
IJRECE VOL. 5 ISSUE 3 JULY.-SEPT. 2017 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 258 | P a g e

Novel Approach of Workflow Scheduling By Convex

Optimization
Pratishtha Gautam1, Sahil Dadwal2

1M.Tech Student, Dept. of CSE, BIMT, Mehli, Shimla (H.P), India
2Assistant Professor, Dept. of CSE, BIMT, Mehli, Shimla (H.P), India

Abstract - Cloud computing use as distributed environment

for computation. Increase the efficiency of computation by

Virtual machine, But if task increase e.g. workflows, so

reducing the cost and time tradeoff. But optimization reduce

total execution and total execution cost. In this paper use

random base genetic algorithm compare with ant colony
optimization (ACO).Compare the TEC and TET.ACO

perform significance improve because of nonrandom

initialization.

Keywords - Workflow, Optimization, ACO, GA

I. INTRODUCTION

These days, Cloud computing is a developing range in

conveyed computing that convey progressively versatile

administrations on request finished the web through

virtualization of hardware and software. The greatest

favorable position of the cloud is its flexibility to rent and

discharge assets according to the client necessity. Moreover,
the cloud supplier offer two kind of plans in particular here

and now anticipate request and long haul reservation design. It

has intelligent infrastructure i.e. Transparency, Scalability,

Monitoring and Security [2]. Cloud computing can be

distributed into three service models: Software as a Service

(SaaS), Platform as a Service (PaaS), and Infrastructure as a

Service (IaaS). An organization may acquire any grouping of

these service models depending on their specific needs. These

are services are shown in Fig.1.2.

 Software as a Service (SaaS): Software as a Service, or

SaaS depicts any cloud administration where buyers can get

to programming applications over the web. The applications

are facilitated in "the cloud" and can be utilized for an

extensive variety of assignments for both people and

associations. Google, Twitter, Face book and Flicker are all

samples of SaaS, with clients ready to get to the

administrations by means of any web empowered gadget.

Software as Service users, however, subscribes to the

product instead of procurement it, more often than not on a
month to month premise. Applications are obtained and

utilized online with records spared as a part of the cloud

instead of on individual PCs.

 Platform as a Service (PaaS): Platform as a Service
permits clients to make programming applications utilizing

instruments supplied by the supplier. PaaS administrations

can comprise of preconfigured elements that clients can

subscribe to; they can incorporate the components that meet

their necessities while disposing of those that don't. A

sample of PaaS is Google App Engine.

 Infrastructure as a Service (IaaS): Cloud shoppers
straightforwardly utilize IT bases (handling, stockpiling,

systems, and other principal processing assets) given in the

IaaS cloud. Virtualization is broadly utilized as a part of

IaaS cloud keeping in mind the end goal to

coordinate/disintegrate physical assets in a specially

appointed way to meet developing or contracting asset
request from cloud customers. The fundamental procedure

of virtualization is to setup free virtual machines (VM) that

are segregated from both the hidden equipment and

different VMs. This procedure is not quite the same as the

multi-tenure model, which means to change the application

programming design so that various cases can keep running

on a solitary application. A sample of IaaS is Amazon's EC2

[4].

Load Balancing

 In computing, load balancing is the system by which

strings, techniques or data streams are offered access to

framework assets (e.g. processor time, correspondences
information transmission) [5]. This is ordinarily done to

load alter and share framework assets enough or fulfill a

target nature of organization. The necessity for an arranging

count rises up out of the essential for most forefront

frameworks to perform multitasking (executing more than

one strategy without a moment's delay) and multiplexing

(transmit different data streams at the same time finished a

lone physical channel). The scheduler is concerned for the

most part with: Throughput The total number of processes

that complete their execution per time unit.

 Latency

 Turnaround time - total time between submission of a

process and its end.

http://www.interoute.com/unified-ict/computing/managed-application-services/isv
http://en.wikipedia.org/wiki/Latency_(engineering)

IJRECE VOL. 5 ISSUE 3 JULY.-SEPT. 2017 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 259 | P a g e

 Response time - amount of time it takes from when a

request was submitted until the first response is

produced.

