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Abstract— We investigate the impact of players with hetero-
geneous update rules on the long-term behavior of a population
under stochastic learning dynamics. We show that under certain
conditions, the presence of even a single heterogeneous player
with a different decision making strategy can significantly
alter the long-term behavior of the entire population. To
quantify the impact of a heterogeneous player, we define a new
notion of robustness of stochastic learning dynamics to player
heterogeneity. Based on our proposed notion, an action profile
that is stochastically stable under the standard setup is robust to
player heterogeneity if it can still explain the long-run behavior
of all the players other than the heterogeneous players. We
consider two types of heterogeneous players: A confused player
who randomly updates his actions and a stubborn player who
never updates his action. For each of these types, we present a
qualitative description of scenarios in which an action profile
that is stochastically stable under the standard setup is not
robust to the presence of a heterogeneous player of a particular
type.

I. INTRODUCTION

In the theory of learning in games, the objective is to
understand the interactions among rational decision makers
and how such interactions may or may not lead to the
emergence of an equilibrium behavior in the long run.
Stochastic learning dynamics is a class of learning dynamics
in which agents are assumed to have bounded rationality.
The standard setup in these dynamics comprises a large
population of players in which each player updates his action
according to some version of noisy best/better response to
the actions of other players. Some important examples of
stochastic learning dynamics are Log-Linear Learning (LLL),
Adaptive play, and Metropolis learning (see e.g., [1], [2], [3],
[4], [5], and [6] and the references therein).

A fundamental assumption in the existing stochastic learn-
ing dynamics is that the players are homogeneous, i.e., all the
players have the same strategy for updating their actions. In
practical scenarios particularly involving large populations
of independent decision makers, this assumption may be
overly restrictive. Even though bounded rationality enables
us to model a certain level of noise in decision making,
there can exist players whose update strategy cannot be
approximated by noisy best/better response dynamics. Such
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players introduce heterogeneity of decision making rules,
which is not considered in the standard setup.

Analyzing the long-term behavior of stochastic learning
dynamics has been an active area of research for a long time.
However, stochastic learning dynamics with heterogeneous
players has not received significant research attention. We
argue that the analysis of stochastic learning dynamics in
games with heterogeneous players requires serious research
attention by showing that the presence of even a single
heterogeneous player can significantly alter the long-term
behavior of a large population of players under certain condi-
tions. Recent literature on network dynamics with heteroge-
neous players like [7], [8], [9], and [10] is closely related to
the problem under investigation. However, the focus of this
literature has been on opinion and consensus dynamics in
the presence of heterogeneous players. We propose a formal
analysis framework to analyze the possible impacts of player
heterogeneity on the long-run behavior of a population of
players under a general class of stochastic learning dynamics
in games.

To quantify the impact of heterogeneous players, our pri-
mary contribution is to introduce a new notion of robustness
to player heterogeneity. In particular, we consider two types
of heterogeneous players: a confused player and a stubborn
player. In our model, given the opportunity to update their
actions, a confused player updates his action uniformly at
random and a stubborn player never updates his action. For
each of these heterogeneous player types, we analyze the
robustness of stochastic learning dynamics based on our
proposed notion of robustness to heterogeneity.

Starting from the standard setup, we assume that a single
player, say player h, is replaced with a heterogeneous player
of a particular type. We define that an action profile that
was stochastically stable under the standard setup is robust
to player heterogeneity of that type with respect to player
h if the replacement of player h with a heterogeneous
player cannot impact the long-run behavior of the rest of
the population. Thus, if an action profile is stochastically
stable under the standard setup, it is still a valid description
of the long-run behavior of the population even if player
h is replaced with a heterogeneous player. A stochastically
stable action profile is robust to player heterogeneity of a
particular type if it is robust with respect to all the players.
Finally, a stochastic learning dynamics is robust to player
heterogeneity if all the stochastically stable action profiles
under the standard setup are robust to player heterogeneity.

