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CAP 4630

Artificial Intelligence

Instructor: Sam Ganzfried

sganzfri@cis.fiu.edu
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• http://www.ultimateaiclass.com/

• https://moodle.cis.fiu.edu/

• HW1 out later today, due 9/14

– Remember that you have up to 4 late days to use throughout 

the semester.

– Will involve a Python programming problem 

http://ai.berkeley.edu/search.html, and a few exercises from 

the textbook.

• Office hours

http://www.ultimateaiclass.com/
http://ai.berkeley.edu/search.html
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Comparing uninformed search strategies
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Informed (heuristic) search strategies

• General approach we consider is called best-first 

search. 

• For the uninformed graph and tree search, the order in 

which a node is selected for evaluation was based on 

being first or last in.

• For informed best-first search, we assume we have an 

evaluation function f(n). This can be construed as a 

cost estimate, so the node with the lowest evaluation is 

expanded first. The implementation of best-first search 

is the same as for UCS, except for the use of f instead 

of g to order the priority queue.
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Best-first search

• The choice of f determines the search strategy. 

– Exercise 3.21 shows that best-first tree search includes DFS 

as a special case.

• Most best-first search algorithms include as a 

component of f a heuristic function denoted h(n):

– h(n) = estimated cost of the cheapest path from the state at 

node n to a goal state.
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Best-first search

• What are some possible heuristic functions for 

the Romania map problem?
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Straight-line distance
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Best-first search

• Heuristic functions are the most common form 

in which additional knowledge of the problem is 

imparted to the search algorithm. We consider 

them to be arbitrary, nonnegative, problem-

specific functions, with one constraint: if n is a 

goal node, then h(n) = 0. 
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Greedy best-first search

• Greedy best-first search tries to expand the node that is 

closest to the goal, on the grounds that this is likely to 

lead to a solution quickly. Thus, it evaluates nodes by 

using just the heuristic function; that is, f(n) = h(n).

• Romania using SLD with goal Bucharest. 

• E.g., h-SLD(In(Arad)) = 366.

• Search cost is minimal, but it is not optimal; the path 

via Sibiu and Faragas to Bucharest is 32 km longer 

than the path through RV and Pitesti. This shows why 

the algorithm is “greedy” – at each step it tries to get as 

close to the goal as it can.



11

Greedy best-first search
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Greedy best-first search

• GBFS is also incomplete even in a finite state space, 

much like DFS. Consider the problem of getting from 

Iasi to Faragas. The heuristic suggests that Neamt be 

expanded first because it is closest to Faragas, but it is 

a dead end. The solution is to first go to Vaslui—a step 

that is actually farther from the goal according to the 

heuristic—and then to continue to Urziceni, Bucharest, 

and Fagaras. The algorithm will never find this 

solution, however, because expanding Neamt puts Iasi 

back into the frontier. Iasi is closer to Fagaras than 

Vaslui is, and so Iasi will be expanded again, leading to 

an infinite loop. 
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Greedy best-first search

• The graph search version is complete in finite 

spaces, but not in infinite ones.

• The worst-case time and space complexity for 

the tree version is O(b^m), where m is the 

maximum depth of the search space 

– This was the running time of DFS

• With a good heuristic function, however, the 

complexity can be reduced substantially. The amount 

of the reduction depends on the particular problem and 

on the quality of the heuristic.
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A* search: minimizing total 

estimated solution cost
• The most widely known form of best-first search is 

called A* search. It evaluates nodes by combining g(n), 

the cost to reach the node (recall UCS), and h(n), the 

cost to get from the node to the goal:

– f(n) = g(n) + h(n)

• Since g(n) gives the path cost from the start node to 

node n, and h(n) is the estimated cost of the cheapest 

path from n to the goal, we have

– f(n) = estimated cost of the cheapest solution through n
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A* search

• Thus, if we are trying to find the cheapest 

solution, a reasonable thing to try first is the 

node with the lowest value of g(n) + h(n). It 

turns out that his strategy is more than just 

reasonable: provided that the heuristic function 

h(n) satisfies certain conditions, A* search is 

both complete and optimal. The algorithm is 

identical to Uniform-Cost-Search except that A* 

uses g+h instead of g.
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A* search
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Conditions for optimality

• The first condition we require for optimality is that 

h(n) be an admissible heuristic. An admissible 

heuristic is one that never overestimates the cost to 

reach the goal. Because g(n) is the actual cost to reach 

n along the current path, and f(n) = g(n) + h(n), we 

have as an immediate consequence that f(n) never 

overestimates the true cost of a solution along the 

current path through n.