 Fairness Equal CPU time to each process (or more

generally appropriate times according to each process'

priority and workload).

 Waiting Time The time the process remains in the ready
queue [6].

Need of load balancing: Not at all like Grids, Scalability,

flexibility, reliability of Cloud resources permits continuous

handling of resources to meet application prerequisite. At

bring down cost administrations of cloud, for example,

compute, storage, and bandwidth are accessible. Regularly

endeavors are planned by customer requirements. New

arranging techniques ought to be proposed to vanquish the

issues acted by framework properties amidst customer and

resources. New reserving philosophies may use a level of the

standard arranging thoughts to union them together with some

framework careful methods to give answers for better and
more compelling work booking. Standard way to book in

disseminated registering was to use the quick assignments of

customers as the overhead application base. The issue in that

heap adjusting was there is no relationship between the

overhead application base and the way that distinctive errands

cause overhead expenses of resources in Cloud frameworks

which may bring about the cost of Cloud. That is the reason

there is need of load adjusting in Cloud Environment with the

goal that parallel preparing of complex application should be

possible productively [8].

II. LITERATURE REVIEW

Jens-S. Vockler et al. [1] In this paper they portray their

encounters running a scientific workflow application in the

cloud. The application was created to process stargazing

information discharged by the Kepler extend, a NASA

mission to look for Earth-like planets circling different stars.

This workflow was sent over multiple clouds utilizing the

Pegasus Workflow Management System. The clouds utilized

incorporate a few destinations inside the FutureGrid, NERSC's
Magellan cloud, and Amazon EC2. They depict how the

application was conveyed, assess its execution executing in

various clouds (in light of Nimbus, Eucalyptus, and EC2), and

talk about the difficulties of sending and executing workflows

in a cloud situation. They additionally show how Pegasus

could support sky computing by executing a solitary workflow

over multiple cloud infrastructures at the same time.

Rajkumar Buyya et al. [2] In this paper, characterizes Cloud

computing and give the engineering to making Clouds with

market-oriented resource allotment by utilizing advances, for

example, Virtual Machines (VMs). Additionally give bits of
knowledge on market-based resource administration

methodologies that include both client driven service

administration and computational hazard administration to
support Service Level Agreement (SLA)- oriented resource

assignment. Moreover, highlighting the distinction between

High Performance Computing (HPC) workload and Internet-

based services workload and portraying a meta-transaction

framework to set up worldwide Cloud trades and markets, and

outline a contextual investigation of bridling `Storage Clouds'

for high performance content conveyance.

Li Liu et al. [3] In this paper, they proposed an adaptive

penalty function for the strict constraints compared with other

genetic algorithms. Moreover, the coevolution approach is

used to adjust the crossover and mutation probability, which is

able to accelerate the convergence and prevent the
prematurity. On 4 representative scientific workflows also

compared their algorithm with the baselines such as Random,

particle swarm optimization, Heterogeneous Earliest Finish

Time, and genetic algorithm in a WorkflowSim simulator. The

results show that it performs better than the other state of the

art algorithms in the criterion of both the deadline‐constraint

meeting probability and the total execution cost.

Ian Foster et al. [4] This paper strives to compare and

contrast Cloud Computing with Grid Computing from various

angles and give insights into the essential characteristics of
both. In this paper, shows that Clouds and Grids share a lot

commonality in their vision, architecture and technology, but

they also differ in various aspects such as security,

programming model, business model, compute model, data

model, applications, and abstractions. Also identify challenges

and opportunities in both fields. Comparison such as this can

help the two communities understand, share and evolve

infrastructure and technology within and across, and

accelerate Cloud Computing from early prototypes to

production systems.