After defining robustness of stochastic learning dynamics
to player heterogeneity, we analyze the impact of having



a confused player or a stubborn player in the population.
We derive conditions in which a stochastically stable action
profile under the standard setup will not be robust to player
heterogeneity of a particular type. In the case of a confused
player, we also analyze conditions in which an action profile
that was not stochastically stable under the standard setup
will become stochastically stable under the heterogeneous
setup. Our robustness analysis is based on the radius and
coradius based analysis that was originally presented in [11],
and later generalized in [4] for a class of stochastic learning
dynamics.

II. BACKGROUND

We denote the cardinality of a set S by |S|. The distance
between two vectors x and y in Rn is

dH(x, y) = |{j | xj 6= yj}|. (1)

Here dH(x, y) is the Hamming distance between x and y.
Let X0 be an unperturbed Markov chain defined over a

state space S and let P0 be the transition matrix for X0.
Suppose that X0 is perturbed and let Xε be a family of
perturbed Markov chains with transition matrix Pε where
ε is a sufficiently small number. The perturbed chain Xε is
called a regular perturbation of X0 if it satisfies the following
properties:
• Pε is ergodic when ε is sufficiently small,
• lim
ε→0

Pε(x, y) = P0(x, y) for any state pair x and y in
S, and

• There exists a function R(x, y) such that if Pε(x, y) > 0
for some ε > 0 then

0 < lim
ε→0

Pε(x, y)

εR(x,y)
<∞.

Here R(x, y) is called the resistance in transition from
x to y.

Let πε be the unique stationary distribution for a regularly
perturbed Markov chain Xε that is ergodic and reversible. A
state x ∈ S is stochastically stable for Xε if

lim
ε→0

πε(x) > 0.

Thus, a state is stochastically stable if it has a non-zero
probability in the stationary distribution in the limit as ε→ 0.

For any state pair x and y in S, a path ωx,y is a sequence
of states (ω0, ω1, . . . , ωk) such that ω0 = x, ωk = y, ωi ∈
S, ωi 6= ωj for any i and j, and P (ωi, ωi+1) > 0 for all
i ∈ {0, 1, . . . , k − 1}. We denote the length of the path by
|ωx,y|. We say that ωx,y ∈ A for any A ⊂ S if ωi ∈ A for
all i ∈ {0, 1, . . . , k}. Let Ω(x, y) be the set of all the paths
between the states x and y. State y is reachable from state
x (x → y) if Ω(x, y) is nonempty. Moreover, states x and
y can communicate with each other (x↔ y) if Ω(x, y) and
Ω(y, x) are both nonempty. For any two subsets A and B of
S, we define Ω(A,B) as the set of all paths from states in
A to some state in B

Ω(A,B) =
⋃

x∈A, y∈B
Ω(x, y).

A set A is connected if x↔ y for all x and y in A.
The resistance of a path ω = (ω0, ω1, . . . , ωk) is

R(ω) =

k−1∑
i=0

R(ωi, ωi+1).

For a state pair (x, y) such that y /∈ N (x), the resistance
from x to y is

RΩ(x, y) = min
ω∈Ω(x,y)

R(ω).

A. Game Formulation

Let Np = {1, 2, . . . , n} be the set of players, Ai =
{1, 2, . . . ,mi} be the set of actions of player i, and A =
A1 × A2 × · · · × An be the set of joint action profiles.
We will represent an action profile a ∈ A as (ai, a−i),
where ai is the action of player i and a−i is the actions
of all the players other than i. The preferences of player
i over his actions is given in terms of its utility function
Ui : A → R where player i prefers action ai over a′i if
Ui(ai, a−i) > Ui(a

′
i, a−i). The best response set of player i

to a−i is

Bi(a−i) = {ai | Ui(ai, a−i) ≥ Ui(a′i, a−i) for all a′i ∈ Ai}.

An action profile a∗ is a Nash Equilibrium (NE) if and
only if a∗i ∈ Bi(a∗−i) for every player i, i.e., each player is
playing a best response to the actions of other players. We
define the neighborhood of an action profile a as follows:

N (a) = {a′ ∈ A | dH(a, a′) ≤ 1}.

The neighborhood of a with respect to player i is

N (a, i) = {a′ ∈ A | a′i ∈ Ai and a′−i = a−i}. (2)

A game is an exact potential game if there exists a potential
function φ : A → R such that

Ui(ai, a−i)− Ui(a′i, a−i) = φ(ai, a−i)− φ(a′i, a−i).