• Admissible heuristics are optimistic, because they think 

the cost of solving the problem is less than it actually 

is. Straight-line distance heuristic is admissible.
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Conditions for A* optimality

• A second, slightly stronger condition called 

consistency is required only for applications of A* to 

graph search. A heuristic h(n) is consistent if, for every 

node n and every successor n’ generated by any action 

a, the estimated cost of reaching the goal from n is no 

greater than the step cost of getting to n’ plus the 

estimated cost of reaching the goal from n’:

– h(n) <= c(n,a,n’) + h(n’)
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Conditions for optimality: Consistency 

• This is a form of the general triangle inequality, which 

stipulates that each side of a triangle cannot be longer 

than the sum of the other two sides. Here, the triangle is 

formed by n, n’, and the goal Gn closest to n.

• For an admissible heuristic the inequality makes perfect 

sense: if there were a route from n to Gn via n’ that was 

cheaper than h(n), that would violate the property that 

h(n) is a lower bound on the cost to reach Gn.
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Optimality of A*

• It can be shown that every consistent heuristic is also 

admissible (homework problem). Consistency is 

therefore a stricter requirement than admissibility, but 

one has to work hard to concoct heuristics that are 

admissible but not consistent. 

• Straight-line distance is consistent. The general triangle 

inequality is satisfied when each side is measured by 

the straight-line distance and that the straight-line 

distance between n and n’ is no greater than c(n,a,n’).
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Optimality of A*

• As mentioned earlier, A* has the following properties: 

the tree-search version of A* is optimal if h(n) is 

admissible, while the graph-search version is optimal if 

h(n) is consistent. 

• Argument for the second claim mirrors the argument 

for optimality of UCS.

1. If h(n) is consistent, then the values of f(n) along any path 

are nondecreasing.

• Follows from definition of consistency

2. Whenever A* selects a node n for expansion, the optimal 

path to that node has been found.

• Were this not the case, there would have to be another frontier node 

n’ on the optimal path from the start node to n, …
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Optimality of A*

• From the two observations, it follows that the sequence 

of nodes expanded by A* using GRAPH-SEARCH is in 

nondecreasing order of f(n). Hence, the first goal node 

selected for expansion must be an optimal solution 

because f is the true cost for goal nodes (which have h = 

0) and all later goal nodes will be at least as expensive.

• The fact that f-costs are nondecreasing along any path 

also means that we can draw contours in the state space, 

just like the contours of a topographic map. 
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Optimality of A*
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Optimality of A*

• With uniform-cost search (A* search using h(n) = 0), 

the bands will be “circular” around the start state. With 

more accurate heuristics, the bands will stretch toward 

the goal state and become more narrowly focused 

around the optimal path. If C* is the cost of the optimal 

solution path, then we can say the following:

– A* expands all nodes with f(n) < C*

– A* might then expand some of the nodes right on the “goal 

counter” (where f(n) = C*) before selecting a goal node.

• Completeness requires that there be only finitely many 

nodes with cost less than or equal to C*, a condition 

that is true if all step costs exceed some finite ε and if b 

is finite.
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Optimality of A*

• Notice that A* expands no nodes with f(n) > C*—for example, 

Timisoara is not expanded even though it is a child of the root. 

We say that the subtree below Timisoara is pruned: because h-

SLD is admissible, the algorithm can safely ignore this subtree 

while still guaranteeing optimality. 

• A final observation among optimal algorithms of this type—

algorithms that extend search paths from the root and use the 

same heuristic information—A* is optimally efficient for any 

given heuristic. That is, no other optimal algorithm is guaranteed 

to expand fewer nodes than A* (except possibly through tie-

breaking among nodes with f(n) = C*). This is because any 

algorithm that does not expand all nodes with f(n)<C* runs the 

risk of missing the optimal solution.



26

Optimality of A*

• Thus, A* search is complete, optimal, and optimally efficient 

among all such algorithms.

• The catch is that, for most problems, the number of states within 

the goal contour search space is still exponential in the length of 

the solutions. For problems with constant step costs, the growth 

in run time as a function of the optimal solution depth d is 

analyzed in terms of the absolute error or the relative error of 

the heuristic. The absolute error is defined as AE=h*-h, where 

h* is the actual cost of getting from the root to the goal. And the 

relative error is defined as RE = (h*-h)/h*.
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Optimality of A*

• The complexity results depend very strongly on the assumptions 

made about the state space. The simplest model studied is a state 

space that has a single goal and is essentially a tree with 

reversible actions (The 8-puzzle we saw satisfies first and third 

assumptions). In this case, the time complexity of A* is 

exponential in the maximum absolute error, that is, O(b^AE). 

