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Abstract - Cloud computing use as distributed environment 

for computation. Increase the efficiency of computation by 

Virtual machine, But if task increase e.g. workflows, so 

reducing the cost and time tradeoff. But optimization reduce 

total execution and total execution cost. In this paper use 

random base genetic algorithm compare with ant colony 
optimization (ACO).Compare the TEC and TET.ACO 

perform significance improve because of nonrandom 

initialization. 
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I. INTRODUCTION 

These days, Cloud computing is a developing range in 

conveyed computing that convey progressively versatile 

administrations on request finished the web through 

virtualization of hardware and software. The greatest 

favorable position of the cloud is its flexibility to rent and 

discharge assets according to the client necessity. Moreover, 
the cloud supplier offer two kind of plans in particular here 

and now anticipate request and long haul reservation design. It 

has intelligent infrastructure i.e. Transparency, Scalability, 

Monitoring and Security [2]. Cloud computing can be 

distributed into three service models: Software as a Service 

(SaaS), Platform as a Service (PaaS), and Infrastructure as a 

Service (IaaS). An organization may acquire any grouping of 

these service models depending on their specific needs. These 

are services are shown in Fig.1.2. 

 Software as a Service (SaaS): Software as a Service, or 

SaaS depicts any cloud administration where buyers can get 

to programming applications over the web. The applications 

are facilitated in "the cloud" and can be utilized for an 

extensive variety of assignments for both people and 

associations. Google, Twitter, Face book and Flicker are all 

samples of SaaS, with clients ready to get to the 

administrations by means of any web empowered gadget. 

Software as Service users, however, subscribes to the 

product instead of procurement it, more often than not on a 
month to month premise. Applications are obtained and 

utilized online with records spared as a part of the cloud 

instead of on individual PCs. 

 Platform as a Service (PaaS): Platform as a Service 
permits clients to make programming applications utilizing 

instruments supplied by the supplier. PaaS administrations 

can comprise of preconfigured elements that clients can 

subscribe to; they can incorporate the components that meet 

their necessities while disposing of those that don't. A 

sample of PaaS is Google App Engine. 

 Infrastructure as a Service (IaaS): Cloud shoppers 
straightforwardly utilize IT bases (handling, stockpiling, 

systems, and other principal processing assets) given in the 

IaaS cloud. Virtualization is broadly utilized as a part of 

IaaS cloud keeping in mind the end goal to 

coordinate/disintegrate physical assets in a specially 

appointed way to meet developing or contracting asset 
request from cloud customers. The fundamental procedure 

of virtualization is to setup free virtual machines (VM) that 

are segregated from both the hidden equipment and 

different VMs. This procedure is not quite the same as the 

multi-tenure model, which means to change the application 

programming design so that various cases can keep running 

on a solitary application. A sample of IaaS is Amazon's EC2 

[4]. 

Load Balancing 

 In computing, load balancing is the system by which 

strings, techniques or data streams are offered access to 

framework assets (e.g. processor time, correspondences 
information transmission) [5]. This is ordinarily done to 

load alter and share framework assets enough or fulfill a 

target nature of organization. The necessity for an arranging 

count rises up out of the essential for most forefront 

frameworks to perform multitasking (executing more than 

one strategy without a moment's delay) and multiplexing 

(transmit different data streams at the same time finished a 

lone physical channel). The scheduler is concerned for the 

most part with: Throughput The total number of processes 

that complete their execution per time unit. 

 Latency 

 Turnaround time - total time between submission of a 

process and its end. 

http://www.interoute.com/unified-ict/computing/managed-application-services/isv
http://en.wikipedia.org/wiki/Latency_(engineering)
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 Response time - amount of time it takes from when a 

request was submitted until the first response is 

produced. 

 Fairness Equal CPU time to each process (or more 

generally appropriate times according to each process' 

priority and workload). 

 Waiting Time The time the process remains in the ready 
queue [6]. 