Let ω = (ω0, ω1, . . . , ωk) be a path from action profile a to
a′. We define the resistance contribution of player h in ω as

R(ω, h) =
∑

j∈Ih(ω)

R(ωj , ωj+1), (3)

where

Ih(ω) = {j | ωj = (ah, a−h) and ωj+1 = (a′h, a−h)}.

Thus, Ih(ω) is a set of the indices in the path ω at which
player h updates his action.

B. Stochastic Learning Dynamics

Stochastic learning dynamics is a class of learning dy-
namics in which at each time step, players play best or
better response to the actions of other players with a high
probability. However, with a low but non-zero probability,
the players explore the action space by playing an action that
may not improve their utility. In this work, we will consider
Log-Linear Learning (LLL) as a representative of stochastic



learning dynamics (see [3] and [6] for details). The resistance
between two action profiles a and a′ under LLL is

RLLL(a, a′) =

{
Ui(a

∗
i , a−i)− Ui(a′) a′i 6= ai, a

′
−i = a−i

∞ Otherwise
(4)

where a∗i ∈ Bi(a−i). It is well established (see e.g. [4]) that
for a potential game, XLLL is ergodic and reversible with
Gibbs distribution as stationary distribution, i.e.,

πLLL(a) =
1

Z
e

1
T φ(a), where Z =

∑
y∈A

e
1
T φ(y).

is the normalizing constant and T is the noise parameter.

1) Radius-Coradius based analysis of stochastic learning
dynamics: The radius-coradius based analysis was originally
presented in [11] for learning dynamics with mistake model.
In the mistake model, the players play best response to the
actions of others with a high probability 1 − ε. However,
with a small probability ε, the updating player makes a
mistake typically by choosing an action uniformly at random
from his action set. In [4], the radius-coradius analysis was
extended to a class of learning dynamics in which magnitude
of mistakes (loss of utility) was also considered. Our analysis
in this work will be based on the results of [4]. We start by
defining three fundamental terms required for this analysis
from [4].

Definition 2.1: Let X be a Markov chain defined over the
set S.
• The basin of attraction of a state x is BA(x), where

BA(x) = {y ∈ S | R(ω) = 0 for some ω ∈ Ω(y, x)}.

The complement of BA(x) is BAc(x), i.e., BAc(x) =
S\BA(x).

• The recurrent class of a state x is L(x) where

L(x) = {y ∈ S | y ∈ BA(x) and x ∈ BA(y)}.

• The radius of a state x is Rd(x) and is defined as
follows:

Rd(x) = min{RΩ(x, y) | y ∈ BAc(x)}. (5)

• The coradius of a state x is CR(x) and is defined as
follows:

CR(x) = max{RΩ(y, x) | y ∈ BAc(x)}. (6)
Thus, the radius of a state represents how easy it is to leave
that state, and the coradius of a state represents how difficult
it is to reach that state starting from any other state in S.
The recurrent class of state x is the set of all states y such
that x↔ y and RΩ(x, y) = RΩ(y, x) = 0. For a set A ⊂ S
such that there exist zero resistance paths between any two
states x and y in A, the radius and coradius can be defined
as follows:

Rd(A) = min{Rd(x) for all x ∈ A}, and
CR(A) = min{CR(x) for all x ∈ A}. (7)

Using the concepts of radius and coradius, stochastic stability
is defined in Prop. 4 in [4] as follows:

Definition 2.2: Let x be a state that satisfies Rd(x) >
CR(x). Then, all the states in L(x) are stochastically stable.

III. ROBUSTNESS TO PLAYER HETEROGENEITY

An important assumption in the standard setup for stochas-
tic learning dynamics is that all the players update their
actions based on some version of noisy better or best re-
sponse. We consider the scenario in which one of the players
updates his actions based on an update rule that is different
from the update rule employed by the rest of the players.
Having a heterogeneous player in the population raises
several interesting questions regarding the long-run behavior
of the population. In particular, can a single heterogeneous
player affect the long-run behavior of the entire population?
Are the existing techniques for analyzing stochastic learning
dynamics still feasible in the case of a population with
heterogeneous players? Most importantly, if the presence of a
heterogeneous player can impact the long-run behavior, how
to quantify and analyze its impact under stochastic learning
dynamics?