For constant step costs, we can write this as O(b^(RE * d)), 

where d is the solution depth. 

• For almost all heuristics in practical use, the absolute error is at 

least proportional to the path cost h*, so RE is constant or 

growing and the time complexity is exponential in d. We can 

also see the effect of a more accurate heuristic: O(b^(RE * d))

• = O((b^RE)^d), so the effective branching factor is b^RE.
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Optimality of A*

• The complexity of A* often makes it impractical to insist on 

finding an optimal solution. One can use variants of A* that find 

suboptimal solutions quickly, or one can sometime design 

heuristics that are more accurate but not strictly admissible. In 

any case, the use of a good heuristic still provides enormous 

savings compared to the use of an uninformed search.

• Computation time is not, however, A*’s main drawback. 

Because it keeps all generated nodes in memory (as do all 

GRAPH-SEARCH algorithms), A* usually runs out of space 

long before it runs out of time. For this reason, A* is not 

practical for many large-scale problems. There are, however, 

algorithms that overcome the space problem without sacrificing 

optimality or completeness, at a small cost in execution time.
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Memory-bounded heuristic search

• IDA*: Adapt the idea of iterative deepening to the 

heuristic search context. The main difference between 

IDA* and standard iterative deepening is that the cutoff 

used is the f-cost (g+h) rather than the depth; at each 

iteration, the cutoff value is the smallest f-cost of any 

node that exceeded the cutoff on the previous iteration.

• IDA* is practical for many problems with unit step 

costs and avoids the substantial overhead associated 

with keeping a sorted queue of nodes. Unfortunately, it 

suffers from the same difficulties with real-valued 

costs as does the iterative version of uniform-cost 

search (homework exercise). 
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Memory-bounded heuristic search

• Recursive best-first search: recursive algorithm that 

attempts to mimic operation of standard best-first 

search, using only linear space. As recursion unwinds, 

RBFS replaces f-value of each node along the path 

with a backed-up value—the best f-value of its 

children. 

• RBFS is somewhat more efficient than IDA*, but still 

suffers from excessive node generation. Like A*, 

RBFS is optimal if the heuristic is admissible. Its space 

is linear in the depth of the deepest optimal solution, 

but time is difficult to analyze.
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Memory-bounded heuristic search

• IDA* and RBFS suffer from using too little memory. Between 

iterations, IDA* retains only a single number: the current f-cost 

limit. RBFSW retains more information in memory, but it uses 

only linear space: even if more memory were available, RBFS 

has no way to make use of it. Because they forget most of what 

they have done, both algorithms may end up reexpanding the 

same states many times over. Furthermore, they suffer the 

potentially exponential increase in complexity associated with 

redundant paths in graphs. 

• Seems more sensible therefore to use all available memory. Two 

algorithms do this: MA (memory-bounded A*) and SMA* 

(simplified MA*).
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SMA*

• SMA* proceeds just like A*, expanding the best leaf until 

memory is full. At this point, it cannot add a new node to the 

search tree without dropping an old one. SMA* always drops 

the worst leaf node—the one with highest f-value. Like RBFS, 

SMA* then backs up the value of the forgotten node to its 

parent. In this way, the ancestor of a forgotten subtree knows the 

quality of the best path in that subtree. With this information, 

SMA* regenerates the subtree only when all other paths have 

been shown to look worse than the path it has forgotten. Another 

way of saying this is that, if all the descendants of a node n are 

forgotten, then we will not know which way to go from n, but 

we will still have an idea of how worthwhile it is to go anywhere 

from n. 
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SMA*

• SMA* is complete if there is any reachable solution—

that is, if d, the depth of the shallowest goal node, is 

less than the memory size (expressed in nodes). It is 

optimal if any optimal solution is reachable; otherwise, 

it returns the best reachable solution. In practical terms, 

SMA* is a fairly robust choice for finding solutions, 

particularly when the state space is a graph, step costs 

are not uniform, and node generation is expensive 

compared to the overhead of maintaining the frontier 

and the explored set.
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Heuristic functions
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8-puzzle

• The object of the puzzle is to slide the tiles horizontally or 

vertically into the empty space until the configuration matches 

the goal configuration.