Li Liu et al. [5] In their paper, first give a survey of cloud

workflow application and present the cloud-based workflow
architecture for Smart City. Then a variety of workflow

scheduling algorithms are reviewed. The purpose of this paper

is to making taxonomy for workflow management and

scheduling in cloud environment, and also applying this

cloud-based workflow architecture to Smart City

environments, further presenting several research challenges

in this area. The further challenges for related research work,

with the scale and complexity of the workflow being greatly

increasing, a single cloud already cannot satisfy the

requirement of it. Most of the existing algorithms are only

suitable for single cloud environment.
Suraj Pandey et al. [6] In this paper, presents a particle

swarm optimization (PSO) based heuristic to schedule

applications to cloud resources that takes into account both

computation cost and data transmission cost and experiment

with a workflow application by varying its computation and

http://en.wikipedia.org/wiki/Responsiveness

IJRECE VOL. 5 ISSUE 3 JULY.-SEPT. 2017 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 260 | P a g e

communication costs. Compare the cost savings when using

PSO and existing ‘Best Resource Selection’ (BRS) algorithm.
The methodology results show that PSO can achieve: a) as

much as 3 times cost savings as compared to BRS, and b)

good distribution of workload onto resources.

Zhanomeng Zhu et al. [7] In this paper, they highlight such

difficulties, and model the workflow scheduling problem

which optimizes both makespan and cost as a Multi-objective

Optimization Problem (MOP) for the Cloud environments.

The methodology proposed an Evolutionary Multi-objective

Optimization (EMO)-based algorithm to solve this workflow

scheduling problem on an Infrastructure as a Service (IaaS)

platform. Novel schemes for problemspecific encoding and

population initialization, fitness evaluation and genetic
operators are proposed in this algorithm. Extensive

experiments on real world workflows and randomly generated

workflows show that the schedules produced by their

evolutionary algorithm present more stability on most of the

workflows with the instance-based IaaS computing and

pricing models.

Simon Ostermann et al. [8] In this work presents an

evaluation of the usefulness of the current cloud computing

services for scientific computing. Analyse the performance of

the Amazon EC2 platform using micro-benchmarks and

kernels. While clouds are still changing, their results indicate
that the current cloud services need an order of magnitude in

performance improvement to be useful to the scientific

community. The methodology work with additional analysis

of the other services offered by Amazon: Storage (S3),

database (SimpleDB), queue service (SQS), Private Cloud,

and their inter-connection and also extend the performance

evaluation results by running similar experiments on other

IaaS providers and clouds also on other real large-scale

platforms, such as grids and commodity clusters.

Ehab Nabiel Alkhanak et al. [9] describes that workflow

scheduling (WFS) mainly focuses on task allocation to

achieve the desired workload balancing by pursuing optimal
utilization of available resources. At the same time, relevant

performance criteria and system distribution structure must be

considered to solve specific WFS problems in cloud

computing by providing different services to cloud users on

pay-as-you-go and on-demand basis.

III. PROPOSED METHODLOGY

Basic ACO Algorithm: The Ant algorithm was introduced by
Dorigo M. in 1996 based on the real ant behavior and it’s a

new heuristic algorithm to solve combinational optimization

problems. Investigations have shown that ants have the ability

to find food in an optimal path between the food and nest.

With the ant motion some pheromone is released on ground,

previous laid trail is encountered by isolated ant is being

detected and follow with a higher probability.

The ant’s probability of choosing the way depends upon the

pheromone concentration on that way. Higher the pheromone

concentration, higher will be the probability of that way
adoption. An optimal way can be found by utilizing this

positive mechanism of feedback. The steps of ant colony

optimization algorithm are given below:

Algorithm 1

Step 1: Parameters is set; pheromone trails are

initializing.

Step 2: On path segments, the Virtual trail is

accumulated.

