

In time varying fading conditions, the channel estimation
process is challenging and the accuracy of this heavily im-
pacts the performance. Hence in practical systems further
SER degradation must be expected. The maximum diversity
receivers-A and B assume correct channel coefficients ob-
tained at the two Alamouti codeword symbol periods. When
the channel is fast time varying this assumption is not realistic.
Fig. 5 shows the SER performance of the DF approach for
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Fig. 4. SER against Eb/N0 performance for the receiver-B.

the linear ML combiner using an iteration step of one. when
formulating the intercodeword coupling term to be subtracted
from the decision variables, we have only assumed the knowl-
edge of Ht

1(k) and Ht
2(k) for practical reasons explained

earlier. This introduces a residual component of intercodeword
coupling. Simulation results for the DF detector are more ac-
curate because they consider the occasional error in feedback.
These results exhibit an improvement over same in Fig. 2,
however the receiver complexity is also increased. Simulation
results indicated a greater performance improvement for higher
values of ρ. For small ρ the initial detection values of X̂1

and X̂2 are unreliable hence the improvement after decision
feedback becomes marginal.

VI. CONCLUSIONS

In this paper the performance Alamouti coded OFDM
receivers in Rayleigh time varying channels was studied. The
time varying nature of the channel results in a significant
performance loss. Simulation results showed that the maxi-
mum diversity combiner has a high sensitivity to time varying
effects of the channel among all the receivers investigated. We
also considered a DF approach to mitigate the intercodeword
coupling effects in the conventional Alamouti detector. The
performance improvement in the decision feedback receiver
is significant in near quasi-static (ρ ≈ 1) channels. However
simulations indicated that for highly time varying channels the
performance improvement in SER is marginal.
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