• The average solution cost for a randomly generated 8-puzzle 

instance is about 22 steps. The branching factor is about 3 (when 

the empty tile is in the middle, four moves are possible; when it 

is in a corner, two; and when it is along an edge, three). This 

means that an exhaustive tree search to depth 22 would look at 

about 3^22 = 3.1*10^10 states. A graph search would cut this 

down by a factor of about 170,000 because only 181,440 distinct 

states are reachable (homework exercise). This is a manageable 

number, but for a 15-puzzle, it would be 10^13, so we will need 

a good heuristic function. 
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8-puzzle

• If we want to find the shortest solutions by using A*, 

we need a heuristic function that never overestimates 

the number of steps to the goal. There is a long history 

of such heuristics for the 15-puzzle; here are two 

commonly used candidates:
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8-puzzle

• h1 = the number of misplaced tiles. For the 

example, all of the 8 tiles are out of position, so 

the start state would have h1 = 8. 

Is h1 admissible?
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8-puzzle heuristic functions

• Yes h1 is admissible, because it is clear that any tile 

that is out of place must be moved at least once.

• h2 = the sum of the distances of the tiles from their 

goal positions. Because tiles cannot move along 

diagonals, the distance we will count is the sum of the 

horizontal and vertical distances. This sometimes 

called the city block distance or Manhattan distance. 

Is h2 admissible?
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8-puzzle heuristic functions

• Yes h2 is also admissible, because all any move can do 

is move one tile one step closer to the goal. Tiles 1 to 8 

in the start state give a Manhattan distance of:

h2 = 3 + 1 + 2 + 2 + 2 + 3 + 3 + 2 = 18.

• As expected, neither of these overestimates the true 

solution cost, which is 26.
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Heuristic functions

• One way to characterize the quality of a heuristic is the effective 

branching factor b*. If the total number of nodes generated by 

A* for a particular problem is N and the solution depth is d, then 

b* is the branching factor that a uniform tree of depth d would 

have to have in order to contain N+1 nodes. Thus,

N+1 = 1 + b* + (b*)^2 + … + (b*)^d

• For example, if A* finds a solution at depth 5 using 52 nodes, 

then the effective branching factor is 1.92. The effective 

branching factor can vary across problem instances, but usually 

it is fairly constant for sufficiently hard problems. Therefore, 

experimental measurements of b* on a small set of problems can 

provide a good guide to the heuristic’s overall usefulness. A 

well-designed heuristic would have a value of b* close to 1, 

allowing fairly large problems to be solved at a reasonable cost.
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Heuristic functions
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Heuristic functions

• To test the heuristic functions h1 and h2, we generated 

1200 random problems with solution lengths from 2 to 

24 (100 for each even number) and solved them with 

IDS and with A* tree search using both h1 and h2. 

• The results suggest that h2 is better than h1, and is far 

better than using IDS. Even for small problems with 

d=12, A* with h2 is 50,000 times more efficient than 

uninformed IDS.
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Heuristic functions

• One might ask whether h2 is always better than h1. 

The answer is “Essentially yes.” It is easy to see from 

the definitions of the two that, for any node n, h2(n) >= 

h1(n). We thus say that h2 dominates h1. Domination 

translates directly into efficiency: A* using h2 will 

never expand more nodes than A* using h1 (except 

possibly for some nodes with f(n) = C*). 

• Hence, it is generally better to use a heuristic function 

with higher values, provided it is consistent and that 

the computation time for the heuristic is not too long.
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Search wrap-up

• Search-problem definition: Initial state, actions, transition 

model, path cost, state space, path, solution.

• General TREE-SEARCH and GRAPH-SEARCH algorithm. 

Tree-search considers all possible paths to find a solution, while 

graph-search avoids consideration of redundant paths.

• “Big 4” criteria: completeness, optimality, time complexity, 

space complexity. Often depends on branching factor b and d, 

depth of the shallowest solution.

• Uninformed search algorithms have access only to the problem 

definition: BFS, UCS, DFS, DLS, IDS, BDS.

• Informed search may have access to a heuristic function h(n) 

that estimates the cost of a solution from n: generic best-first 

search, greedy best-first search, A* search, RBFS, SMA*
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Upcoming search paradigms

• Next time: quick introduction to alternative search 

methodologies.

• Local search: evaluates and modifies one or more current states, 

rather than systematically exploring paths from an initial state. 

– Global vs. local minimum/maximum, hill-climbing, simulated annealing, 

local beam search, genetic algorithms

• Adversarial search: search with multiple agents, where our 

optimal action depends on the cost/“utilities” of other agents and 

not just our own. 

– E.g., robot soccer, computer chess, etc.

– Zero-sum games, perfect vs. imperfect information, minimax search, 

alpha-beta  pruning

• Constraint satisfaction: assign a value to each variable that 

satisfies certain constraints. E.g., map coloring.
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Local search
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Adversarial search
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Constraint satisfaction
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Homework for next class

• Chapter 6 from Russell-Norvig textbook.

• HW1: out today due 9/14