Step 3: ACO - Construct Ant Solutions

From node i to node j an ant will move with

probability

IJRECE VOL. 5 ISSUE 3 JULY.-SEPT. 2017 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 261 | P a g e

 Pi.j =
(𝝉𝒊.𝒋

𝜶)(𝜼𝒊.𝒋
𝜷

)

∑(𝝉𝒊.𝒋
𝜶)(𝜼𝒊.𝒋

𝜷
)

Where,

On edge i, j the amount of pheromone is τi.j

To control the influence of τi,j α is a parameter

In edge i, j (typically 1/di,j) ηi,j is the desirability

To control the influence of ηi,j β is a parameter

Step 4: ACO - Pheromone Update

According to the equation amount of pheromone is

updated

τi,j = (1 − ρ)τi,j + ∆τi,j

Where,

On a given edge i, j the amount of pheromone is τi,j

ρ is the rate of pheromone evaporation is ρ

The amount of pheromone deposited is ∆τi,j, typically

given by

∆𝛕𝐢.𝐣
𝐤 = {

𝟏

𝐋𝐤
 𝐢𝐟 𝐚𝐧𝐭 𝐤 𝐭𝐫𝐚𝐯𝐞𝐥𝐬 𝐨𝐧 𝐞𝐝𝐠𝐞 𝐢, 𝐣

𝟎 𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞

Where,
The cost of the kth ant’s tour (typically length) is Lk.

Proposed Workflow Scheduling ACO Algorithm

With the above given ant algorithm characteristic utilization,

the task can be scheduled. Similarly, new task can be carried

out with the utilization of previous task scheduling result. The

basic ideas of ACO algorithm is inherited in Workflow

Scheduling-ACO algorithm for the reduction of execution

time and cost.

Firstly, input the workflow to the workflow simulator and parse
the task from this workflow. Pareto distribution is followed by

the task. On VMs, there is a pareto distribution of ants at the

beginning and then, VMi pheromone values are initialized:

𝝉𝒊(𝟎) = 𝒑_𝑵𝑼𝑴𝒊 × 𝒑_𝑴𝑰𝑷𝑺𝒊 + 𝑽𝑴_𝒃𝒊
(1)

Where

𝑝_𝑁𝑈𝑀𝑖number of VMi processor

𝑝_𝑀𝐼𝑃𝑆𝑖million instructions per second of each VMi

processor

𝑉𝑀_𝑏𝑖VMi communication bandwidth ability

Choosing VMs rule for next task: For next task, VMi choose

by k-ant with probability defined as:

𝑷𝒊
𝑲(𝑻) = {

[𝝉𝒊(𝑻)]𝜶[𝒄𝒊]𝜷[𝒍𝒃]𝜸

∑[𝝉𝑲(𝑻)]𝜶[𝒄𝑲]𝜷[𝒍𝒃]𝜸 𝒊𝒇 𝒊𝝐𝟏, 𝟐 … … … … . 𝒏

𝟎 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

(2)

Where

𝜏𝑖(𝑇)pheromone value of VMi at time T

𝑐𝑖VMi computing capacity

Ci can be defined as:

𝒄𝒊 = 𝒑_𝑵𝑼𝑴𝒊 × 𝒑_𝑴𝑰𝑷𝑺𝒊 + 𝑽𝑴_𝒃𝒊
(3)

lbiVMi load balancing factor for minimizing the degree of

imbalance defined as:

𝒍𝒃𝒊 = 𝟏 −
𝒆𝒕𝒊−𝑨𝒗𝒈_𝒆𝒕

𝒆𝒕𝒊+𝑨𝒗𝒈_𝒆𝒕

(4)

Where

𝐴𝑣𝑔_𝑒𝑡virtual machine average execution time in the

optimal path last iteration

𝑒𝑡𝑖expected execution time of VMi task

𝑒𝑡𝑖 is defined as:

𝒆𝒕𝒊 =
𝒕𝒐𝒕𝒂𝒍_𝑻𝑳

𝒄𝒊
+

𝑰𝒏𝒑𝒖𝒕_𝑭𝑺

𝑽𝑴_𝒃𝒊

(5)

Where

𝑡𝑜𝑡𝑎𝑙_𝑇𝐿total length of task submitted to VMi

𝐼𝑛𝑝𝑢𝑡_𝐹𝑆task length before execution

𝛼, 𝛽 𝑎𝑛𝑑 𝛾 parameters controlling the relative weight of

pheromone trail along with VMs computing capacity and load

balancing.