Need of load balancing: Not at all like Grids, Scalability, 

flexibility, reliability of Cloud resources permits continuous 

handling of resources to meet application prerequisite. At 

bring down cost administrations of cloud, for example, 

compute, storage, and bandwidth are accessible. Regularly 

endeavors are planned by customer requirements. New 

arranging techniques ought to be proposed to vanquish the 

issues acted by framework properties amidst customer and 

resources. New reserving philosophies may use a level of the 

standard arranging thoughts to union them together with some 

framework careful methods to give answers for better and 
more compelling work booking. Standard way to book in 

disseminated registering was to use the quick assignments of 

customers as the overhead application base. The issue in that 

heap adjusting was there is no relationship between the 

overhead application base and the way that distinctive errands 

cause overhead expenses of resources in Cloud frameworks 

which may bring about the cost of Cloud. That is the reason 

there is need of load adjusting in Cloud Environment with the 

goal that parallel preparing of complex application should be 

possible productively [8]. 

II. LITERATURE REVIEW 

Jens-S. Vockler et al. [1] In this paper they portray their 

encounters running a scientific workflow application in the 

cloud. The application was created to process stargazing 

information discharged by the Kepler extend, a NASA 

mission to look for Earth-like planets circling different stars. 

This workflow was sent over multiple clouds utilizing the 

Pegasus Workflow Management System. The clouds utilized 

incorporate a few destinations inside the FutureGrid, NERSC's 
Magellan cloud, and Amazon EC2. They depict how the 

application was conveyed, assess its execution executing in 

various clouds (in light of Nimbus, Eucalyptus, and EC2), and 

talk about the difficulties of sending and executing workflows 

in a cloud situation. They additionally show how Pegasus 

could support sky computing by executing a solitary workflow 

over multiple cloud infrastructures at the same time.  

Rajkumar Buyya et al. [2] In this paper, characterizes Cloud 

computing and give the engineering to making Clouds with 

market-oriented resource allotment by utilizing advances, for 

example, Virtual Machines (VMs). Additionally give bits of 
knowledge on market-based resource administration 

methodologies that include both client driven service 

administration and computational hazard administration to 
support Service Level Agreement (SLA)- oriented resource 

assignment. Moreover, highlighting the distinction between 

High Performance Computing (HPC) workload and Internet-

based services workload and portraying a meta-transaction 

framework to set up worldwide Cloud trades and markets, and 

outline a contextual investigation of bridling `Storage Clouds' 

for high performance content conveyance.  

Li Liu et al. [3] In this paper, they proposed an adaptive 

penalty function for the strict constraints compared with other 

genetic algorithms. Moreover, the coevolution approach is 

used to adjust the crossover and mutation probability, which is 

able to accelerate the convergence and prevent the 
prematurity.  On 4 representative scientific workflows also 

compared their algorithm with the baselines such as Random, 

particle swarm optimization, Heterogeneous Earliest Finish 

Time, and genetic algorithm in a WorkflowSim simulator. The 

results show that it performs better than the other state of the 

art algorithms in the criterion of both the deadline‐constraint 

meeting probability and the total execution cost. 

Ian Foster et al. [4] This paper strives to compare and 

contrast Cloud Computing with Grid Computing from various 

angles and give insights into the essential characteristics of 
both. In this paper, shows that Clouds and Grids share a lot 

commonality in their vision, architecture and technology, but 

they also differ in various aspects such as security, 

programming model, business model, compute model, data 

model, applications, and abstractions. Also identify challenges 

and opportunities in both fields. Comparison such as this can 

help the two communities understand, share and evolve 

infrastructure and technology within and across, and 

accelerate Cloud Computing from early prototypes to 

production systems. 

Li Liu et al. [5] In their paper, first give a survey of cloud 

workflow application and present the cloud-based workflow 
architecture for Smart City. Then a variety of workflow 

scheduling algorithms are reviewed. The purpose of this paper 

is to making taxonomy for workflow management and 

scheduling in cloud environment, and also applying this 

cloud-based workflow architecture to Smart City 

environments, further presenting several research challenges 

in this area. The further challenges for related research work, 

with the scale and complexity of the workflow being greatly 

increasing, a single cloud already cannot satisfy the 

requirement of it. Most of the existing algorithms are only 

suitable for single cloud environment. 
Suraj Pandey et al. [6] In this paper, presents a particle 

swarm optimization (PSO) based heuristic to schedule 

applications to cloud resources that takes into account both 

computation cost and data transmission cost and experiment 

with a workflow application by varying its computation and 

http://en.wikipedia.org/wiki/Responsiveness
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communication costs. Compare the cost savings when using 

PSO and existing ‘Best Resource Selection’ (BRS) algorithm. 
The methodology results show that PSO can achieve: a) as 

much as 3 times cost savings as compared to BRS, and b) 

good distribution of workload onto resources. 