To investigate the impact of player heterogeneity on the
long-run behavior, we consider two types of heterogeneous
players.
• Confused player: Randomly updates his actions.
• Stubborn player: Never updates his action.

For each of the above types of heterogeneous players, we
establish that under certain conditions even a single hetero-
geneous player can significantly alter the long-run behavior
of the entire population under a stochastic learning dynamics.
To analyze the impact of a heterogeneous player on the long-
run behavior of the population, our first contribution is a
novel notion of robustness of stochastic learning dynamics
to player heterogeneity.

Let Ass ⊂ A be the set of stochastically stable states under
a stochastic learning dynamics if there is no heterogeneous
player. We will refer to the setup without a heterogeneous
player and with a heterogeneous player as a standard setup
and a heterogeneous setup respectively. In the heterogeneous
setup, we assume that one of the players from the stan-
dard setup is replaced with a heterogeneous player. The
heterogeneous player will either be a confused player or a
stubborn player. Next, we present our notion of robustness
of stochastic learning dynamics to player heterogeneity. In
this regard, we define three levels of robustness.

Definition 3.1: Let Ass be the set of all stochastically
stable action profiles for a stochastic learning dynamics
under the standard setup and let s ∈ Ass.
• Let player h be replaced with a heterogeneous player

of a particular type and let Ahss be the corresponding
set of stochastically stable action profiles under the
heterogeneous setup. The action profile s = (sh, s−h) is
robust to the replacement of h with a particular type of
a heterogeneous player if there exists an s′ ∈ Ahss such
that s′−h = s−h.

• The action profile s is robust to player heterogeneity of
a particular type if it is robust to the replacement of



any player with the heterogeneous player of that type
under the learning dynamics.

• The learning dynamics is robust to player heterogeneity
of a particular type if all s ∈ Ass are robust to player
heterogeneity of that type.

Thus, a stochastically stable action profile under the standard
setup is robust with respect to a type of heterogeneous player
if replacing any player h with the heterogeneous player
cannot affect the behavior of other players in the population.
To analyze the impact of a heterogeneous player on the long-
run behavior, we thoroughly investigate the two types of
heterogeneous players.

IV. CONFUSED PLAYER: RANDOM ACTION UPDATES

We begin with the case in which the heterogeneous player
h is a confused player and he randomly updates his actions
whenever he gets the opportunity. To keep the analysis
simple, we assume that for all s ∈ Ass, the equivalence class
L(s) is empty. The main results related to the addition of a
confused player are as follows:

1) Under certain conditions, s ∈ Ass is not robust to the
addition of a confused player.

2) It is possible that s is robust if some player h is
replaced with a confused player but is not robust
if some other player h′ is replaced with a confused
player.

3) It is also possible that an action profile a that was
not stochastically stable under the standard setup may
become stochastically stable after replacing a player
with a confused player.

Proposition 1: Let s ∈ Ass be a stochastically stable
action profile in the standard case. Then, s is robust to the
replacement of player h with a confused player if

Rd(L
cnf(s, h)) > CR(Lcnf(s, h)),

where
Lcnf(s, h) =

⋃
s′∈ N (s,h)

s′,

N (s, h) is the player specific neighborhood of s defined in
(2), and Rd(s, h) and CR(s, h) are radius and coradius
defined in (5) and (6).

Proof: Action profile s is not robust to the addition of a
confused player h if s−h does not comprise a stochastically
stable action profile for some action ah of the heterogeneous
player. Since a confused player randomly updates his actions,
all the transitions that involve the confused player h have
zero resistance, i.e.,

Rcnf(a, a′) =

{
0 a′ ∈ N (a, h)

R(a, a′) a′ /∈ N (a, h).