Once heavily loaded are some VMs becoming bottleneck in
cloud influences the given task set makespan. The load

balancing factor lbi is defined in the ant algorithm for

improving the capacity of lead balancing. Bigger the lbi,

higher will be the probability of choosing means VMi

comprehensive ability is greater now.

IJRECE VOL. 5 ISSUE 3 JULY.-SEPT. 2017 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 262 | P a g e

Updating Pheromone: Ant Let 𝜏𝑖(𝑇) at any time T be the

VMi pheromone intensity. The update of the pheromone is
given by:

𝝉𝒊(𝑻 + 𝟏) = (𝟏 − 𝝆) × 𝝉𝒊(𝑻) + ∆𝝉𝒊
(6)

Where

𝜌𝜖[0,1]decay coefficient of pheromone trail

The past solution impact will be less if value of 𝜌 is greater.

The ∆𝜏𝑖 value is defined as:

After the completion of ant tour, updating the local

pheromone on VM visited and ∆𝜏𝑖 value is given as:

∆𝝉𝒊 = 𝟏/𝒕𝒊𝑲
(7)

Where

𝑡𝑖𝐾 K-ant searched shortest path length at ith iteration

In case, the current optimal solution is found by the ant while

completing its tour, larger intensity pheromone is laid on its

tour and updating the global pheromone on VM visited and

∆𝜏𝑖 value is given as:

∆𝝉𝒊 = 𝒅/𝒕𝒐𝒑

(8)

Where

 𝑡𝑜𝑝current optimal solution

dencouragement coefficient

If the function is optimized then we analysis the cost and time

of that function.

Table 1: Comparison table of GA and ACO using SIPHT

RESULTS OF GA AND ACO USING -SIPHT

Ensemble GA ACO

size TET TEC Response Time TET TEC

Response

Time

2 24.06 5723.855 0.01543485 4.59 4584.063 0.03872953

4 40.16 10011.35 0.02542084 11.26 8605.69 0.06121714

6 39.04 13521.19 0.0222077 15.13 12200.43 0.05127205

8 55.98 13404.39 0.02757845 32.83 14277.19 0.05764191

10 89.61 17549.09 0.02727286 27.77 16900.17 0.0473407

12 64.5 20561.6 0.02593575 34.34 19939.58 0.04683594

14 54.64 21713.64 0.02712497 34.06 22367.37 0.05854424

16 61.21 25855.99 0.02958881 53.59 30163.12 0.06301173

18 93.3 33493.56 0.03669985 74.36 33303.33 0.05073513

20 71.03 34154.99 0.03308249 60.55 33057.34 0.05341777

IJRECE VOL. 5 ISSUE 3 JULY.-SEPT. 2017 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 263 | P a g e

Graph 1: Comparison graph of TET of GA and ACO using

SIPHT

Graph 2: Comparison graph of TEC of GA and ACO using

SIPHT

Graph 3: Comparison graph of Response time of GA and ACO using SIPHT

IJRECE VOL. 5 ISSUE 3 JULY.-SEPT. 2017 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 264 | P a g e

Table 2: Comparison table of GA and ACO using MONTAGE

RESULTS OF GA AND ACO USING -MONTAGE

Ensemble GA ACO

size TET TEC Response Time TET TEC Response Time

2 0.0 0.0 0.0 0.0 0.0 0.0

4 17.09 447.3718 0.00036851 1.73 299.958 0.00346107

6 19.69 628.3048 0.00071784 1.82 356.9556 0.00483133

8 21.95 730.9887 0.01030986 3 496.4608 0.08346628

10 28.47 1093.207 0.01084365 3 496.4608 0.08346628

12 28.89 1017.366 0.01437245 6.54 1147.339 0.08482576

14 31.15 1329.824 0.01859333 7.61 1131.746 0.09339701

16 33.2 1288.644 0.01599708 10.52 1480.906 0.09690665

18 34.07 1538.399 0.02065969 8.66 1278.957 0.10229598

20 35.3 1418.877 0.01837339 10.4 1745.794 0.11267924

Graph 4: Comparison graph of TET of GA and ACO using
MONTAGE

Graph 5: Comparison graph of TEC of GA and ACO using
MONTAGE

IJRECE VOL. 5 ISSUE 3 JULY.-SEPT. 2017 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 265 | P a g e