Zhanomeng Zhu et al. [7] In this paper, they highlight such 

difficulties, and model the workflow scheduling problem 

which optimizes both makespan and cost as a Multi-objective 

Optimization Problem (MOP) for the Cloud environments. 

The methodology proposed an Evolutionary Multi-objective 

Optimization (EMO)-based algorithm to solve this workflow 

scheduling problem on an Infrastructure as a Service (IaaS) 

platform. Novel schemes for problemspecific encoding and 

population initialization, fitness evaluation and genetic 
operators are proposed in this algorithm. Extensive 

experiments on real world workflows and randomly generated 

workflows show that the schedules produced by their 

evolutionary algorithm present more stability on most of the 

workflows with the instance-based IaaS computing and 

pricing models. 

Simon Ostermann et al. [8] In this work presents an 

evaluation of the usefulness of the current cloud computing 

services for scientific computing. Analyse the performance of 

the Amazon EC2 platform using micro-benchmarks and 

kernels. While clouds are still changing, their results indicate 
that the current cloud services need an order of magnitude in 

performance improvement to be useful to the scientific 

community. The methodology work with additional analysis 

of the other services offered by Amazon: Storage (S3), 

database (SimpleDB), queue service (SQS), Private Cloud, 

and their inter-connection and also extend the performance 

evaluation results by running similar experiments on other 

IaaS providers and clouds also on other real large-scale 

platforms, such as grids and commodity clusters. 

Ehab Nabiel Alkhanak et al. [9] describes that workflow 

scheduling (WFS) mainly focuses on task allocation to 

achieve the desired workload balancing by pursuing optimal 
utilization of available resources. At the same time, relevant 

performance criteria and system distribution structure must be 

considered to solve specific WFS problems in cloud 

computing by providing different services to cloud users on 

pay-as-you-go and on-demand basis. 

III. PROPOSED METHODLOGY 

Basic ACO Algorithm: The Ant algorithm was introduced by 
Dorigo M. in 1996 based on the real ant behavior and it’s a 

new heuristic algorithm to solve combinational optimization 

problems. Investigations have shown that ants have the ability 

to find food in an optimal path between the food and nest. 

With the ant motion some pheromone is released on ground, 

previous laid trail is encountered by isolated ant is being 

detected and follow with a higher probability. 

 

 

The ant’s probability of choosing the way depends upon the 

pheromone concentration on that way. Higher the pheromone 

concentration, higher will be the probability of that way 
adoption.  An optimal way can be found by utilizing this 

positive mechanism of feedback. The steps of ant colony 

optimization algorithm are given below: 

Algorithm 1 

Step 1: Parameters is set; pheromone trails are 

initializing. 

Step 2: On path segments, the Virtual trail is 

accumulated. 

Step 3: ACO - Construct Ant Solutions 

From node i to node j an ant will move with 

probability 
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Where,  

On edge i, j the amount of pheromone is τi.j   

To control the influence of τi,j α is a parameter 

In edge i, j (typically 1/di,j ) ηi,j is the desirability  

To control the influence of ηi,j β is a parameter 

Step 4: ACO - Pheromone Update  

According to the equation amount of pheromone is 

updated  

τi,j = (1 − ρ)τi,j + ∆τi,j 

Where, 

On a given edge i, j the amount of pheromone is τi,j  

ρ is the rate of pheromone evaporation is ρ 

The amount of pheromone deposited is ∆τi,j, typically 

given by 

∆𝛕𝐢.𝐣
𝐤 = {

𝟏

𝐋𝐤
 𝐢𝐟 𝐚𝐧𝐭 𝐤 𝐭𝐫𝐚𝐯𝐞𝐥𝐬 𝐨𝐧 𝐞𝐝𝐠𝐞 𝐢, 𝐣

𝟎                                𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞
    

Where, 
The cost of the kth ant’s tour (typically length) is Lk.  