Since s is stochastically stable under the standard setup,
we know from Def. 2.2 that Rd(s) > CR(s). However, by
replacing h with a confused player, any transition from s to
any member of the set N (s, h) has zero resistance, which

Uc(c1) = 10
b1 b2 b3

a1 10 6 7
a2 6 0 0
a3 0 0 9

Uc(c1) = 5
b1 b2 b3

a1 10 0 0
a2 0 3 3
a3 0 3 3

Fig. 1. A game with three players {a, b, c}. Players a and b select the
rows and columns of the matrices and player c selects between left and
right matrix. Players a and b are identical interest with utilities given in the
matrices. The utility of c1 is 10 and c2 is 5, i.e, c1 is the dominant action
for c..

can change the radius and coradius of s−h. Therefore, for s
to be robust with respect to player h, the condition

Rd(s
′) > CR(s′)

must be satisfied for all s′ ∈ Lcnf(s, h).
We illustrate the implications of the result in Prop. 1

through an example. Consider a game with three players
Np = {a, b, c}. In the standard setup, players a and b have
identical interests, i.e., their utilities are identical for all
action profiles. For player c, action c1 strictly dominates c2.
Thus, the game has two pure NE in the standard setup, which
are (a1, b1, c1) and (a3, b3, c1). To check for stochastically
stable states, we need to compute radius and coradius for
both of the NE. The basin of attraction of the NE (a1, b1, c1)
contains all the states except (a3, b3, c1). The minimum
resistance path from (a1, b1, c1) to BAc((a1, b1, c1)) is

ω = ((a1, b1, c1), (a1, b3, c1), (a3, b3, c1)). (8)

The minimum resistance path entering BA((a1, b1, c1)) from
outside is ((a3, b3, c1), (a1, b3, c1)). Therefore,

Rd((a1, b1, c1)) = 3 and CR((a1, b1, c1)) = 2.

Since Rd((a1, b1, c1) > CR((a1, b1, c1)), the state
(a1, b1, c1) is stochastically stable. For (a3, b3, c1),
the minimum resistance path from (a3, b3, c1) to
BAc((a3, b3, c1)) is ((a3, b3, c1), (a1, b3, c1), (a1, b1, c1)).
Moreover, the path that determines the coradius of
(a3, b3, c1) is ((a1, b1, c1), (a1, b3, c1), (a3, b3, c1)).
Therefore,

Rd((a3, b3, c1)) = 2 and CR((a3, b3, c1)) = 3,

which implies that the state (a3, b3, c1) is not stochastically
stable.

Next, we study the impact of replacing one of the players
with a confused player.
Case 1: Player c is confused.

If player c is confused, i.e., h = c, then transitions between
the entries from the left matrix to the right matrix have
resistance zero. To verify the robustness of the stochastically
stable state s = (a1, b1, c1) to the addition of c as confused
player, we apply the result of Prop. 1. We start with the set
Lcnf(s, c). The neighborhood N (s, c) has one member only,
which is (a1, b1, c2). Thus,

Lcnf(s, c) = {(a1, b1, c1), (a1, b1, c2)}.



c1
b1 b2

a1 10, 10, 10 6, 5, 3
a2 7, 5, 3 4, 5, 6

c2
b1 b2

a1 10, 2, 6 6, 5, 5
a2 7, 6, 5 8, 8, 8

Fig. 2. Matrix form representation of a three player game with Np =
{a, b, c}. Player a selects rows, player b selects columns, player c selects
left or right matrix.

To compute the radius and coradius of Lcnf(s, c), we
observe that the minimum resistance path leaving the
basin of attraction of Lcnf(s, c) is still ω in (8). Simi-
larly, the path that determines the coradius of Lcnf(s, c) is
((a3, b3, c1), (a1, b3, c1)). Therefore,

Rd(L
cnf(s, c)) = 3 and CR(Lcnf(s, c)) = 2.

Since Rd(Lcnf(s, c)) > CR(Lcnf(s, c)), the set Lcnf(s, c) is
stochastically stable and the action profile s is robust to the
replacement of player c with a confused player.
Case 2: Player b is confused.

If player b is confused, then

Lcnf(s, b) = {(a1, b1, c1), (a1, b2, c1), (a1, b3, c1)}.

In the case when player b randomly switches between his
actions, there exist zero cost paths between any two states
in the left matrix. Thus, in the long run, player c will still
be playing action c1 with high probability. However, the
behavior of player a will be different from the standard setup.
Thus, the action profile s is not robust to player heterogeneity
if player b is replaced with a confused player.