Graph 6: Comparison graph of Response time of GA and ACO using MONTAGE

Table 3: Comparison table of GA and ACO using GENOME

RESULTS OF GA AND ACO USING -GENOME

Ensemble GA ACO

size TET TEC Response Time TET TEC Response Time

2 137.78 7549.552 0.00008362 23.2 9915.513 0.00009375

4 201.57 42511.93 0.00063674 73.24 27030.74 0.00122507

6 370.15 28155.45 0.00013048 133.83 42569.68 0.00018726

8 284.46 58872.21 0.00132634 315.65 41656.28 0.00136613

10 365.5 77034.56 0.00151176 745.24 86234.89 0.00171455

12 423.76 66004.98 0.00141466 546.78 88012.68 0.00153053

14 486.7 82720.56 0.00147464 317.76 93654.41 0.00243139

16 530.13 113448.6 0.00167419 401.95 106579.9 0.00171186

18 419.1 119935.5 0.00157754 791.04 123916.8 0.00167645

20 746.6 138725.4 0.00113138 491.21 139920 0.00214002

IJRECE VOL. 5 ISSUE 3 JULY.-SEPT. 2017 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 266 | P a g e

Graph 7: Comparison graph of TET of GA and ACO using

GENOME

Graph 8: Comparison graph of TEC of GA and ACO using

GENOME

Graph 9: Comparison graph of Response time of GA and ACO using GENOME

IJRECE VOL. 5 ISSUE 3 JULY.-SEPT. 2017 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 267 | P a g e

Table 4: Comparison table of GA and ACO using CYBERSHAKE

RESULTS OF GA AND ACO USING -CYBERSHAKE

Ensemble

size

GA ACO

TET TEC

Response

Time TET TEC

Response

Time

2 0 0 0 0 0 0

4 19.57 822.6585 0.00033389 2.6 687.9981 0.00239637

6 25.25 1136.987 0.00076269 2.36 950.981 0.00397693

8 27.05 1545.962 0.00624708 5.92 1518.366 0.03944654

10 28.85 1883.18 0.01026533 4.87 1689.733 0.08423868

12 31.78 1729.39 0.00984849 8.08 1724.117 0.05825278

14 36.95 2530.267 0.01088677 9.96 2463.681 0.06189383

16 34.34 2106.646 0.01465981 9.25 2731.877 0.06826968

18 38.77 2311.253 0.01292667 11.78 1989.96 0.05372413

20 39.69 2541.908 0.0086382 10.62 1982.903 0.03366692

Graph 10: Comparison graph of TET of GA and ACO using CYBERSHAKE

IJRECE VOL. 5 ISSUE 3 JULY.-SEPT. 2017 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 268 | P a g e

Graph 11: Comparison graph of TEC of GA and ACO using CYBERSHAKE

Graph 12: Comparison graph of Response time of GA and ACO using CYBERSHAKE

Table 5: Comparison table of GA and ACO using LIGO

RESULTS OF GA AND ACO USING -LIGO

Ensemble GA ACO

size TET TEC Response Time TET TEC Response Time

2 0.0 0.0 0.0 0.0 0.0 0.0

4 45.91 2762.633 0.00044014 7.61 1467.243 0.0007262

6 66.89 4191.678 0.00059422 25.09 4022.422 0

8 36.66 4883.178 0.00526892 44.34 5699.963 0.00994162

10 69.82 5304.774 0.00589453 16.98 4708.369 0.01883875

12 101.39 7331.103 0.00617638 28.65 6271.538 0.01486582

IJRECE VOL. 5 ISSUE 3 JULY.-SEPT. 2017 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 269 | P a g e