Proposed Workflow Scheduling ACO Algorithm  

With the above given ant algorithm characteristic utilization, 

the task can be scheduled. Similarly, new task can be carried 

out with the utilization of previous task scheduling result. The 

basic ideas of ACO algorithm is inherited in Workflow 

Scheduling-ACO algorithm for the reduction of execution 

time and cost. 

Firstly, input the workflow to the workflow simulator and parse 
the task from this workflow. Pareto distribution is followed by 

the task. On VMs, there is a pareto distribution of ants at the 

beginning and then, VMi pheromone values are initialized: 

𝝉𝒊(𝟎) = 𝒑_𝑵𝑼𝑴𝒊  ×   𝒑_𝑴𝑰𝑷𝑺𝒊  + 𝑽𝑴_𝒃𝒊                                                                                                            
(1) 

Where 

𝑝_𝑁𝑈𝑀𝑖number of VMi processor 

𝑝_𝑀𝐼𝑃𝑆𝑖million instructions per second of each VMi 

processor 

𝑉𝑀_𝑏𝑖VMi communication bandwidth ability 

Choosing VMs rule for next task: For next task, VMi choose 

by k-ant with probability defined as: 

𝑷𝒊
𝑲(𝑻) = {

[𝝉𝒊(𝑻)]𝜶[𝒄𝒊]𝜷[𝒍𝒃]𝜸

∑[𝝉𝑲(𝑻)]𝜶[𝒄𝑲]𝜷[𝒍𝒃]𝜸                        𝒊𝒇 𝒊𝝐𝟏, 𝟐 … … … … . 𝒏

𝟎                                                    𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
                                                                               

(2) 

Where 

𝜏𝑖(𝑇)pheromone value of VMi at time T 

𝑐𝑖VMi computing capacity 

Ci can be defined as:  

𝒄𝒊 = 𝒑_𝑵𝑼𝑴𝒊 ×  𝒑_𝑴𝑰𝑷𝑺𝒊  + 𝑽𝑴_𝒃𝒊                                                                                                               
(3) 

lbiVMi load balancing factor for minimizing the degree of 

imbalance defined as: 

 

𝒍𝒃𝒊 = 𝟏 −
𝒆𝒕𝒊−𝑨𝒗𝒈_𝒆𝒕

𝒆𝒕𝒊+𝑨𝒗𝒈_𝒆𝒕
                                                                                                                                        

(4) 

Where 

𝐴𝑣𝑔_𝑒𝑡virtual machine average execution time in the 

optimal path last iteration 

𝑒𝑡𝑖expected execution time of VMi task 

𝑒𝑡𝑖 is defined as: 

𝒆𝒕𝒊 =
𝒕𝒐𝒕𝒂𝒍_𝑻𝑳

𝒄𝒊
+

𝑰𝒏𝒑𝒖𝒕_𝑭𝑺

𝑽𝑴_𝒃𝒊
                                                                                                                                 

(5) 

Where  

𝑡𝑜𝑡𝑎𝑙_𝑇𝐿total length of task submitted to VMi 

𝐼𝑛𝑝𝑢𝑡_𝐹𝑆task length before execution 

𝛼, 𝛽 𝑎𝑛𝑑 𝛾 parameters controlling the relative weight of 

pheromone trail along with VMs computing capacity and load 

balancing. 

Once heavily loaded are some VMs becoming bottleneck in 
cloud influences the given task set makespan. The load 

balancing factor lbi is defined in the ant algorithm for 

improving the capacity of lead balancing. Bigger the lbi, 

higher will be the probability of choosing means VMi 

comprehensive ability is greater now. 
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Updating Pheromone: Ant Let 𝜏𝑖(𝑇) at any time T be the 

VMi pheromone intensity. The update of the pheromone is 
given by: 

𝝉𝒊(𝑻 + 𝟏) = (𝟏 − 𝝆) × 𝝉𝒊(𝑻) + ∆𝝉𝒊                                                                                                               
(6) 

Where 

𝜌𝜖[0,1]decay coefficient of pheromone trail 

The past solution impact will be less if value of 𝜌 is greater. 