Proposition 2: Let a ∈ A be an action profile that is
not stochastically stable under the standard setup. There can
exist a player h such that replacing it with a confused player
can make Lcnf(s, h) stochastically stable.

Proof: Since a is not stochastically stable, we know
that Rd(a) ≤ CR(a). By replacing player h with a confused
player, it is straightforward to show that Rd(Lcnf(s, h))
in the heterogeneous setup cannot be greater that Rd(a)
under the standard setup. Therefore, for Lcnf(s, h) to be
stochastically stable, we need to show that it is possible to
reduce the coradius such that the radius-coradius condition
for stochastic stability is satisfied. We verify our claim
through a simple example.

Consider a three player game with each player having
two actions. The matrix form representation of the game
is given in Fig. 2. The game has two NE, which are
a∗1 = (a1, b1, c1) and a∗2 = (a2, b2, c2). We assume that
the players are updating their actions according to LLL.
The basin of attraction of a∗1 includes all the action profiles
except (a2, b2, c2) and (a1, b2, c2). The paths that determine
the Rd(a∗1) and CR(a∗1) are

ωa∗1 ,a
∗
2

= ((a1, b1, c1), (a2, b1, c1), (a2, b1, c2), (a2, b2, c2)),

ωa∗2 ,a
∗
1

= ((a2, b2, c2), (a2, b1, c2), (a1, b1, c2), (a1, b1, c1)).

Then, the radius and coradius of this NE are Rd(a∗1) =
R(ωa∗1 ,a

∗
2
) = 3 and CR(a∗1) = R(ωa∗2 ,a

∗
1
) = 2, which

implies that a∗1 is stochastically stable. For the second NE,

i.e., a∗2 = (a2, b2, c2), Rd(a∗2) = R(ωa∗2 ,a
∗
1
) = 2 and

CR(a∗2) = R(ωa∗1 ,a
∗
2
) = 3. Thus, a∗2 is not stochastically

stable.
Now suppose that player a is replaced with a confused

player, i.e., h = a. Then

Lcnf(a∗1, a) = {(a1, b1, c1), (a2, b1, c1)}

The radius of a∗1 under the heterogeneous setup is Rd(a∗1) =
0, because the transition from (a1, b1, c1) to (a2, b1, c1) now
has zero resistance and the transition from (a2, b1, c1) to
(a2, b1, c2) already had zero resistance. Therefore, the action
profile a∗1, which was stochastically stable under the standard
setup, is not robust to the randomness introduced by player
a.

For the other NE a∗2 = (a2, b2, c2)

Lcnf(a∗2, a) = {(a2, b2, c2), (a1, b2, c2)}

The radius and coradius of Lcnf(a∗2, a) under the heteroge-
neous setup are are as follows:

Rd(L
cnf(a∗2, a)) = 2, CR(Lcnf(a∗2, a)) = 0,

which implies that Lcnf(a∗2, a) will be stochastically stable
if player a is replaced with a confused player, which proves
the proposition statement.

The main takeaway from this section is that the presence
of even a single confused player can significantly alter the
long-term behavior of the entire population.

V. STUBBORN PLAYER: NO ACTION UPDATES

A stubborn player is one who selects one action from
his action set in the beginning and then sticks with it, i.e.,
he never updates his action no matter how many revision
opportunities he gets. Consequently, having a stubborn player
restricts the state space over which the Markov chain induced
by a stochastic learning dynamics evolves. Let A be the set
of joint action profiles in the standard setup. Replacing player
h with a stubborn player restricts A to Astb(h), where

Astb(h) = {a ∈ A | a = (astb, a−h) for all a−h ∈ A−h}.

Here astb is the action that the stubborn player will always
play. By replacing h with a stubborn player that only plays
astb, the resistance between action profiles is updated as
follows:

Rstb(a, a′) =

{
R(a, a′) if ah = a′h = astb

∞ Otherwise

Proposition 3: Let s = (sh, s−h) be a stochastically
stable action profile under the standard setup for a stochastic
learning dynamics. There can exist scenarios in which s will
not be robust to the replacement of some player h with a
stubborn player. Even if sh = astb, the action profile s may
not be stochastically stable under the heterogeneous setup
with a stubborn player.