14 59.96 7729.967 0.00749991 34.7 7550.524 0.01505755

16 150.38 10608.93 0.00524406 48.58 9948.208 0.01277547

18 89.77 11384.08 0.00669903 70.95 11188.03 0.01097674

20 151.22 13094.86 0.00582672 89.9 12582.79 0.00994354

Graph 13: Comparison graph of TET of GA and ACO using LIGO

Graph 14: Comparison graph of TEC of GA and ACO using LIGO

Graph 15: Comparison graph of Response time of GA and ACO using LIGO

IJRECE VOL. 5 ISSUE 3 JULY.-SEPT. 2017 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 270 | P a g e

Result Analysis:

In above given graphs and tables, represented a comparative
analysis of TET and TEC parameters on the basis of Bio

inspired optimization (GA) and Ant Colony optimization

(ACO). In experiment, we used workflow scheduling in cloud

environment with the utilization of different type of scientific

workflow. In our analysis, total cost and execution time are

improved by optimization but optimization also dependent on

initializing factors. In the proposed approach, we use Pareto

distribution instead of random initialization. If random

distributions are used, more time will be taken to converge

and sometime enforces the convergence by iteration but

enforcing of convergence will increase the computation and

execution time therefore does not meet the deadline condition.
So, task initialization is an important task as defined in this

paper. Another thing represented in these graphs and tables is

that ACO performs better in comparison to GA for reduction

of cost and time because of the random crossover.

IV. REFERNCES
[1] Vöckler JS, Juve G, Deelman E, Rynge M, Berriman B.

Experiences using cloud computing for a scientific workflow
application. In Proceedings of the 2nd international workshop
on Scientific cloud computing, ACM, 2011; 15–24.
DOI:10.1145/1996109.1996114.

[2] Buyya R, Yeo CS, Venugopal S, Broberg J, Brandic I. Cloud
computing and emerging IT platforms: vision, hype, and reality
for delivering computing as the 5th utility. Future Gener
Comput Syst. 2009;25(6):599–616. doi:
10.1016/j.future.2008.12.001.

[3] Liu, Li, et al. "Deadline‐constrained coevolutionary genetic

algorithm for scientific workflow scheduling in cloud
computing." Concurrency and Computation: Practice and
Experience (2016).

[4] Foster I, Zhao Y, Raicu I, Lu S. Cloud computing and grid

computing. 360‐degree compared. In Grid Computing

Environments Workshop, GCE’08, IEEE, 2008; 1–10. DOI:
10.1109/GCE.2008.4738445.

[5] Liu L, Zhang M, Lin Y, Qin L. A survey on workflow
management and scheduling in cloud computing. In Cluster,
Cloud and Grid Computing (CCGrid), 14th IEEE/ACM
International Symposium on, IEEE, 2014; 837–846. DOI:
10.1109/CCGrid.2014.83.

[6] Pandey S, Wu L, Guru SM, Buyya R. A particle swarm

optimization based heuristic for scheduling workflow
applications in cloud computing environments. In Advanced
information networking and applications (AINA), 24th IEEE
international conference on, IEEE, 2010; 400–407. DOI:
10.1109/AINA.2010.31.

[7] Zhu Z, Zhang G, Li M, et al. Evolutionary Multi‐Objective

Workflow Scheduling in Cloud. IEEE Trans Parallel Distr Syst.
2016;27(5):1344–57.

[8] Ostermann S, Iosup A, Yigitbasi N, Prodan R, Fahringer T,
Epema D. A performance analysis of EC2 cloud computing

services for scientific computing. In: Cloud computing. Berlin
Heidelberg: Springer; 2009: 115–31.

[9] Alkhanak, Ehab Nabiel, Sai Peck Lee, and Saif Ur Rehman
Khan. "Cost-aware challenges for workflow scheduling
approaches in cloud computing environments: Taxonomy and
opportunities." Future Generation Computer Systems 50 (2015):
3-21.