The ∆𝜏𝑖 value is defined as: 

After the completion of ant tour, updating the local 

pheromone on VM visited and ∆𝜏𝑖 value is given as: 

∆𝝉𝒊 = 𝟏/𝒕𝒊𝑲                                                                                                                                                  
(7) 

Where 

𝑡𝑖𝐾 K-ant searched shortest path length at ith iteration 

In case, the current optimal solution is found by the ant while 

completing its tour, larger intensity pheromone is laid on its 

tour and updating the global pheromone on VM visited and  

∆𝜏𝑖 value is given as: 

∆𝝉𝒊 = 𝒅/𝒕𝒐𝒑                                                                                                                                                

(8) 

Where 

 𝑡𝑜𝑝current optimal solution 

dencouragement coefficient 

If the function is optimized then we analysis the cost and time 

of that function. 

Table 1: Comparison table of GA and ACO using SIPHT 

RESULTS OF GA AND ACO USING -SIPHT 

Ensemble GA ACO 

size TET TEC Response Time TET TEC 

Response 

Time 

2 24.06 5723.855 0.01543485 4.59 4584.063 0.03872953 

4 40.16 10011.35 0.02542084 11.26 8605.69 0.06121714 

6 39.04 13521.19 0.0222077 15.13 12200.43 0.05127205 

8 55.98 13404.39 0.02757845 32.83 14277.19 0.05764191 

10 89.61 17549.09 0.02727286 27.77 16900.17 0.0473407 

12 64.5 20561.6 0.02593575 34.34 19939.58 0.04683594 

14 54.64 21713.64 0.02712497 34.06 22367.37 0.05854424 

16 61.21 25855.99 0.02958881 53.59 30163.12 0.06301173 

18 93.3 33493.56 0.03669985 74.36 33303.33 0.05073513 

20 71.03 34154.99 0.03308249 60.55 33057.34 0.05341777 
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Graph 1: Comparison graph of TET of GA and ACO using 

SIPHT 

 

 

Graph 2: Comparison graph of TEC of GA and ACO using 

SIPHT 

  

Graph 3: Comparison graph of Response time of GA and ACO using SIPHT 
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Table 2: Comparison table of GA and ACO using MONTAGE 

RESULTS OF GA AND ACO USING -MONTAGE 

Ensemble GA ACO 

size TET TEC Response Time TET TEC Response Time 

2 0.0 0.0 0.0 0.0 0.0 0.0 

4 17.09 447.3718 0.00036851 1.73 299.958 0.00346107 

6 19.69 628.3048 0.00071784 1.82 356.9556 0.00483133 

8 21.95 730.9887 0.01030986 3 496.4608 0.08346628 

10 28.47 1093.207 0.01084365 3 496.4608 0.08346628 

12 28.89 1017.366 0.01437245 6.54 1147.339 0.08482576 

14 31.15 1329.824 0.01859333 7.61 1131.746 0.09339701 

16 33.2 1288.644 0.01599708 10.52 1480.906 0.09690665 

18 34.07 1538.399 0.02065969 8.66 1278.957 0.10229598 

20 35.3 1418.877 0.01837339 10.4 1745.794 0.11267924 

 

Graph 4: Comparison graph of TET of GA and ACO using 
MONTAGE 

 

Graph 5: Comparison graph of TEC of GA and ACO using 
MONTAGE 
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Graph 6: Comparison graph of Response time of GA and ACO using MONTAGE 