Proof: To prove the statement, we present two
conditions in which s will not be robust to the addition of
a stubborn player, i.e., we will provide sufficient conditions



for (astb, s−h) to not be stochastically stable.

Condition 1: If sh 6= astb and there exists an action
profile a = (astb, a−h) such that the Hamming distance
dH(s−h, a−h) = 1, R((astb, s−h), (astb, a−h)) = 0 and
RΩ((astb, a−h), (astb, s−h)) > 0, then (astb, s−h) is not
stochastically stable. If this condition is satisfied then
(astb, s−h) cannot be stochastically stable because there will
be a zero resistance path from (astb, s−h) to a′ whereas all
the paths from a′ to (astb, s−h) will have non-zero resistance.

Condition 2: Let sh = astb, i.e., (astb, s−h) is stochasti-
cally stable in the standard setup. Even in this case, it is not
guaranteed that (astb, s−h) will be stochastically stable under
the heterogeneous setup. For the standard setup, we know
that if sh = astb, then Rd((a

stb, s−h)) > CR((astb, s−h)).
Let

H = Rd((a
stb, s−h))− CR((astb, s−h)).

However, the resistance function Rstb implies that the num-
ber of paths starting from s and leaving the basin of attraction
of (astb, s−h) is potentially reduced because any path in
which player h needs to change his action will have infinite
resistance. Let ωmin be the least resistance path from s to
BAc(astb, s−h) under the standard setup. If ωmin involves
an action profile with ah 6= astb, that path will have infinite
resistance in the heterogeneous setup. Any path other than
ωmin will have resistance higher than R(ωmin). Therefore,
it is guaranteed that in the heterogeneous setup, the radius
Rd((a

stb, s−h)) will either increase or remain the same as
under the standard setup. We define Rstb

d (s) as the difference
in radius of (astb, s−h) under the heterogeneous and the
standard setup.

For the coradius of (astb, s−h), similar arguments are
valid. Let ω be the path that determines the coradius of
(astb, s−h). If it involves any ah other than astb, the resis-
tance of the path will be infinite. Consequently, the coradius
will also increase. Let CRstb(s) be the difference in coradius
between the heterogeneous and the standard setup. If

CRstb(s)−Rstb
d (s) > H,

the action profile (astb, s−h) will not be stochastically stable
in the heterogeneous case.

Conditions 1 and 2 are not the only conditions under which
a stochastically stable profile is not robust to the addition of a
stubborn player. However, these conditions establish the fact
that a stochastically stable action profile s in the standard
setup may not be robust to the addition of a stubborn player
h even if sh = astb.

VI. CONCLUSIONS

We considered a class of stochastic learning dynamics in
games for a heterogeneous population of players in which
one of the players had a different rule for updating his ac-
tions. To analyze the impact of the heterogeneous player, we
defined a new notion of robustness to player heterogeneity.
The analysis and results presented in this work open up a new

direction of research in the well-studied area of stochastic
learning dynamics. Some interesting open problems related
to player heterogeneity are as follows:

1) One important problem is to generalize this analysis
when we have multiple heterogeneous players of dif-
ferent types in the population.

2) An exciting research problem is to compare different
stochastic learning dynamics like Log-Linear Learning,
Adaptive Play, and Metropolis Learning based on the
proposed criterion of robustness to player heterogene-
ity.

3) Another interesting problem is to analyze the impact
of underlying game structure and interaction network
topology on robustness to player heterogeneity.

4) We want to highlight here that stochastic learning
dynamics like Log-Linear Learning also have applica-
tions in various engineering applications like resource
allocation problems, sensor networks, and self re-
configurable systems as well (see e.g., [5], [12], and
[13]). If we consider the example of sensor network
coverage problem, a confused or a stubborn behavior
of a sensor will imply that the sensor is malfunctioning.
Thus, an interesting research direction is to formalize
the proposed notion of robustness for designing engi-
neering systems like sensor networks that are robust to
device failures and strategic attacks.
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