Table 3: Comparison table of GA and ACO using GENOME 

RESULTS OF GA AND ACO USING -GENOME 

Ensemble GA ACO 

size TET TEC Response Time TET TEC Response Time 

2 137.78 7549.552 0.00008362 23.2 9915.513 0.00009375 

4 201.57 42511.93 0.00063674 73.24 27030.74 0.00122507 

6 370.15 28155.45 0.00013048 133.83 42569.68 0.00018726 

8 284.46 58872.21 0.00132634 315.65 41656.28 0.00136613 

10 365.5 77034.56 0.00151176 745.24 86234.89 0.00171455 

12 423.76 66004.98 0.00141466 546.78 88012.68 0.00153053 

14 486.7 82720.56 0.00147464 317.76 93654.41 0.00243139 

16 530.13 113448.6 0.00167419 401.95 106579.9 0.00171186 

18 419.1 119935.5 0.00157754 791.04 123916.8 0.00167645 

20 746.6 138725.4 0.00113138 491.21 139920 0.00214002 
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Graph 7: Comparison graph of TET of GA and ACO using 

GENOME 

 

Graph 8: Comparison graph of TEC of GA and ACO using 

GENOME 

 

Graph 9: Comparison graph of Response time of GA and ACO using GENOME 
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Table 4: Comparison table of GA and ACO using CYBERSHAKE 

RESULTS OF GA AND ACO USING -CYBERSHAKE 

Ensemble 

size 

GA ACO 

TET TEC 

Response 

Time TET TEC 

Response 

Time 

2 0 0 0 0 0 0 

4 19.57 822.6585 0.00033389 2.6 687.9981 0.00239637 

6 25.25 1136.987 0.00076269 2.36 950.981 0.00397693 

8 27.05 1545.962 0.00624708 5.92 1518.366 0.03944654 

10 28.85 1883.18 0.01026533 4.87 1689.733 0.08423868 

12 31.78 1729.39 0.00984849 8.08 1724.117 0.05825278 

14 36.95 2530.267 0.01088677 9.96 2463.681 0.06189383 

16 34.34 2106.646 0.01465981 9.25 2731.877 0.06826968 

18 38.77 2311.253 0.01292667 11.78 1989.96 0.05372413 

20 39.69 2541.908 0.0086382 10.62 1982.903 0.03366692 

Graph 10: Comparison graph of TET of GA and ACO using CYBERSHAKE 
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Graph 11: Comparison graph of TEC of GA and ACO using CYBERSHAKE 

Graph 12: Comparison graph of Response time of GA and ACO using CYBERSHAKE 

 

Table 5: Comparison table of GA and ACO using LIGO 

RESULTS OF GA AND ACO USING -LIGO 

Ensemble GA ACO 

size TET TEC Response Time TET TEC Response Time 

2 0.0 0.0 0.0 0.0 0.0 0.0 

4 45.91 2762.633 0.00044014 7.61 1467.243 0.0007262 

6 66.89 4191.678 0.00059422 25.09 4022.422 0 

8 36.66 4883.178 0.00526892 44.34 5699.963 0.00994162 

10 69.82 5304.774 0.00589453 16.98 4708.369 0.01883875 

12 101.39 7331.103 0.00617638 28.65 6271.538 0.01486582 
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14 59.96 7729.967 0.00749991 34.7 7550.524 0.01505755 

16 150.38 10608.93 0.00524406 48.58 9948.208 0.01277547 

18 89.77 11384.08 0.00669903 70.95 11188.03 0.01097674 

20 151.22 13094.86 0.00582672 89.9 12582.79 0.00994354 

Graph 13: Comparison graph of TET of GA and   ACO using LIGO 

 

Graph 14: Comparison graph of TEC of GA and ACO using LIGO 

Graph 15: Comparison graph of Response time of GA and ACO using LIGO 
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Result Analysis: 

In above given graphs and tables, represented a comparative 
analysis of TET and TEC parameters on the basis of Bio 

inspired optimization (GA) and Ant Colony optimization 

(ACO). In experiment, we used workflow scheduling in cloud 

environment with the utilization of different type of scientific 

workflow. In our analysis, total cost and execution time are 

improved by optimization but optimization also dependent on 

initializing factors. In the proposed approach, we use Pareto 

distribution instead of random initialization. If random 

distributions are used, more time will be taken to converge 

and sometime enforces the convergence by iteration but 

enforcing of convergence will increase the computation and 

execution time therefore does not meet the deadline condition. 
So, task initialization is an important task as defined in this 

paper. Another thing represented in these graphs and tables is 

that ACO performs better in comparison to GA for reduction 

of cost and time because of the random crossover. 
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